

CSC380: Principles of Data Science

Probability 4

Chicheng Zhang

Quiz 5

A company operates a customer support hotline, and the time (in minutes) a customer waits before speaking to an agent X follows an exponential distribution,

$$f(x) = 2e^{-2x}, x \ge 0$$

What is the probability that a randomly chosen customer waits between 1 and 3 minutes before being connected to an agent? S

(Hint: the antiderivative of
$$2e^{-2x}$$
 is $-e^{-2x}$)

Quiz 5

• The question asks for $P(1 \le X \le 3)$

• Integrating PDF, this is

$$\int_{1}^{3} 2e^{-2x} dx = -e^{-2x} |_{1}^{3}$$
$$= (-e^{-6}) - (-e^{-2})$$
$$= e^{-2} - e^{-6}$$
$$= 0.132$$

Announcements 2/26

• Quiz 4 graded

Check scores on D2L about Quizzes 1-4 and HW1-3

• Let us know (by Piazza private post) if your scores are missing / wrong

Announcements 2/26

HWs:

- Merging PDFs
 - We recommend using Adobe Creative Cloud (<u>UA access no cost</u>)
- Sometimes important clarifications on HW questions may be on Piazza, keep a lookout for it..
- We recommend checking out the HW timeline in the syllabus
- Generally, writing down more steps help us giving more credits to your solutions more robustly

Outline

- Multivariate Random Variables
 - Joint distribution vs. Marginal distribution
 - Independence of RVs
- Expectation and Variance Revisited
 - Covariance, correlation
- Example multivariate RVs
- Law of Large Numbers
- Central Limit Theorem

Multivariate Random Variables

Multivariate RVs: example

- X: people -> their genders
- Y: people -> their class year
- We'd like to answer questions such as: does X and Y have a correlation?
 - I.e., is a student in higher class year more likely to be male?
- We call (X, Y) a random vector, or a multivariate RV, and will study its *joint* distribution

Joint distribution of discrete RVs

 The joint PMF (probability mass function) of discrete random variables X, Y:

$$f(x, y) = P(X = x, Y = y)$$

Joint distribution of discrete RVs

- X: # of cars owned by a randomly selected household
- Y: # of computers owned by the same household
- · Joint pmf shown with a table

- Probability that a randomly selected household has ≥ 2 cars and ≥ 2 computers?
 - $P(X \ge 2, Y \ge 2) = 0.5$

Marginal distributions

- Given joint distribution of (X, Y), need distribution of one, say X.
- Such a distribution is called the *marginal distribution* of *X*.
- How to find P(X = x)?
- Using law of total probability:

		У				
x	1	2	3	4		
1	0.1	0	0.1	0		
2	0.3	0	0.1	0.2		
3	0	0.2	0	0		

This operation is called *marginalization* ('marginalizing out variable Y', or variable elimination)

 $f_1(x) = \sum f(x, y)$

Marginal distributions

 f_2 : marginal distribution of Y

Marginalization: visualization

Given: joint distribution of (Birth order, Maternal Age) of babies:

- To get marginal probability of 'Maternal Age':
 - Stack up all bars of the same color

Joint distribution of continuous RVs

• Any continuous random vector (X,Y) has a *joint probability* density function (PDF) f(x, y), such that for all C,

$$P((X,Y) \in C) = \iint_{C} f(x,y) \, dx \, dy$$

f(x, y): represent a 2D surface

This expression (double integral) denotes the *volume* under the 2D surface with base *C*

Joint distribution of continuous RVs

Again:

- the 'pile of sand' analogy
- the histogram analogy are useful to perceive f(x, y)

Properties:

- f is nonnegative
- $\iint_{R^2} f(x, y) \, dx \, dy = 1 \ (R^2 = \text{the whole x-y plane})$ • $P((X, Y) \in R^2) = 1$

Example: dartboard

X

 Dartboard with center (0,0) and radius 1; dart lands uniformly at random on the board

- What is the joint PDF of (X, Y)?
- Fact: the PDF is $f(x, y) = \begin{cases} c, x^2 + y^2 \le 1 \\ 0, \text{ otherwise} \end{cases}$

This is called "the Uniform distribution over the unit disk"

Example: dartboard

Marginal distribution of continuous RV

- Given joint distribution of continuous RV (X, Y), need distribution of one, say X.
- How to find X's PDF f_1 ?
 - Analogous to discrete case

Fact (marginalization) $f_1(x) = \int_R f(x, y) dy$

Replacing summation with integration in the continuous case ('marginalizing / integrating out variable Y')

How about *Y*'s PDF f_2 ?

• Marginalize out X

Example: dartboard

The PDF of *X*, *Y* is
$$f(x, y) = \begin{cases} \frac{1}{\pi}, x^2 + y^2 \le 1\\ 0, \text{ otherwise} \end{cases}$$

What is the marginal distribution over X? $f_1(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy$

How to find this integral?

