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Quiz 5

A company operates a customer support hotline, and the time 
(in minutes) a customer waits before speaking to an agent 𝑋
follows an exponential distribution, 

𝑓 𝑥 = 2𝑒−2𝑥 , 𝑥 ≥ 0

What is the probability that a randomly chosen customer waits 
between 1 and 3 minutes before being connected to an agent? 
S

(Hint: the antiderivative of 2𝑒−2𝑥 is −𝑒−2𝑥)



Quiz 5

• The question asks for 𝑃(1 ≤ 𝑋 ≤ 3)

• Integrating PDF, this is

1
3
2𝑒−2𝑥𝑑𝑥 = −𝑒−2𝑥ȁ1

3

= (−𝑒−6) − −𝑒−2

= 𝑒−2 − 𝑒−6

= 0.132



Announcements 2/26

• Quiz 4 graded

• Check scores on D2L about Quizzes 1-4 and HW1-3 
• Let us know (by Piazza private post) if your scores are missing / wrong



Announcements 2/26

HWs: 

• Merging PDFs

• We recommend using Adobe Creative Cloud (UA access no cost)

• Sometimes important clarifications on HW questions may be on Piazza, keep 
a lookout for it..

• We recommend checking out the HW timeline in the syllabus

• Generally, writing down more steps help us giving more credits to your 
solutions more robustly

https://career.arizona.edu/resources/adobe-creative-cloud-2/


Outline

• Multivariate Random Variables
• Joint distribution vs. Marginal distribution
• Independence of RVs

• Expectation and Variance Revisited
• Covariance, correlation

• Example multivariate RVs

• Law of Large Numbers

• Central Limit Theorem

6



Multivariate Random Variables
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Multivariate RVs: example

• X: people -> their genders

• Y: people -> their class year

• We’d like to answer questions such as: does X and Y have a correlation?
• I.e., is a student in higher class year more likely to be male?

• We call (X, Y) a random vector, or a multivariate RV, and will study its joint
distribution



Joint distribution of discrete RVs

• The joint PMF (probability mass function) of discrete 
random variables X, Y: 

𝑓(𝑥, 𝑦) = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

Examples

𝑃 𝑋 = Fem, 𝑌 = Soph =
1

4

𝑃 𝑋 = Fem, 𝑌 = Jun =
1

4

… 

Alexandra

Dharuvika



Joint distribution of discrete RVs

• X: # of cars owned by a randomly selected household

• Y: # of computers owned by the same household

• Joint pmf shown with a table

• Probability that a randomly selected household has ≥ 2 cars 
and ≥ 2 computers?

• 𝑃 𝑋 ≥ 2, 𝑌 ≥ 2 = 0.5



Marginal distributions

• Given joint distribution of (𝑋, 𝑌), need distribution of one, 
say 𝑋.

• Such a distribution is called the marginal distribution of 𝑋.

• How to find 𝑃 𝑋 = 𝑥 ?

• Using law of total probability: 

𝑓1 𝑥 =

𝑦

𝑓(𝑥, 𝑦)

• This operation is called marginalization (‘marginalizing out 
variable Y’, or variable elimination)



Marginal distributions

𝑓1: marginal distribution of 𝑋

𝑓2: marginal distribution of 𝑌



Marginalization: visualization

Given: joint distribution of (Birth order, Maternal Age) of babies: 

• To get marginal probability of ‘Maternal Age’: 

• Stack up all bars of the same color

Joint PMF



Joint distribution of continuous RVs

• Any continuous random vector (X,Y) has a joint probability 
density function (PDF) 𝑓(𝑥, 𝑦), such that for all 𝐶,

𝑃 𝑋, 𝑌 ∈ 𝐶 =ඵ

𝐶

𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

𝑓(𝑥, 𝑦): represent a 2D surface

This expression (double integral)

denotes the volume under the 2D surface with base 𝐶



Joint distribution of continuous RVs

Again:

• the ‘pile of sand’ analogy

• the histogram analogy 

are useful to perceive 𝑓(𝑥, 𝑦)

Properties: 

• 𝑓 is nonnegative

• 𝑅2
𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦 = 1 (𝑅2 = the whole x-y plane)

• 𝑃 𝑋, 𝑌 ∈ 𝑅2 = 1



Example: dartboard

• Dartboard with center (0,0) and radius 1; dart lands 
uniformly at random on the board

• What is the joint PDF of (𝑋, 𝑌)?

• Fact: the PDF is 

𝑓 𝑥, 𝑦 = ቊ
𝑐, 𝑥2 + 𝑦2 ≤ 1
0, otherwise

• This is called “the Uniform distribution over the unit disk”

𝑋

𝑌



Example: dartboard

The PDF of 𝑋, 𝑌 is 

𝑓 𝑥, 𝑦 = ቊ
𝑐, 𝑥2 + 𝑦2 ≤ 1
0, otherwise

Can we find 𝑐?

Observe: volume under 𝑓 𝑥, 𝑦 is 𝜋𝑐 (cylinder)

which must also be 1

Therefore, 𝑐 = 1/𝜋

𝑋

𝑌



Marginal distribution of continuous RV

• Given joint distribution of continuous RV (𝑋, 𝑌), need 
distribution of one, say 𝑋.

• How to find 𝑋’s PDF 𝑓1?
• Analogous to discrete case

Fact (marginalization) 𝑓1 𝑥 = 𝑅 𝑓(𝑥, 𝑦) 𝑑𝑦

Replacing summation with integration in the continuous case (‘marginalizing / 
integrating out variable Y’)

How about 𝑌’s PDF 𝑓2? 

• Marginalize out 𝑋



Example: dartboard

The PDF of 𝑋, 𝑌 is 

𝑓 𝑥, 𝑦 = ቐ
1

𝜋
, 𝑥2 + 𝑦2 ≤ 1

0, otherwise

What is the marginal distribution over 𝑋?

𝑓1 𝑥 = න
−∞

+∞

𝑓(𝑥, 𝑦) 𝑑𝑦

How to find this integral?

