CSC 380: Principles of Data Science (Spring 2025)

Tentative schedule

(Thanks to Profs. Colin Dawson, Cesim Erten, Kwang-Sung Jun, Jason Pacheco, Mihai Surdeanu, Xinchen Yu, whose slides I build mine upon.)

Date Topics Slides Additional readings Homework
Jan 15 Course logistics, Intro to data science intro slides Robinson and Nolis, “What is Data Science?”; Download Probability and Statisics Cookbook  
Jan 20 Martin Luther King Jr Day – no class      
Jan 22 Basic Data Analysis 1: Pandas and descriptive statistics slides WJ Chap. 1  
Jan 27 Basic Probability 1 slides WJ Chap. 2  
Jan 29 Basic Probability 1   WJ Chap. 5  
Feb 3 Basic Probability 2: conditional probability slides WJ Chap. 6 HW2
Feb 5 Basic Probability 2: conditional probability   Peter Donnelly: How stats fool juries, Interactive Fagan Nomogram by Dr. Carlos Scheidegger  
Feb 10 Basic Probability 2: independence, connections to combinatorics   WJ Chap 7  
Feb 12 Basic Probability 3: discrete random variables slides WJ Chap 8  
Feb 17 Basic Probability 3: discrete random variables, continuous random variables   WJ Chap 9  
Feb 19 Basic Probability 3: continuous random variables and PDFs   WJ Chap 7.5  
Feb 24 Basic Probability 3: continuous random variables transformations, summary, examples   WJ Chap 8.4-8.6  
Feb 26 Basic Probability 4: multivariate random variables slides WJ Chap 7.7  
Mar 3 Midterm review slides WJ Chap 10  
Mar 5 Midterm      
Mar 10 Spring Recess      
Mar 12 Spring Recess      
Mar 17 Basic Probability 4: multivariate random variables: conditional distribution and independence   WJ Chap. 7.7, 7.8, 8.7  
Mar 19 Basic Probability 4: multivariate random variables: expectation and variance   WJ Chapt 3.1 and 8.8  
Mar 24 Basic Probability 4: multivariate random variables: law of large numbers and central limit theorem   WJ Chap 10, 11  
Mar 26 Basic Data analysis 2: machine learning and linear regression slides WJ Chap 3.2  
Mar 31 Basic Data analysis 2: overfitting and underfitting; cross validation; ridge and Lasso   ISL 6.1, 6.2  
Apr 2 Basic Data analysis 3: classification and nearest neighbors slides ISL 2.2  
Apr 7 Basic Data analysis 3: logistic regression   ISL 4.3  
Apr 9 Basic Data analysis 3: classification metrics beyond accuracy; multiclass classification slides ISL 4.4.2 (start from page 161)  
Apr 14 Basic Data analysis 4: support vector machines; nonlinear models; beginning neural networks   ISL 9.1, 9.2, 10.1, 10.2  
Apr 16 Basic Data Analysis 4: neural networks; clustering   ISL 10.7, 12.1, 12.4.1  
Apr 21 Basic Statistics 1: point estimation basics; maximum likelihood estimation slides WJ 12.1, 12.2  
Apr 23     WJ 14.1, 14.2, 15.1, 15.2  
Apr 28 Basic Statistics 2: interval estimation   WJ 16.1  
Apr 30 Basic Statistics 3: hypothesis testing   WJ 17.1, 20.1-20.6  
May 5        
May 7 Final review      
May 13 (Tue) Final Exam 3:30 - 5:30pm