Example: dartboard

$$f_1(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy$$

For x outside
$$[-1, 1]$$
, $f(x, y) = 0$
=> $f_1(x) = 0$

For a fixed
$$x \in [-1, 1]$$
, $f(x, y)$ looks like
=> $f_1(x) = \frac{2}{\pi} \cdot \sqrt{1 - x^2}$

X's distribution is NOT Uniform([-1,1])!Actually makes sense: X closer to 1 is harder to be hit

Announcements

- Midterm graded (grade distribution on Piazza)
 - Let me know if you have feedback on curving scheme
- Quiz 5 graded
 - We will have quiz 6 this Wed (3/19)
- Participation: in-class question answering can now serve as equivalent of Piazza participation instance
 - I highly encourage you to get the 5pt bonus!

Announcements

- Lecture plan for the 2nd half of the class
 - Probability (2-3 lectures)
 - Data collection (1 lecture)
 - More on data visualization (1 lecture)
 - Basic statistics (4-5 lectures)
 - Basic data analysis: machine learning (6 lectures)
 - Final review (1 lecture)
- HW5 may come a bit later (likely next week)
- I will provide project instructions soon (likely today)

Recap: multivariate RVs

- A pair of RVs: (X, Y)
- If X and Y are both discrete, (X, Y)'s distribution can be characterized by their joint PMFs
 - what values could (X, Y) take
 - For each possible value (x, y), the probability of taking it
- If *X* and *Y* continuous, distribution characterized by their joint PDFs

Midterm Q6

Question 6 [17pts]: Suppose we have a discrete random variable X whose cumulative distribution function (CDF) is:

$$F(x) = \begin{cases} 0 & x < -1 \\ 0.2 & -1 \le x < 0 \\ 0.4 & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$

Solve the following problems and justify your answers:

- (a) [7pts] Find the probability mass function (PMF) of X.
- (b) [6pts] Let random variable $Y = X^2$. Find the joint PMF of (X, Y).
- (c) [4pts] Find the marginal PMF of Y.

Midterm Q6

Answer:

- 1. Values x that X can take correspond to the "jumps" of the CDF, i.e, -1, 0, 1. The probability that X takes each of these values equals the amount of jump in each of the locations, and therefore, the PMF of X is as follows: $\frac{x 1 0 1}{P(X = x) 0.2 0.2 0.6}$
- Given this, how to find the joint PMF of (X, Y), for $Y = X^2$?
- What possible values can (X, Y) take?
 - (-1, 1)
 - (0, 0)
 - · (1, 1)

Midterm Q6

• So, a way to write (X,Y)'s PMF is

(x,y)	(-1, 1)	(0, 0)	(1, 1)
P(X=x, Y=y)	0.2	0.2	0.6

• Written in two-way table, it is

- How to find the marginal of Y?
 - Take summation over each row

$$\begin{array}{ccc} y & 0 & 1 \\ \hline P(Y=y) & 0.2 & 0.8 \end{array}$$

Joint distribution of more than 3 RVs

- Similarly, we can consider the joint distribution of more than 3 random variables,
 - E.g. (A,B,C), A = gender, B = class year, C = blood type
- Discrete RVs: can still define joint PMFs

a	b	\boldsymbol{c}	P(A = a, B = b, C = c)
0	0	0	0.06
0	0	1	0.09
0	1	0	0.08
0	1	1	0.12
1	0	0	0.06
1	0	1	0.24
1	1	0	0.10
1	1	1	0.25

Marginalization

Given the joint distribution of (*A*, *B*, *C*)

- What is the distribution of *A*?
 - Need to find P(A = 0) and P(A = 1)

$$P(A = 0) = \sum_{b,c} P(A = 0, B = b, C = c)$$

Marginalization: summing over irrelevant variables

- What is the joint distribution of (A, B)?
 - Need to find P(A = 0, B = 0), ..., P(A = 1, B = 1)

$$P(A = 0, B = 0) = \sum_{c} P(A = 0, B = 0, C = c)$$

Joint distribution of more than 3 RVs

- Continuous RVs: can still define joint PDFs,
- e.g. for (A, B, C), A = blood pressure, B = height, C = weight, they have a joint PDF of

f(a,b,c)

- Note: 3d PDF Is hard to visualize directly
- Useful to visualize *f* using a scatterplot of points drawn from joint distribution of (*A*, *B*, *C*)

Marginalization for continuous RVs

Suppose joint PDF of (A, B, C) is f(a, b, c)

• What is the PDF of *A*?

$$f_A(a) = \iint_{R^2} f(a, b, c) \ db \ dc$$

• What is the joint PDF of (A, B)? $f_{A,B}(a, b) = \int_{R} f(a, b, c) dc$ Marginalization: summing over irrelevant variables

These operations generalize to joint PDFs of more RVs..

Independence of RVs

Independence of RVs

• RVs X, Y are independent (denoted by $X \perp Y$) if $f(x, y) = f_1(x) \cdot f_2(y)$, for all x, y

PMF or PDF Marginal of X Marginal of Y

• E.g. for discrete *X*, *Y*, $P(X = 3, Y = 4) = P(X = 3) \cdot P(X = 4)$

Therefore, $\{X = 3\}$ and $\{Y = 4\}$ are independent events

In class activity: checking independence of RVs

• Which of these PMFs correspond to independent $X \perp Y$?