𝑋

𝑌



Example: dartboard

𝑋

𝑌

𝑓1 𝑥 = න
−∞

+∞

𝑓(𝑥, 𝑦) 𝑑𝑦

For 𝑥 outside [−1, 1], 𝑓 𝑥, 𝑦 = 0

=> 𝑓1 𝑥 = 0

For a fixed 𝑥 ∈ [−1, 1], 𝑓(𝑥, 𝑦) looks like

=> 𝑓1 𝑥 =
2

𝜋
⋅ 1 − 𝑥2

𝑥

− 1 − 𝑥2 + 1 − 𝑥2



Example: dartboard

• In summary, 

𝑓 𝑥 = ቐ
2

𝜋
⋅ 1 − 𝑥2, 𝑥 ∈ −1,1

0, otherwise

𝑋’s distribution is NOT Uniform( −1,1 )!

Actually makes sense: 𝑋 closer to 1 is harder to be hit

𝑋

𝑌



Announcements

• Midterm graded (grade distribution on Piazza)
• Let me know if you have feedback on curving scheme

• Quiz 5 graded 
• We will have quiz 6 this Wed (3/19)

• Participation: in-class question answering can now serve as 
equivalent of Piazza participation instance 

• I highly encourage you to get the 5pt bonus!



Announcements

• Lecture plan for the 2nd half of the class
• Probability (2-3 lectures)

• Data collection (1 lecture)

• More on data visualization (1 lecture)

• Basic statistics (4-5 lectures) 

• Basic data analysis: machine learning (6 lectures)

• Final review (1 lecture)

• HW5 may come a bit later (likely next week)

• I will provide project instructions soon (likely today)



Recap: multivariate RVs 

• A pair of RVs: (𝑋, 𝑌)

• If 𝑋 and 𝑌 are both discrete, (𝑋, 𝑌)’s 
distribution can be characterized by 
their joint PMFs

• what values could (𝑋, 𝑌) take
• For each possible value 𝑥, 𝑦 , the 

probability of taking it 

• If 𝑋 and 𝑌 continuous, distribution 
characterized by their joint PDFs



Midterm Q6



Midterm Q6

• Given this, how to find the joint PMF of (𝑋, 𝑌), for 𝑌 = 𝑋2?

• What possible values can (𝑋, 𝑌) take?
• (-1, 1)

• (0, 0)

• (1, 1)



Midterm Q6

• So, a way to write (X,Y)’s PMF is

• Written in two-way table, it is 

• How to find the marginal of Y?
• Take summation over each row

(x,y) (-1, 1) (0, 0) (1, 1)

P(X=x, Y=y) 0.2 0.2 0.6



Joint distribution of more than 3 RVs

• Similarly, we can consider the joint distribution of more than 
3 random variables, 

• E.g. (A,B,C), A = gender, B = class year, C = blood type

• Discrete RVs: can still define joint PMFs



Marginalization

Given the joint distribution of (𝐴, 𝐵, 𝐶)

• What is the distribution of 𝐴?
• Need to find 𝑃(𝐴 = 0) and 𝑃(𝐴 = 1)

𝑃 𝐴 = 0 =

𝑏,𝑐

𝑃(𝐴 = 0, 𝐵 = 𝑏, 𝐶 = 𝑐)

• What is the joint distribution of (𝐴, 𝐵)?
• Need to find 𝑃 𝐴 = 0, 𝐵 = 0 ,… , 𝑃(𝐴 = 1, 𝐵 = 1)

𝑃 𝐴 = 0, 𝐵 = 0 =

𝑐

𝑃(𝐴 = 0, 𝐵 = 0, 𝐶 = 𝑐)

Marginalization: summing over 

irrelevant variables



Joint distribution of more than 3 RVs

• Continuous RVs: can still define joint PDFs, 

• e.g. for (𝐴, 𝐵, 𝐶), A = blood pressure, B = height, C = 
weight, they have a joint PDF of 

𝑓(𝑎, 𝑏, 𝑐)

• Note: 3d PDF Is hard to visualize directly

• Useful to visualize 𝑓 using a scatterplot of points drawn 
from joint distribution of (𝐴, 𝐵, 𝐶)



Marginalization for continuous RVs

Suppose joint PDF of (𝐴, 𝐵, 𝐶) is 𝑓(𝑎, 𝑏, 𝑐)

• What is the PDF of 𝐴?

𝑓𝐴 𝑎 = ඵ

𝑅2

𝑓(𝑎, 𝑏, 𝑐) 𝑑𝑏 𝑑𝑐

• What is the joint PDF of (𝐴, 𝐵)?

𝑓𝐴,𝐵 𝑎, 𝑏 = න
𝑅

𝑓(𝑎, 𝑏, 𝑐)𝑑𝑐

• These operations generalize to joint PDFs of more RVs.. 

Marginalization: summing over 

irrelevant variables



Independence of RVs
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Independence of RVs

• RVs 𝑋, 𝑌 are independent (denoted by 𝑋 ⫫ 𝑌) if 

𝑓 𝑥, 𝑦 = 𝑓1 𝑥 ⋅ 𝑓2(𝑦),   for all 𝑥, 𝑦

• E.g. for discrete 𝑋, 𝑌,
𝑃 𝑋 = 3, 𝑌 = 4 = 𝑃 𝑋 = 3 ⋅ 𝑃(𝑋 = 4)

Therefore, {𝑋 = 3} and {𝑌 = 4} are independent events 

PMF or PDF Marginal of X Marginal of Y



In class activity: checking independence of RVs

• Which of these PMFs correspond to independent 𝑋 ⫫ 𝑌?

𝑋, 𝑌 independent 𝑋, 𝑌 not independent 

only one counterexample suffices to 

disprove independence!

Need to check:

𝑓1 0 𝑓2 0 = 𝑓(0,0),
..