X, Y independent

Need to check: $f_1(0)f_2(0) = f(0,0),$... (4 equalities)

	Y = 0	Y =	1	
X=0	1/2	0		1/2
X=1	0	1/2		1/2
	1/2	1/2		1

X, Y not independent

E.g. $f_1(0)f_2(1) = \frac{1}{4}$, whereas f(0,1) = 0

only one counterexample suffices to disprove independence!

Independence is invariant under transformations

Fact If *X*, *Y* are independent, then f(X), g(Y) are also independent

E.g. X = tomorrow's temperature (in Celsius); Y = tomorrow's NVIDIA stock price (in \$)

f(X) = tomorrow's temperature (in Fahrenheit); g(Y) = tomorrow's NVIDIA stock price (in cents)

Independence of more than two RVs

• RVs $X_1, ..., X_n$ are independent if their joint PMF or PDF satisfy

$$f(x_1, x_2, \dots, x_n) = f_1(x_1) f_2(x_2) \dots f_n(x_n),$$

PMFs or PDFs Marginal for X_1 Marginal for X_n for all x_1, \ldots, x_n

- This captures many real-world applications:
 - Independent trials: each X_i is Bernoulli(p)
 - Samples: each X_i is an independent sample from a population (foundations of *statistics*)
 - Manufacturing: X_i is the quality of part *i*
Independence of more than two RVs

Fact If X_1, \ldots, X_n are independent, then

- any subset X_{i_1} , ..., X_{i_p} are independent
 - E.g. X_1, X_3, X_7 are independent
- any disjoint subset $(X_{i_1}, \dots, X_{i_m})$, $(X_{j_1}, \dots, X_{j_l})$ are independent
 - E.g. (X_1, X_2) is independent of X_3
 - (X_1, X_3) is independent of (X_2, X_4)

True or False?

 If I flip 10 coins independently, it is more likely that I see HTTHTHHTHT

than HHHHHHHHHH

• False

 $f(\text{HTTHTHHTHT}) = f_1(H) \cdot \dots \cdot f_{10}(T) = \frac{1}{2_{10}^{10}}$ $f(\text{HHHHHHHHH}) = f_1(H) \cdot \dots f_{10}(H) = \frac{1}{2_{10}^{10}}$

Conditional distributions of RVs

Conditional distributions (discrete)

- *X*, *Y* have joint PMF *f*. *Y* has marginal PMF f_2
- Conditional PMF of X given Y = y: $g_1(x|y) = \frac{f(x,y)}{f_2(y)}$

This is actually
$$\frac{P(X=x,Y=y)}{P(Y=y)} = P(X = x | Y = y)$$

• Note: $g_1(x|y)$ is best viewed as a function of x; it reads "the conditional distribution of X given Y = y"

Conditional distributions (discrete)

Example X=0: car not stolen, X=1: car stolen

Joint PMF of *X*, *Y*:

	Brand Y					
Stolen X	1	2	3	4	5	Total
0	0.129	0.298	0.161	0.280	0.108	0.976
1	0.010	0.010	0.001	0.002	0.001	0.024
Total	0.139	0.308	0.162	0.282	0.109	1.000

Find the table of the conditional PMF of *X* given *Y*

Conditional distributions (continuous)

• *X*, *Y* have joint PDF *f*. *Y* has marginal PDF f_2

• Conditional PDF of X given Y: f(x)

$$g_1(x|y) = \frac{f(x,y)}{f_2(y)}$$

X

Example dartboard. (*X*, *Y*) ~ Uniform(unit disk)

Conditional distribution of X given Y = 0.6: Uniform([-0.8, +0.8])

Conditional distributions & independence

Fact *X*,*Y* are independent \Leftrightarrow for all *y*, $g_1(x|y)$ are all equal to $f_1(x)$

Here, g_1 , f_1 are PMF or PDF depending on the types of X, Y

• In other words, knowing Y does not change our belief on X

In the car example, *X*,*Y* are not independent!

Independence: visualization

• Left: *X*, *Y* independent; Right: *X*, *Y* not independent

 $g_1(y|x = -1)$ $g_1(y|x = +1)$

True or False?

- If I flip a fair coin repeatedly, and my first 2 trials are both tails. Then my third throw will have a higher chance of showing head.
- This is asking $g_3(H | TT) = P(X_3 = H | X_1 = T, X_2 = T)$ Since X_3 is independent of $X_1, X_2 = P(X_3 = H) = 1/2$ so the claim is false

- This is known as the *gambler's fallacy*
 - Prior losses do not increase the chance of future win

Conditional expectation

Definition The mean of the conditional distribution of *X* given Y = y, is called the *conditional expectation* of *X* given Y = y, denoted as E[X | Y = y].

E[X | Y = y] can be found by:

- $\sum_{x} x g_1(x|y)$, if X is discrete
- $\int_{-\infty}^{+\infty} x g_1(x|y) dx$, if X is continuous

Conditional PDF

Independence: visualization

• Left: *X*, *Y* independent; Right: *X*, *Y* not independent

 $g_1(y|x = -1)$ $g_1(y|x = +1)$

 $g_1(y|x = -1)$ $g_1(y|x = +1)$

Which one is larger, E[Y|X = -1] or E[Y|X = +1]? The former

Conditional expectation

Example Roll 2 fair dice. Expected value of die 1 given that their sum is 5?