(4 equalities)

E.g. 𝑓1 0 𝑓2 1 =
1

4
, whereas 𝑓 0,1 = 0



Independence is invariant under transformations

Fact If 𝑋, 𝑌 are independent, then 𝑓(𝑋), 𝑔(𝑌) are also 
independent

E.g. X = tomorrow’s temperature (in Celsius); Y = tomorrow’s 
NVIDIA stock price (in $)

f(X) = tomorrow’s temperature (in Fahrenheit); g(Y) = 
tomorrow’s NVIDIA stock price (in cents)



Independence of more than two RVs

• RVs 𝑋1, … , 𝑋𝑛 are independent if their joint PMF or PDF 
satisfy  

𝑓 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑓1 𝑥1 𝑓2 𝑥2 …𝑓𝑛(𝑥𝑛),   

for all 𝑥1, … , 𝑥𝑛

• This captures many real-world applications:
• Independent trials: each 𝑋𝑖 is Bernoulli(𝑝)
• Samples: each 𝑋𝑖 is an independent sample from a population 

(foundations of statistics)
• Manufacturing: 𝑋𝑖 is the quality of part 𝑖

PMFs or PDFs Marginal for 𝑋1
Marginal for 𝑋𝑛



Independence of more than two RVs

Fact If 𝑋1, … , 𝑋𝑛 are independent, then 

• any subset 𝑋𝑖1 , … , 𝑋𝑖𝑝 are independent 

• E.g. 𝑋1, 𝑋3, 𝑋7 are independent

• any disjoint subset (𝑋𝑖1 , … , 𝑋𝑖𝑚), (𝑋𝑗1 , … , 𝑋𝑗𝑙) are 

independent 
• E.g. (𝑋1, 𝑋2) is independent of 𝑋3
• (𝑋1, 𝑋3) is independent of (𝑋2, 𝑋4)



True or False?

• If I flip 10 coins independently, it is more likely that I see 

HTTHTHHTHT

than 

HHHHHHHHHH

• False 

𝑓 HTTHTHHTHT = 𝑓1 𝐻 ⋅ … ⋅ 𝑓10 𝑇 =
1

210

𝑓 HHHHHHHHHH = 𝑓1 𝐻 ⋅ …𝑓10 𝐻 =
1

210



Conditional distributions of RVs
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Conditional distributions (discrete)

• 𝑋, 𝑌 have joint PMF 𝑓. 𝑌 has marginal PMF 𝑓2

• Conditional PMF of 𝑋 given 𝑌 = 𝑦:

𝑔1 𝑥 𝑦 =
𝑓(𝑥, 𝑦)

𝑓2(𝑦)

• Note: 𝑔1 𝑥 𝑦 is best viewed as a function of 𝑥; it reads “the 
conditional distribution of 𝑋 given 𝑌 = 𝑦”

This is actually 
𝑃(𝑋=𝑥,𝑌=𝑦)

𝑃(𝑌=𝑦)
= 𝑃(𝑋 = 𝑥 ∣ 𝑌 = 𝑦)



Conditional distributions (discrete)

Example X=0: car not stolen, X=1: car stolen

Joint PMF of 𝑋, 𝑌:

Find the table of the conditional PMF of 𝑋 given 𝑌

Solution

P(X=0 | Y=1)

= 0.129 / 0.139



𝑋

𝑌

Conditional distributions (continuous)

• 𝑋, 𝑌 have joint PDF 𝑓. 𝑌 has marginal PDF 𝑓2

• Conditional PDF of 𝑋 given 𝑌:

𝑔1 𝑥 𝑦 =
𝑓(𝑥, 𝑦)

𝑓2(𝑦)

Example dartboard. (𝑋, 𝑌) ∼ Uniform(unit disk)

Conditional distribution of 𝑋 given 𝑌 = 0.6:

Uniform([−0.8, +0.8])



Conditional distributions & independence

Fact 𝑋,𝑌 are independent

⇔ for all 𝑦, 𝑔1 𝑥 𝑦 are all equal to 𝑓1(𝑥)

• In other words, knowing 𝑌 does not change our belief on 𝑋

In the car example, 𝑋,𝑌 are 

not independent!  

𝑔1 𝑥 1 𝑔1 𝑥 2 𝑓1(𝑥)

Here, 𝑔1, 𝑓1 are PMF or PDF 

depending on the types of 𝑋,𝑌



Independence: visualization 

• Left: 𝑋, 𝑌 independent;         Right: 𝑋, 𝑌 not independent

𝑋

𝑌

𝑋

𝑌

𝑔1 𝑦 𝑥 = −1 𝑔1 𝑦 𝑥 = +1 𝑔1 𝑦 𝑥 = −1 𝑔1 𝑦 𝑥 = +1



True or False?

• If I flip a fair coin repeatedly, and my first 2 trials are both 
tails. Then my third throw will have a higher chance of 
showing head.

• This is asking 𝑔3 H ∣ TT = 𝑃 𝑋3 = 𝐻 𝑋1 = 𝑇, 𝑋2 = 𝑇)

= 𝑃 𝑋3 = 𝐻 = 1/2

so the claim is false

• This is known as the gambler’s fallacy
• Prior losses do not increase the chance of future win

Since 𝑋3 is independent of 𝑋1, 𝑋2



Conditional expectation

Definition The mean of the conditional distribution of 

𝑋 given 𝑌 = 𝑦, is called the conditional expectation of 𝑋 given 𝑌 = 𝑦, 
denoted as E 𝑋 𝑌 = 𝑦 .

E 𝑋 𝑌 = 𝑦 can be found by: 

• σ𝑥 𝑥 𝑔1 𝑥 𝑦 , if 𝑋 is discrete

• ∞−
+∞

𝑥 𝑔1 𝑥 𝑦 𝑑𝑥, if 𝑋 is continuous

Conditional PMF 

Conditional PDF 



Independence: visualization 

• Left: 𝑋, 𝑌 independent;         Right: 𝑋, 𝑌 not independent

𝑋

𝑌

𝑋

𝑌

𝑔1 𝑦 𝑥 = −1 𝑔1 𝑦 𝑥 = +1 𝑔1 𝑦 𝑥 = −1 𝑔1 𝑦 𝑥 = +1

Which one is larger, E[𝑌ȁ𝑋 = −1] or E[𝑌ȁ𝑋 = +1]?
The former



Conditional expectation

Example Roll 2 fair dice. Expected value of die 1 given that 
their sum is 5?