Solution X: outcome of die 1; Y: sum of 2 dice, E[X | Y = 5]

Let's find the conditional distribution of X given Y = 5 first..

$$g_1(x \mid 5) = P(X = x \mid Y = 5)$$

=
$$\frac{P(X=x,Y=5)}{P(Y=5)}$$
 When is this nonzero?

Conditional expectation

$$g_1(x \mid 5) = P(X = x \mid Y = 5)$$
 When is this nonzero?
$$= \frac{P(X = x, Y = 5)}{P(Y = 5)}$$
 $x = 1,2,3,4$
$$\frac{4}{36} = \frac{1}{9}$$

Thus, the conditional distribution of X given Y = 5 is

X	1	2	3	4
$P(X=x Y=5) = g_1(x 5)$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

Therefore,
$$E[X | Y = 5]$$
 is
 $\frac{1}{4}(1 + 2 + 3 + 4) = 2.5$

Quiz 6

Roll 2 fair dice independently. What is the expected value of die 1 given that their product is 4?

Quiz 6

Example Roll 2 fair dice. Expected value of die 1 given that their product is 4?

Solution X: outcome of die 1; Y: product of 2 dice, E[X | Y = 4]

Let's find the conditional distribution of X given Y = 4 first..

$$g_1(x \mid 5) = P(X = x \mid Y = 4)$$

=
$$\frac{P(X=x,Y=4)}{P(Y=4)}$$
 When is this nonzero?

Conditional expectation

$$g_1(x \mid 4) = P(X = x \mid Y = 4)$$
 When is this nonzero?
$$= \frac{P(X = x, Y = 5)}{P(Y = 4)}$$
 $x = 1,2,4$
$$\frac{3}{36} = \frac{1}{12}$$

Thus, the conditional distribution of X given Y = 4 is

X	1	2	4
$P(X=x Y=4) = g_1(x 4)$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$

Therefore,
$$E[X | Y = 4]$$
 is
 $\frac{1}{3}(1 + 2 + 4) = \frac{7}{3}$

Announcements

- Project information is out (on Piazza)
 - Let me know if you need help finding teammates
- We will release HW5 next week
 - My goal: teach basic machine learning next week

Midterm question review..

Midterm Q7

Tools to characterize RVs

	Discrete RVs	Continuous RVs		
CDF	(staircase)	$\sqrt{(continuous)}$		
PMF	\checkmark	×		
PDF	×	\checkmark		

- There are RVs that have neither PMF or PDFs
 - So they are neither discrete nor continuous
 - Example: mixture of discrete and continuous distributions (next slide)

Midterm Q7

- Consider the following example:
 - Flip a fair coin
 - If head, return X = 0
 - If tail, return X ~ Uniform([0,1])

- Then X's CDF is:
 - Neither a staircase
 - Nor continuous

Finding distributions of RVs

- Oftentimes we are tasked with finding distributions of some complex random variable, e.g.
 - Total cost Z = X + Y, where X = food expenses, Y = transportation cost
 - Energy bill Z = X Y, where X = #hours at home, Y = power of all electrical devices
- How to find distributions of such Z?
 - We will learn how to do this when Z is discrete

- How to find the distribution of a discrete RV Z:
 - Step 1: find what values Z can take
 - Step 2: find the probability that Z takes each possible value

- For continuous Z:
 - We can simulate drawing samples from Z and draw histogram!
 - For exact calculation, we will only state important facts

Example Suppose $X \sim \text{Uniform}(\{1,2\}), Y \sim \text{Uniform}(\{1,2,3\}),$ and $X \perp Y$. Find the distribution of Z = X + Y.

Solution

Step 1: what values can Z take?

2, 3, 4, 5

Step 2: for each possible value, what is the probability that *Z* takes it?

Example Suppose $X \sim \text{Uniform}(\{1,2\}), Y \sim \text{Uniform}(\{1,2,3\}),$ and $X \perp Y$. Find the distribution of Z = X + Y.

Solution

Step 2: what is the probability that Z takes 2? 3? 4? 5?

$$P(Z = 2) = P(X = 1, Y = 1) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$
$$P(Z = 3) = P(X = 1, Y = 2) + P(X = 2, Y = 1) = \frac{1}{3}$$

Z	2	3	4	5
P(Z=z)	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{6}$

Rule of Lazy Statistician

- If we are only interested in finding E[r(X,Y)], we can bypass finding r(X,Y)'s distribution using the rule of lazy statistician
- E.g. when *X*, *Y* are discrete:

$$\operatorname{E}[r(X,Y)] = \sum_{x,y} r(x,y) \cdot P(X = x, Y = y)$$

Similar formulae hold for more than 3 RVs / continuous RVs
We will see examples soon

Expectation and Variance revisited

Linearity of expectation

Fact Expectation of sum is sum of expectations

$$E[X_1 + X_2] = E[X_1] + E[X_2]$$

Example: betting on two games Note: generalizes to n variables

This property, together with the previously known E[aX + b] = aE[X] + b, are called the *linearity of expectation*

Linearity of expectation

Example Proportion of **R** balls is *p*

- Randomly sample n balls with replacement
- X: # R balls in the sample. E[X] = ?

• (We already knew the answer from binomial distribution..)