Solution X: outcome of die 1; Y: sum of 2 dice, 𝐸[𝑋 ∣ 𝑌 = 5]

Let’s find the conditional distribution of 𝑋 given 𝑌 = 5 first..

𝑔1 𝑥 5 = 𝑃 𝑋 = 𝑥 𝑌 = 5

=
𝑃(𝑋=𝑥,𝑌=5)

𝑃(𝑌=5)
When is this nonzero?



Conditional expectation

𝑔1 𝑥 5 = 𝑃 𝑋 = 𝑥 𝑌 = 5

=
𝑃(𝑋=𝑥,𝑌=5)

𝑃(𝑌=5)

Thus, the conditional distribution of X given 𝑌 = 5 is 

Therefore, 𝐸[𝑋 ∣ 𝑌 = 5] is 
1

4
1 + 2 + 3 + 4 = 2.5

When is this nonzero?

𝑥 = 1,2,3,4

x 1 2 3 4

P(X=x|Y=5)

= 𝑔1 𝑥 5

1

4

1

4

1

4

1

4

4

36
=
1

9



Quiz 6

Roll 2 fair dice independently. What is the expected value of 
die 1 given that their product is 4?



Quiz 6

Example Roll 2 fair dice. Expected value of die 1 given that 
their product is 4?

Solution X: outcome of die 1; Y: product of 2 dice, 𝐸[𝑋 ∣ 𝑌 = 4]

Let’s find the conditional distribution of 𝑋 given 𝑌 = 4 first..

𝑔1 𝑥 5 = 𝑃 𝑋 = 𝑥 𝑌 = 4

=
𝑃(𝑋=𝑥,𝑌=4)

𝑃(𝑌=4)
When is this nonzero?



Conditional expectation

𝑔1 𝑥 4 = 𝑃 𝑋 = 𝑥 𝑌 = 4

=
𝑃(𝑋=𝑥,𝑌=5)

𝑃(𝑌=4)

Thus, the conditional distribution of X given 𝑌 = 4 is 

Therefore, 𝐸[𝑋 ∣ 𝑌 = 4] is 
1

3
1 + 2 + 4 =

7

3

When is this nonzero?

𝑥 = 1,2,4

x 1 2 4

P(X=x|Y=4)

= 𝑔1 𝑥 4

1

3

1

3

1

3

3

36
=

1

12



Announcements

• Project information is out (on Piazza)
• Let me know if you need help finding teammates

• We will release HW5 next week
• My goal: teach basic machine learning next week

• Midterm question review..



Discrete RVs Continuous RVs

CDF √ (staircase) √ (continuous)

PMF √ ×

PDF × √

Midterm Q7

• Tools to characterize RVs

• There are RVs that have neither PMF or PDFs
• So they are neither discrete nor continuous

• Example: mixture of discrete and continuous distributions (next 
slide)



Midterm Q7

• Consider the following example: 
• Flip a fair coin

• If head, return X = 0

• If tail, return X ∼ Uniform([0,1])

• Then X’s CDF is: 
• Neither a staircase

• Nor continuous



Finding distributions of RVs
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Finding distributions of random variables

• Oftentimes we are tasked with finding distributions of some 
complex random variable, e.g.

• Total cost Z = X + Y, where X = food expenses, Y = 
transportation cost

• Energy bill Z = X Y, where X = #hours at home, Y = power of all 
electrical devices

• How to find distributions of such Z?
• We will learn how to do this when Z is discrete



Finding distributions of random variables

• How to find the distribution of a discrete RV Z:

• Step 1: find what values Z can take

• Step 2: find the probability that Z takes each possible value

• For continuous Z:

• We can simulate drawing samples from Z and draw histogram!

• For exact calculation, we will only state important facts



Finding distributions of random variables

Example Suppose 𝑋 ∼ Uniform 1,2 , 𝑌 ∼ Uniform({1,2,3}), 
and 𝑋 ⫫ 𝑌. Find the distribution of 𝑍 = 𝑋 + 𝑌.

Solution

Step 1: what values can 𝑍 take?

2, 3, 4, 5

Step 2: for each possible value, what is the probability that 𝑍
takes it?



Finding distributions of random variables

Example Suppose 𝑋 ∼ Uniform 1,2 , 𝑌 ∼ Uniform({1,2,3}), 
and 𝑋 ⫫ 𝑌. Find the distribution of 𝑍 = 𝑋 + 𝑌.

Solution

Step 2: what is the probability that 𝑍 takes 2? 3? 4? 5?

𝑃 𝑍 = 2 = 𝑃 𝑋 = 1, 𝑌 = 1 =
1

2
×

1

3
=

1

6

𝑃 𝑍 = 3 = 𝑃 𝑋 = 1, 𝑌 = 2 + 𝑃 𝑋 = 2, 𝑌 = 1 =
1

3

…
z 2 3 4 5

P(Z=z) 1

6

1

3

1

3

1

6



Rule of Lazy Statistician

• If we are only interested in finding E[𝑟 𝑋, 𝑌 ], we can bypass 
finding 𝑟 𝑋, 𝑌 ’s distribution using the rule of lazy statistician

• E.g. when 𝑋, 𝑌 are discrete:

E 𝑟 𝑋, 𝑌 =

𝑥,𝑦

𝑟 𝑥, 𝑦 ⋅ 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

• Similar formulae hold for more than 3 RVs / continuous RVs

• We will see examples soon



Expectation and Variance revisited
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Linearity of expectation

Fact Expectation of sum is sum of expectations

𝐸 𝑋1 + 𝑋2 = 𝐸 𝑋1 + 𝐸[𝑋2]

Example: betting on two games

Note: generalizes to n variables

This property, together with the previously known 

𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏, are called the linearity of expectation



Linearity of expectation

Example Proportion of R balls is 𝑝

• Randomly sample 𝑛 balls with replacement

• 𝑋: # R balls in the sample. E 𝑋 =?