Solution Let $X_i = 1$ if *i*-th ball is **R**, and 0 otherwise

$$\Rightarrow X = X_1 + \dots + X_n$$

Each X_i has expectation p

$$\Rightarrow \mathbf{E}[X] = \mathbf{E}[X_1] + \dots + \mathbf{E}[X_n] = np$$

Linearity of Variance?

- Is Var[X + Y] = Var[X] + Var[Y]?
- It depends..

• Case 1: when
$$Y = -X$$
,
 $Var[X + Y] = 0$
 $Var[Y] = Var[X]$

=> LHS < RHS

• Case 2: when
$$Y = X$$
,
 $Var[X + Y] = Var[2X] = 4 Var[X]$
 $Var[Y] = Var[X]$

=> LHS > RHS

Observation: extra correction is needed to balance the equation

Covariance

• Covariance of *X*, *Y*: numerical measure of the degree to which *X*, *Y* vary together. Let $E[X] = \mu_x$, $E[Y] = \mu_y$,

Covariance

Let
$$E[X] = \mu_x$$
, $E[Y] = \mu_y$,
 $Cov(X, Y) = E[(X - \mu_x)(Y - \mu_y)]$

Properties

- Cov(X, X) = Var[X]
- Cov(X + a, Y + b) = Cov(X, Y)
- Cov(cX, dY) = cd Cov(X, Y)

Covariance is invariant to shifting

Covariance is sensitive to scaling

Covariance

Fact (alternative formula) $Cov(X, Y) = E[XY] - \mu_x \mu_y$

Example Find Cov(X, Y) given PMF
$$\begin{array}{c|ccc} Y = 0 & Y = 1 \\ \hline X = 0 & 1/2 & 0 & 1/2 \\ X = 1 & 0 & 1/2 & 1/2 \\ \hline 1/2 & 1/2 & 1 & 1/2 \end{array}$$

$$E[XY] = \sum_{x,y} xy \ P(X = x, Y = y) = 0 \cdot 0 \cdot \frac{1}{2} + 1 \cdot 1 \cdot \frac{1}{2} = \frac{1}{2}$$
$$\mu_x = \frac{1}{2}, \ \mu_y = \frac{1}{2}$$
$$Cov(X, Y) = \frac{1}{2} - \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$

Correlation coefficient

• Covariance is sensitive to scaling, e.g. Cov(100X, Y) = 100 Cov(X, Y)

• Better measure, independent of changes in scales

Correlation of
$$X, Y = \rho(X, Y) = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y}$$

Standard deviation (i.e. square root variance) of X and Y

• Measures linear association of *X*, *Y*. Always in [-1,1].

Correlation coefficient

• Example instances of $\rho(X, Y)$:

What happens to this distribution? $\sigma_Y = 0$, making $\rho(X, Y)$ undefined

Property of Variance – Corrected formula

Fact

$$Var[X + Y] = Var[X] + Var[Y] + 2Cov(X, Y)$$

Sanity check:

- When Y = -X: 2Cov(X, Y) = -2Cov(X, X) = -2Var[X]
 - LHS = RHS = 0
- When Y = X: 2Cov(X, Y) = 2Var[X]
 - LHS = RHS = $4 \operatorname{Var}[X]$
- What happens when *X*, *Y* are independent?

Independent RVs: important properties

Fact When $X \perp Y$, E[XY] = E[X]E[Y]. As a result,

Cov(X, Y) = 0 and Var(X + Y) = Var[X] + Var[Y]

Independence vs. Zero Covariance

- · Independence implies zero covariance.
- Does zero covariance imply independence?
 - No!
- When Cov(X, Y) = 0, i.e., $\rho(X, Y) = 0$, X, Y can still be dependent on all kinds of ways:

 Covariance only measures strength of *linear relationship* between X, Y

In class exercise: a concrete counterexample

Example $X \sim \text{Uniform}(\{-1,0,1\})$. $Y = X^2$.

```
Are X, Y independent?
Is Cov(X, Y) = 0?
```

Announcements 3/24

• Quiz 6 graded – let us know if you have questions

• We will have quiz 7 this Wednesday

Recap 3/24

Expectation of RVs' sum
 E[X + Y] = E[X] + E[Y]
 holds *in general* – does not require independence!

• Variance of RVs' sum Var[X + Y]Var[X + Y] = Var[X] + Var[Y] + 2Cov[X, Y]

Covariance: measure the correlation of *X*, *Y*

Recap 3/24

$$\operatorname{Cov}(X,Y) = E\left[(X - \mu_x)\left(Y - \mu_y\right)\right] \qquad \begin{array}{l} \mu_x = E[X] \\ \mu_y = E[Y] \end{array}$$

Cov(X, Y) > 0 if more X, Y deviates from μ_x , μ_y in the same direction (simultaneously large or simultaneously small)

Recap 3/24

•
$$\operatorname{Cov}(X,Y) = E[(X - \mu_x)(Y - \mu_y)]$$

In class exercise: a concrete counterexample

X, Y are not independent

Example $X \sim \text{Uniform}(\{-1,0,1\})$. $Y = X^2$.

Show: *X*, *Y* are not independent, but Cov(X, Y) = 0

In class exercise: a concrete counterexample

Example $X \sim \text{Uniform}(\{-1,0,1\})$. $Y = X^2$.

Why are *X*, *Y* not independent?

• $Y \mid X = 0$ and $Y \mid X = 1$ have different distributions

Why is Cov(X, Y) = 0?

- $\cdot \quad \mu_x = 0, \mu_y = \frac{2}{3}$
- $\cdot \quad \mathrm{E}[XY] = \mathrm{E}[X^3] = 0$
- $\operatorname{Cov}(X,Y) = \operatorname{E}[XY] \mu_{X}\mu_{Y} = 0$

	x=-1	x=0	x=1
y=0	0	1/3	0
y=1	1/3	0	1/3

The covariance matrix

The *covariance matrix* of RVs *A*, *B* is a 2x2 array, with its entries being

Matrix: 2d array of elements

The covariance matrix of RVs $(X_1, ..., X_n)$ is a nxn array, with its entries being $\begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \cdots & \operatorname{Cov}(X_1, X_n) \\ \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_n, X_1) & \cdots & \operatorname{Cov}(X_n, X_n) \end{bmatrix}$

(we will see examples soon..)

Aside: visualizing correlations between variables

Useful tool: Pair plot

Example iris data each data point has 4 features

$$X_1, X_2, X_3, X_4$$

Terminology: moments

 $E[X^k]$: k-th order *raw* moments

• Notable example: $k = 1 \Rightarrow$ mean

$$E[(X - \mu)^k]$$
: k-th order *central* moments

- Notable example: $k = 2 \Rightarrow$ variance
- k = 3:
 - Skewness degree of asymmetry
- k = 4:
 - Kurtosis frequency of outliers
- $E[(X \mu_x)^m (Y \mu_y)^n]$: cross moments

Moments are useful summaries of distributions of RVs

Example multivariate random variables

The 2d standard Gaussian distribution

Suppose $X \sim N(0,1)$, $Y \sim N(0,1)$, and $X \perp Y$, (X,Y) is said to be drawn from the *two-dimensional standard Gaussian distribution*

What is its PDF?

$$f(x,y) = f_1(x) f_2(y) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right) \cdot \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right)$$
$$= \frac{1}{2\pi} \exp\left(-\frac{x^2 + y^2}{2}\right)$$
Bivariate Normal Density - r= 0.0

It is a *bell-shaped surface*

The 2d standard Gaussian distribution

Bivariate Normal Density - r=0.0

The 2d standard Gaussian distribution

Scatter plot of the samples

Contour of the PDF

- isotropic: identical variations across different directions
- samples look like a "spherical" point cloud

2d general Gaussian distributions

Fact For any 2x1 mean vector μ and a 2x2 covariance matrix Σ , there is a two-dimensional Gaussian distribution associated with it, denoted as $N(\mu, \Sigma)$.

Standard Gaussian PDF

general Gaussian PDF

2d general Gaussian distributions

Contour of the PDF

Scatter plot of the samples

Elevation contours of general Gaussian PDFs are ellipses

2d Gaussian distribution

Real-world examples:

- Temperature and Pressure at random location
- Height and Weight of Individuals
- Stock Market Returns of Two Companies

2d general Gaussian distributions

2d Gaussian distribution $N(\mu, \Sigma)$, How many parameters?

•
$$\mu = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}$$
, $\Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$, 6 parameters

- What are the meanings of the parameters?
- (μ_1, μ_2) : center of the distribution
- Σ_{11} : variance of X_1
- Σ_{22} : variance of X_2
- Σ_{12} : covariance of X_1, X_2

In-class activity: 2d general Gaussian distributions

• Can you draw the contour of some 2d Gaussian distribution with $cov(X_1, X_2) < 0$?

2d general Gaussian distributions

- Fact Suppose (X, Y) follows the 2d Gaussian distribution $N(\mu, \Sigma)$. Then both X and Y's marginal distributions are Gaussian.
- What are *X*'s mean & variance?
 - μ₁, Σ₁₁
 - *X*'s marginal distribution is $N(\mu_1, \Sigma_{11})$
- What about *Y*?
 - *Y*'s marginal distribution is $N(\mu_2, \Sigma_{22})$

The general n-dimensional Gaussian distribution

Fact For any nx1 mean vector μ and a nxn covariance matrix Σ , there is a n-dimensional Gaussian distribution associated with it, denoted as $N(\mu, \Sigma)$.

Gaussian is closed under addition

Fact If $X \sim N(\mu_X, \sigma_X^2)$, $Y \sim N(\mu_Y, \sigma_Y^2)$, and $X \perp Y$, then Z = X + Y is also Gaussian.