• (We already knew the answer from binomial distribution..)

Solution Let 𝑋𝑖 = 1 if 𝑖-th ball is R, and 0 otherwise

⇒ 𝑋 = 𝑋1 +⋯+ 𝑋𝑛
Each 𝑋𝑖 has expectation 𝑝

⇒ E 𝑋 = 𝐸 𝑋1 +⋯+ 𝐸 𝑋𝑛 = 𝑛𝑝



Linearity of Variance?

Is Var 𝑋 + 𝑌 = Var[𝑋] + Var[𝑌]?

• It depends.. 
• Case 1: when 𝑌 = −𝑋, 

Var[𝑋 + 𝑌] = 0

Var 𝑌 = Var[𝑋]

=> LHS < RHS

• Case 2: when 𝑌 = 𝑋, 
Var 𝑋 + 𝑌 = Var 2𝑋 = 4 Var[𝑋]

Var 𝑌 = Var[𝑋]

=> LHS > RHS

• Observation: extra correction is needed to balance the equation



Covariance

• Covariance of 𝑋, 𝑌: numerical measure of the degree to 
which 𝑋, 𝑌 vary together. Let E 𝑋 = 𝜇𝑥, E 𝑌 = 𝜇𝑦,

Cov 𝑋, 𝑌 = E (𝑋 − 𝜇𝑥)(𝑌 − 𝜇𝑦)

𝑋

𝑌

𝑋

𝑌

Cov 𝑋, 𝑌 > 0
Positive correlation: 

𝑋, 𝑌 simultaneously large or small

Cov 𝑋, 𝑌 < 0

𝜇𝑥

𝜇𝑦

𝜇𝑥

𝜇𝑦



Covariance

Let E 𝑋 = 𝜇𝑥, E 𝑌 = 𝜇𝑦,

Cov 𝑋, 𝑌 = E (𝑋 − 𝜇𝑥)(𝑌 − 𝜇𝑦)

Properties

• Cov 𝑋, 𝑋 = Var[𝑋]

• Cov 𝑋 + 𝑎, 𝑌 + 𝑏 = Cov(𝑋, 𝑌)

• Cov 𝑐𝑋, 𝑑𝑌 = 𝑐𝑑 Cov(𝑋, 𝑌)

Covariance is invariant to shifting

Covariance is sensitive to scaling

𝑋

𝑌

𝜇𝑥

𝜇𝑦



Covariance

Fact (alternative formula) Cov 𝑋, 𝑌 = 𝐸 𝑋𝑌 − 𝜇𝑥𝜇𝑦

Example Find Cov 𝑋, 𝑌 given PMF

𝐸 𝑋𝑌 = σ𝑥,𝑦 𝑥𝑦 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 = 0 ⋅ 0 ⋅
1

2
+ 1 ⋅ 1 ⋅

1

2
=

1

2

𝜇𝑥 =
1

2
, 𝜇𝑦 =

1

2

Cov 𝑋, 𝑌 =
1

2
−

1

2
×

1

2
=

1

4



Correlation coefficient

• Covariance is sensitive to scaling, e.g.
Cov 100𝑋, 𝑌 = 100 Cov(𝑋, 𝑌)

• Better measure, independent of changes in scales

Correlation of 𝑋, 𝑌 = 𝜌 𝑋, 𝑌 =
Cov(𝑋,𝑌)

𝜎𝑋𝜎𝑌

• Measures linear association of 𝑋, 𝑌. Always in [-1,1].

Standard deviation (i.e. square root variance) of X and Y



Correlation coefficient

• Example instances of 𝜌 𝑋, 𝑌 :

What happens to this distribution?

𝜎𝑌 = 0, making 𝜌 𝑋, 𝑌 undefined



Property of Variance – Corrected formula

Fact
Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌 + 2Cov(𝑋, 𝑌)

Sanity check:

• When 𝑌 = −𝑋: 2Cov 𝑋, 𝑌 = −2Cov 𝑋, 𝑋 = −2 Var[𝑋]
• LHS = RHS = 0

• When 𝑌 = 𝑋: 2Cov 𝑋, 𝑌 = 2Var[𝑋]
• LHS = RHS = 4 Var[𝑋]

• What happens when 𝑋, 𝑌 are independent?



Independent RVs: important properties

Fact When 𝑋 ⫫ 𝑌, 𝐸 𝑋𝑌 = 𝐸 𝑋 𝐸[𝑌]. As a result, 

Cov 𝑋, 𝑌 = 0 and Var 𝑋 + 𝑌 = Var 𝑋 + Var[𝑌]

Justification

𝐸 𝑋𝑌 =

𝑥



𝑦

𝑥 𝑦 𝑓(𝑥, 𝑦) =

𝑥



𝑦

𝑥 𝑦 𝑓1 𝑥 𝑓2(𝑦)

=

𝑥

𝑥𝑓1 𝑥 𝜇𝑦 = 𝜇𝑥𝜇𝑦
Rule of Lazy Statistician

independence



Independence vs. Zero Covariance

• Independence implies zero covariance. 

• Does zero covariance imply independence?
• No!

• When Cov 𝑋, 𝑌 = 0, i.e., 𝜌 𝑋, 𝑌 = 0, 𝑋, 𝑌 can still be 
dependent on all kinds of ways:

• Covariance only measures strength of linear relationship
between 𝑋, 𝑌



In class exercise: a concrete counterexample

Example 𝑋 ∼ Uniform({−1,0,1}). 𝑌 = 𝑋2.

Are 𝑋, 𝑌 independent? 

Is Cov 𝑋, 𝑌 = 0?



Announcements 3/24

• Quiz 6 graded – let us know if you have questions

• We will have quiz 7 this Wednesday



Recap 3/24

• Expectation of RVs’ sum

𝐸 𝑋 + 𝑌 = 𝐸 𝑋 + 𝐸[𝑌]

holds in general – does not require independence!

• Variance of RVs’ sum Var 𝑋 + 𝑌

Var 𝑋 + 𝑌 = Var 𝑋 + Var 𝑌 +2Cov 𝑋, 𝑌

Covariance: measure the 

correlation of 𝑋, 𝑌



Recap 3/24

Cov(𝑋, 𝑌) = 𝐸 𝑋 − 𝜇𝑥 𝑌 − 𝜇𝑦

Cov 𝑋, 𝑌 > 0 if more 𝑋, 𝑌 deviates from 𝜇𝑥, 𝜇𝑦 in the same 
direction (simultaneously large or simultaneously small)

Fact (alternative formula) Cov 𝑋, 𝑌 = 𝐸 𝑋𝑌 − 𝜇𝑥𝜇𝑦
𝑋

𝑌

𝜇𝑥

𝜇𝑦

𝜇𝑥 = 𝐸[𝑋]
𝜇𝑦 = 𝐸[𝑌]

Cov 𝑋, 𝑌 = Cov(𝑌, 𝑋)



Recap 3/24

• Cov(𝑋, 𝑌) = 𝐸 𝑋 − 𝜇𝑥 𝑌 − 𝜇𝑦

𝑋, 𝑌 are independent Cov 𝑋, 𝑌 = 0



In class exercise: a concrete counterexample

Example 𝑋 ∼ Uniform({−1,0,1}). 𝑌 = 𝑋2.

Show: 𝑋, 𝑌 are not independent, but Cov 𝑋, 𝑌 = 0

𝑋, 𝑌 are not independent Cov 𝑋, 𝑌 = 0



In class exercise: a concrete counterexample

Example 𝑋 ∼ Uniform({−1,0,1}). 𝑌 = 𝑋2.

Why are 𝑋, 𝑌 not independent? 

• 𝑌 ∣ 𝑋 = 0 and 𝑌 ∣ 𝑋 = 1 have different distributions

Why is Cov 𝑋, 𝑌 = 0?

• 𝜇𝑥 = 0, 𝜇𝑦 =
2

3

• E 𝑋𝑌 = E 𝑋3 = 0

• Cov 𝑋, 𝑌 = E 𝑋𝑌 − 𝜇𝑥𝜇𝑦 = 0

x=-1 x=0 x=1

y=0 0 1/3 0

y=1 1/3 0 1/3



The covariance matrix

The covariance matrix of 

RVs 𝐴, 𝐵 is a 2x2 array, with 

its entries being 

Matrix: 2d array of elements

The covariance matrix of RVs (𝑋1, … , 𝑋𝑛)

is a nxn array, with its entries being

(we will see examples soon..)

Cov(𝑋1, 𝑋1) ⋯ Cov(𝑋1, 𝑋𝑛)
⋮ ⋱ ⋮

Cov(𝑋𝑛, 𝑋1) ⋯ Cov(𝑋𝑛, 𝑋𝑛)



Aside: visualizing correlations between variables

Useful tool: Pair plot

Example iris data

each data point has 4 

features

𝑋1, 𝑋2, 𝑋3, 𝑋4



Terminology: moments 83

𝐸[𝑋𝑘]: k-th order raw moments

• Notable example: 𝑘 = 1 => mean 

𝐸[(𝑋 − 𝜇)𝑘]: k-th order central moments

• Notable example: 𝑘 = 2 => variance

• 𝑘 = 3: 
• Skewness – degree of asymmetry

• 𝑘 = 4:
• Kurtosis – frequency of outliers

𝐸[(𝑋 − 𝜇𝑥)
𝑚 𝑌 − 𝜇𝑦

𝑛
]: cross moments

Moments are useful summaries of distributions of RVs



Example multivariate random variables 
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The 2d standard Gaussian distribution

Suppose 𝑋 ∼ 𝑁(0,1), 𝑌 ∼ 𝑁(0,1), and 𝑋 ⫫ 𝑌, (𝑋, 𝑌) is said to 
be drawn from the two-dimensional standard Gaussian 
distribution

What is its PDF?

𝑓 𝑥, 𝑦 = 𝑓1 𝑥 𝑓2 𝑦 =
1

2𝜋
exp −

𝑥2

2
⋅
1

2𝜋
exp −

𝑦2

2

=
1

2𝜋
exp −

𝑥2+𝑦2

2

It is a bell-shaped surface



The 2d standard Gaussian distribution

Standard Gaussian PDF

𝑓 𝑥, 𝑦 =
1

2𝜋
exp −

𝑥2+𝑦2

2

What is its mean vector 
E[𝑋]

E[𝑌]

What is its covariance matrix? 
Cov 𝑋, 𝑋 Cov 𝑋, 𝑌
Cov 𝑌, 𝑋 Cov 𝑌, 𝑌

1 0
0 1

: identity matrix

0
0



The 2d standard Gaussian distribution
Scatter plot of the samples Contour of the PDF

• isotropic: identical variations across different directions

• samples look like a “spherical” point cloud



2d general Gaussian distributions

Fact For any 2x1 mean vector 𝜇 and a 2x2 covariance matrix 
Σ, there is a two-dimensional Gaussian distribution associated 
with it, denoted as 𝑁(𝜇, Σ).

Standard Gaussian PDF general Gaussian PDF



2d general Gaussian distributions

Scatter plot of the samples                Contour of the PDF

Elevation contours of general Gaussian PDFs are ellipses



2d Gaussian distribution

Real-world examples:

• Temperature and Pressure at random location

• Height and Weight of Individuals

• Stock Market Returns of Two Companies



2d general Gaussian distributions

2d Gaussian distribution 𝑁 𝜇, Σ , How many parameters? 

• 𝜇 =
𝜇1
𝜇2

, Σ =
Σ11 Σ12
Σ21 Σ22

, 6 parameters

• What are the meanings of the parameters?

• (𝜇1, 𝜇2): center of the distribution

• Σ11: variance of 𝑋1
• Σ22: variance of 𝑋2
• Σ12: covariance of 𝑋1, 𝑋2



In-class activity: 2d general Gaussian distributions

• Can you draw the contour of some 2d Gaussian distribution 
with cov 𝑋1, 𝑋2 < 0?