Can you find the parameters of *Z*'s Gaussian distribution?

$$E[Z] = E[X] + E[Y] = \mu_X + \mu_Y$$

$$Var[Z] = Var[X] + Var[Y] = \sigma_X^2 + \sigma_Y^2$$

Thus, $Z \sim N(\mu_X + \mu_Y, \sigma_X^2 + \sigma_Y^2)$

Gaussian is closed under addition

Example Suppose X_1, X_2, X_3 are 3 independent measurements of the length of a table (in cm), which follow distribution $N(40, 0.1^2)$. Find the distribution of sample mean $\overline{X} = \frac{1}{3} (X_1 + X_2 + X_3)$

Solution

$$X_1 + X_2 \sim N(80, 2 \times 0.1^2)$$

Since $X_2 \perp X_1$

 $X_1 + X_2 + X_3 \sim N(120, 3 \times 0.1^2)$

Since $X_3 \perp (X_1, X_2)$ (and thus $X_3 \perp X_1 + X_2$)

Gaussian is closed under addition

Example Suppose X_1, X_2, X_3 are 3 independent measurements of the length of a table (in cm), which follow distribution $N(40, 0.1^2)$. Find the distribution of sample mean

$$\bar{X} = \frac{1}{3} \left(X_1 + X_2 + X_3 \right)$$

Solution

$$X_1 + X_2 + X_3 \sim N(120, 3 \times 0.1^2)$$

$$\bar{X} \sim N\left(\frac{120}{3}, 3 \times \frac{0.1^2}{3^2}\right) = N\left(40, \frac{0.1^2}{3}\right)$$

Conclusion: averaging over multiple measurements reduces measurement error

Law of Large Numbers

Motivation: measurement

 Suppose we use a ruler to measure the width of a tumor and collect readings such as (in cm):

1.132, 1.136, 1.127, 1.119

 X_1 X_2 X_3 X_4

• These readings can be viewed as the random draws of RV X with mean μ (μ is the true width of the tumor)

• The sample mean
$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 should approach μ ?

Motivation: insurance payments

- Suppose we are a health insurance company that serves 1 million policyholders
- Each holder will file insurance claims in year 2025
- We'd like to estimate the total payments we make this year

 Luckily, we know that all holders' claim amount X are independent, and follow the Uniform([0, 1000]) distribution

Terminology: IID sample

Definition $X_1, ..., X_n$ is an *independent* & *identically distributed* (*IID*, *iid*) sample of X if:

- each X_i has the same distribution as X
- X_1, \ldots, X_n are independent

Note: a sample is a collection of many data points!

More examples:

- Randomly draw 10 students from UA student database with replacement
- Make 3 independent measurements

Law of Large Numbers (LLN)

Law of Large Numbers Let $X_1, ..., X_n$ be an iid sample of random variable X. Let \overline{X}_n be sample mean, and $\mu = E[X]$. Then

$$ar{X}_n o \mu$$
 as $n o \infty$

Example: dice roll $X \sim \text{Uniform}(\{1, ..., 6\})$ $\mu = E[X] = 3.5$

Example: insurance payments

- Suppose we are a health insurance company that serves 1 million policyholders
- We know that all holders' claim amount *X* follows a distribution, Uniform([0, 1000])
- Suppose $X_1, ..., X_n$ are the payments we make to each holder, n = 1M.
- LLN => $\frac{1}{n}(X_1 + \dots + X_n) \approx E[X] = 500$
- We should prepare $X_1 + \dots + X_n \approx 500M$ for payments

Application: Monte Carlo methods

- · LLN has many other cool applications!
- Monte Carlo methods: use randomization to compute probabilities or expectations of interest

Example estimate π by sampling

Application: Monte Carlo methods

```
1 from random import random
  2 from math import sqrt
  3 # Number of random points:
  4 N = 10000
  5 # Counter of points inside:
  6 I = 0
  7 for i in range(N):
8 # Generate ra
9 # in the 1 x
10 x = random()
        # Generate random point
     # in the 1 x 1 square:
11 y = random()
12 # Is it inside the circle?
7 - cart(x**2 + y**2)
13 r = sqrt(x**2 + y**2)
14 if r < 1: I += 1
                                        L_i
15 # Calculate Pi:
16 print(4 * I / N)
      LLN => \frac{1}{10000} (L_1 + \dots + L_{10000}) \approx E[L]
                 E[L] = \pi/4
```


Results of 5 runs:

3.	1768
3.	1496
3.	1644
3.	1504
3	1384

Central Limit Theorem

Announcements 3/26

- We are working on uploading the (curved) midterm scores on D2L this week
- Participation award mechanism change (to fractional)
- HW5 will be up soon..

Quiz 7

Suppose we measure the ping time to a server 100 times under ideal network conditions. The results (in ms) are normally distributed with mean $\mu = 15$, standard deviation $\sigma = 5$.

(base) chichengz@DESKTOP-TDF1D2U:/mnt/c/Users/zcc13\$ ping arizona.edu
PING arizona.edu (151.101.2.133) 56(84) bytes of data.
64 bytes from 151.101.2.133 (151.101.2.133): icmp_seq=1 ttl=51 time=14.3 ms
64 bytes from 151.101.2.133 (151.101.2.133): icmp_seq=2 ttl=51 time=16.9 ms
64 bytes from 151.101.2.133 (151.101.2.133): icmp_seq=3 ttl=51 time=17.1 ms

What is the distribution of the average ping time?
Quiz 7

What is the distribution of the average ping time?