2d general Gaussian distributions

• Fact Suppose (𝑋, 𝑌) follows the 2d Gaussian distribution 
𝑁 𝜇, Σ . Then both 𝑋 and 𝑌’s marginal distributions are 
Gaussian.

• What are 𝑋’s mean & variance?
• 𝜇1, Σ11
• 𝑋’s marginal distribution is 𝑁 𝜇1, Σ11

• What about 𝑌?
• 𝑌’s marginal distribution is 𝑁 𝜇2, Σ22



The general n-dimensional Gaussian distribution

Fact For any nx1 mean vector 𝜇 and a nxn covariance matrix Σ, 
there is a n-dimensional Gaussian distribution associated with it, 
denoted as 𝑁(𝜇, Σ).

Meaning of parameters:

𝜇 =
E[𝑋1]
…

E[𝑋𝑛]

Σ =
𝐶𝑜𝑣 𝑋1, 𝑋1 ⋯ 𝐶𝑜𝑣 𝑋1, 𝑋𝑛

⋮ ⋱ ⋮
𝐶𝑜𝑣 𝑋𝑛, 𝑋1 ⋯ 𝐶𝑜𝑣 𝑋𝑛, 𝑋𝑛



Gaussian is closed under addition

Fact If 𝑋 ∼ 𝑁(𝜇𝑋, 𝜎𝑋
2), 𝑌 ∼ 𝑁(𝜇𝑌, 𝜎𝑌

2), and 𝑋 ⫫ 𝑌, then 𝑍 = 𝑋 +
𝑌 is also Gaussian.

Can you find the parameters of 𝑍’s Gaussian distribution?

E 𝑍 = E 𝑋 + E 𝑌 = 𝜇𝑋 + 𝜇𝑌

Var 𝑍 = Var 𝑋 + Var 𝑌 = 𝜎𝑋
2 + 𝜎𝑌

2

Thus, 𝑍 ∼ 𝑁(𝜇𝑋 + 𝜇𝑌, 𝜎𝑋
2 + 𝜎𝑌

2)



Gaussian is closed under addition

Example Suppose 𝑋1, 𝑋2, 𝑋3 are 3 independent 
measurements of the length of a table (in cm), which follow 
distribution 𝑁(40, 0.12). Find the distribution of sample mean

ത𝑋 =
1

3
𝑋1 + 𝑋2 + 𝑋3

Solution
𝑋1 + 𝑋2 ∼ 𝑁(80, 2 × 0.12)

𝑋1 + 𝑋2 + 𝑋3 ∼ 𝑁 120, 3 × 0.12

Since 𝑋3 ⫫ (𝑋1, 𝑋2) (and thus 𝑋3 ⫫ 𝑋1 + 𝑋2)

Since 𝑋2 ⫫ 𝑋1

true length of table 



Gaussian is closed under addition

Example Suppose 𝑋1, 𝑋2, 𝑋3 are 3 independent measurements of 
the length of a table (in cm), which follow distribution 𝑁(40, 0.12). 
Find the distribution of sample mean

ത𝑋 =
1

3
𝑋1 + 𝑋2 + 𝑋3

Solution

𝑋1 + 𝑋2 + 𝑋3 ∼ 𝑁 120, 3 × 0.12

ത𝑋 ∼ 𝑁
120

3
, 3 ×

0.12

32
= 𝑁 40,

0.12

3

Conclusion: averaging over multiple measurements reduces 
measurement error



Law of Large Numbers
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Motivation: measurement

• Suppose we use a ruler to measure the width of a tumor 
and collect readings such as (in cm):

1.132, 1.136, 1.127, 1.119

• These readings can be viewed as the random draws of RV 
𝑋 with mean 𝜇 (𝜇 is the true width of the tumor)

• The sample mean ത𝑋𝑛 =
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖 should approach 𝜇?

𝑋1 𝑋2 𝑋3 𝑋4



Motivation: insurance payments

• Suppose we are a health insurance company that serves 1 
million policyholders

• Each holder will file insurance claims in year 2025

• We’d like to estimate the total payments we make this year

• Luckily, we know that all holders’ claim amount 𝑋 are 
independent, and follow the  Uniform 0, 1000 distribution



Terminology: IID sample 101

Definition 𝑋1, … , 𝑋𝑛 is an independent & identically 
distributed (IID, iid) sample of 𝑋 if:

• each 𝑋𝑖 has the same distribution as 𝑋

• 𝑋1, … , 𝑋𝑛 are independent

Note: a sample is a collection of many data points!

More examples:

• Randomly draw 10 students from UA student 
database with replacement

• Make 3 independent measurements



Law of Large Numbers (LLN)

Law of Large Numbers Let 𝑋1, … , 𝑋𝑛 be an iid sample of 
random variable 𝑋. Let ത𝑋𝑛 be sample mean, and 𝜇 = E[𝑋]. 
Then  

ത𝑋𝑛 → 𝜇 as 𝑛 → ∞

Example: dice roll

𝑋 ∼ Uniform({1, . . , 6})

𝜇 = E 𝑋 = 3.5



Example: insurance payments

• Suppose we are a health insurance company that serves 1 
million policyholders

• We know that all holders’ claim amount 𝑋 follows a 
distribution, Uniform([0, 1000])

• Suppose 𝑋1, … , 𝑋𝑛 are the payments we make to each 
holder, 𝑛 = 1𝑀.

• LLN => 
1

𝑛
𝑋1 +⋯+ 𝑋𝑛 ≈ E 𝑋 = 500

• We should prepare 𝑋1 +⋯+ 𝑋𝑛 ≈ 500𝑀 for payments



Application: Monte Carlo methods

• LLN has many other cool applications!

• Monte Carlo methods: use randomization to compute 
probabilities or expectations of interest 

Example estimate 𝜋 by sampling



Application: Monte Carlo methods

Results of 5 runs: 𝐿𝑖

LLN => 
1

10000
𝐿1 +⋯+ 𝐿10000 ≈ E[𝐿]

E 𝐿 = 𝜋/4



Central Limit Theorem

107



Announcements 3/26

• HW4 graded

• We are working on uploading the (curved) midterm scores 
on D2L this week

• Participation award mechanism change (to fractional)

• HW5 will be up soon..



Quiz 7

Suppose we measure the ping time to a server 100 times 
under ideal network conditions. The results (in ms) are 
normally distributed with mean 𝜇 = 15, standard deviation 
𝜎 = 5. 

What is the distribution of the average ping time?



Quiz 7

What is the distribution of the average ping time?

We have a sample 𝑋1, … , 𝑋100, each is 𝑁(15, 52), problem 

asking about distribution of ത𝑋 =
1

100
(𝑋1 +⋯+ 𝑋100)

𝑋1 +⋯+ 𝑋100 ∼ 𝑁(1500, 52 × 100)

So 

ത𝑋 ∼ 𝑁 15,
52 × 100

1002
= 𝑁 15,

52

100
= 𝑁(15, 0.52)



Central limit theorem (CLT)

• Informally: given an iid sample of 𝑋, sample mean Ƹ𝜇𝑛
has approximately Gaussian distribution (with 
appropriate scaling)

• Note: this happens for any distribution of 𝑋!
• 𝑋 can be discrete, continuous (e.g. Bernoulli, exponential, …)

• This highlights the central role of Gaussian distribution in 
probability and statistics

• One distribution to rule them all 



Central limit theorem

Formal statement Let 𝑋1, … , 𝑋𝑛 be an iid sample with mean 𝜇
and variance 𝜎2. Then for (moderately large) 𝑛:

ത𝑋𝑛 approximately ∼ 𝑁 𝜇,
𝜎2

𝑛

Equivalently, ത𝑋𝑛 − 𝜇 ∼ 𝑁 0,
𝜎2

𝑛

𝑛 ത𝑋𝑛 − 𝜇 ∼ 𝑁(0, 𝜎2)
𝑛 ത𝑋𝑛−𝜇

𝜎
∼ 𝑁(0,1)

hold approximately 



Experimental validation 1: Galton Boards

• Bead has 10 chances hitting a peg 

• each time a peg is hit, bead 
randomly bounces to the left or the 
right with equal probabilities

• We can represent the final location 
of the bead as 

𝑋1 +⋯+ 𝑋10
where 𝑋𝑖 ’s is an IID sample of     
Uniform({−1,+1})

https://en.wikipedia.org/wiki/Galton_board


Galton boards



Binomial distribution ≈ Normal distribution?

• Binomial distribution looking similar to normal distribution is 
not a coincidence

Example

• 𝑋 ∼ Bin(10, 0.3)

• Equivalent to 𝑋 = 𝑋1 +⋯+ 𝑋10, 

each 𝑋𝑖 ∼ Bernoulli(0.3)

which is close to a normal distribution by CLT



Experimental validation 2: python simulations

• What does CLT predict about the distribution of ത𝑋30?

• Approximately 𝑁 𝜇,
𝜎2

30
= 𝑁(5, 0.522)

• Let’s see if this prediction is accurate.. 

𝑋 ∼ Uniform([0,10])

Each element is a separate ത𝑋30 induced by a different sample We have 1000 samples => 1000 ത𝑋30’s



Experimental validation 2: python simulations

• CLT predicted that elements from sample_means are roughly 𝑁(5, 0.522)

• Let’s see.. 

• Experiments agree pretty well with theory



Central limit theorem: application

Example 𝑋𝑖: customer spending with 𝜇 = 80, 𝜎 = 40. 
Approximate the probability that the average spending of 100 
customers is 10% below expected value

Solution by CLT, ത𝑋𝑛 ∼ 𝑁 80,
402

100
= 𝑁(80, 42) approximately

Therefore, 𝑍 =
ത𝑋𝑛−80

4
∼ 𝑁(0,1) approximately

𝑃 ത𝑋𝑛 ≤ 72 = 𝑃 𝑍 ≤ −2 ≈ Φ −2 = 0.023

𝑃( ത𝑋𝑛 ≤ 72)



Review

We have covered a lot of ground on probability…

Discrete Random Variables
• Definition of sample space / random events

• Axioms of probability

• Uniform probability of random event

• Fundamental rules of probability (chain rule, 
conditional, law of total probability) 

Probability Distributions
• Random Variables

• Useful discrete probability mass functions

• Introduction to continuous probability

• Useful probability density functions 

Moments / Independence
• Expected Value

• Linearity 

• Variance, Covariance, Corr.

• Dependent / Independent RVs
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Probability: closing thoughts

Markov and Chebyshev’s inequalities: how to make inferences on where 𝑋
lies when we do not know its distribution exactly?

𝑃 𝑋 − 𝜇 ≥ 𝑡 ≤
Var[𝑋]

𝑡2

𝜇 𝜇 + 𝑡𝜇 − 𝑡



Probability: closing thoughts

Randomization is also a useful tool for algorithm design

• Example: Hashing 

• Using randomization to mitigate collision

Randomization is fundamental in playing games

• Examples: rock paper scissors, penalty kick 



Probability: philosophical remarks

• Pierre-Simon Laplace (1812): thought experiment

• I toss the coin, you guess how it will land

• Probability of predicting correctly: 1

• Laplace’s view: probability does not actually exist; it is 
a useful way to quantify human ignorance though

Avi Wigderson: Randomness

https://www.youtube.com/watch?v=xkPruFiN7Ds


Probability: philosophical remarks

• Laplace’s demon
• a hypothetical intelligence that knows the exact 

position & momentum of every particle in the 
universe.

• Using the laws of classical mechanics, it could predict 
the entire future with absolute certainty.

• Suggests a fully deterministic universe, where free 
will is an illusion.

• Under debate: Heisenberg’s Uncertainty Principle (1927) 
precludes such perfect knowledge of particles

• “God does not play dice with the universe” – Einstein, 
1926
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