We have a sample $X_1, ..., X_{100}$, each is $N(15, 5^2)$, problem asking about distribution of $\overline{X} = \frac{1}{100}(X_1 + \dots + X_{100})$

$$X_1 + \dots + X_{100} \sim N(1500, 5^2 \times 100)$$

So
$$\bar{X} \sim N\left(15, \frac{5^2 \times 100}{100^2}\right) = N\left(15, \frac{5^2}{100}\right) = N(15, 0.5^2)$$

Central limit theorem (CLT)

- Informally: given an iid sample of *X*, sample mean $\hat{\mu}_n$ has approximately *Gaussian distribution* (with appropriate scaling)
- Note: this happens for *any* distribution of *X*!
 - X can be discrete, continuous (e.g. Bernoulli, exponential, ...)
- This highlights the *central role* of Gaussian distribution in probability and statistics
 - One distribution to rule them all

Central limit theorem

Formal statement Let $X_1, ..., X_n$ be an iid sample with mean μ and variance σ^2 . Then for (moderately large) n:

$$\overline{X}_n$$
 approximately ~ $N\left(\mu, \frac{\sigma^2}{n}\right)$

Equivalently,
$$\overline{X}_n - \mu \sim N\left(0, \frac{\sigma^2}{n}\right)$$

 $\sqrt{n}(\overline{X}_n - \mu) \sim N(0, \sigma^2)$
 $\frac{\sqrt{n}(\overline{X}_n - \mu)}{\sigma} \sim N(0, 1)$

hold approximately

Experimental validation 1: Galton Boards

- Bead has 10 chances hitting a peg
- each time a peg is hit, bead randomly bounces to the left or the right with equal probabilities
- We can represent the final location of the bead as

$$X_1 + \dots + X_{10}$$

where X_i 's is an IID sample of Uniform($\{-1, +1\}$)

Galton boards

Sir Francis Galton demonstrates his "Galton board" or "quincunx" at the Royal Institution. He saw this pinball-like apparatus as an analogy for the inheritance of genetic traits like stature. The pinballs accumulate in a bell-shaped curve that is similar to the distribution of human heights. The puzzle of why human heights

Binomial distribution \approx Normal distribution?

 Binomial distribution looking similar to normal distribution is not a coincidence

Example

• $X \sim Bin(10, 0.3)$

• Equivalent to $X = X_1 + \dots + X_{10}$, $\frac{\dagger}{0} = \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}$ each $X_i \sim \text{Bernoulli}(0.3)$ which is close to a normal distribution by CLT

Experimental validation 2: python simulations

- What does CLT predict about the distribution of \overline{X}_{30} ?
 - Approximately $N\left(\mu, \frac{\sigma^2}{30}\right) = N(5, 0.52^2)$
- · Let's see if this prediction is accurate..

Experimental validation 2: python simulations

```
# Plot the histogram of sample means
plt.figure(figsize=(8, 5))
plt.hist(sample_means, bins=30, density=True, alpha=0.6, color='b', edgecolor='black')
plt.title("Demonstration of the Central Limit Theorem")
plt.xlabel("Sample Mean")
plt.ylabel("Density")
plt.legend()
plt.show()
```

- CLT predicted that elements from sample_means are roughly $N(5, 0.52^2)$
- Let's see..

• Experiments agree pretty well with theory

Central limit theorem: application

Example X_i : customer spending with $\mu = 80$, $\sigma = 40$. Approximate the probability that the average spending of 100 customers is 10% below expected value

 $P(\overline{X}_n \le 72)$

Solution by CLT,
$$\bar{X}_n \sim N\left(80, \frac{40^2}{100}\right) = N(80, 4^2)$$
 approximately
Therefore, $Z = \frac{\bar{X}_n - 80}{4} \sim N(0, 1)$ approximately

$$P(\bar{X}_n \le 72) = P(Z \le -2) \approx \Phi(-2) = 0.023$$

Review

We have covered a lot of ground on probability...

Discrete Random Variables

- Definition of sample space / random events
- Axioms of probability
- Uniform probability of random event
- Fundamental rules of probability (chain rule, conditional, law of total probability)

Probability Distributions

- Random Variables
- Useful discrete probability mass functions
- · Introduction to continuous probability
- Useful probability density functions

Moments / Independence

- Expected Value
- Linearity
- Variance, Covariance, Corr.
- Dependent / Independent RVs

Probability: closing thoughts

Markov and Chebyshev's inequalities: how to make inferences on where *X* lies when we do not know its distribution exactly?

$$P(|X - \mu| \ge t) \le \frac{\operatorname{Var}[X]}{t^2}$$

Probability: closing thoughts

Randomization is also a useful tool for algorithm design

- Example: Hashing
 - Using randomization to mitigate collision

Randomization is fundamental in playing games

• Examples: rock paper scissors, penalty kick

Probability: philosophical remarks

• Pierre-Simon Laplace (1812): thought experiment

- I toss the coin, you guess how it will land
- Probability of predicting correctly: 1

 Laplace's view: probability does not actually exist; it is a useful way to quantify human ignorance though

Probability: philosophical remarks

- Laplace's demon
 - a hypothetical intelligence that knows the exact position & momentum of every particle in the universe.
 - Using the laws of classical mechanics, it could predict the entire future with absolute certainty.
 - Suggests a fully deterministic universe, where free will is an illusion.
- Under debate: Heisenberg's Uncertainty Principle (1927) precludes such perfect knowledge of particles
- "God does not play dice with the universe" Einstein, 1926

