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Outline

• Support Vector Machines

• Nonlinear models
• Basis functions, kernels
• Neural networks

• Unsupervised learning: clustering
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Support vector machines
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Classification

For this section (SVMs):

• We will focus on classification 

with binary labels

• We will use the convention that the labels of examples are 
in {−1,+1}



Linear classifier is a hyperplane

21
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4

A linear classifier in d dimensions is given 

by a hyperplane, defined as follows:

For points that lie on the hyperplane, we have:
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Notation: inner product



• Inner product (dot product):  

𝑎 ⋅ 𝑏 = σ𝑖=1
𝑑 𝑎𝑖 ⋅ 𝑏𝑖

• Another way to find it: 

𝑎, 𝑏 = ||𝑎||2 ⋅ ||𝑏||2 ⋅ cos(𝜃)

where 𝜃 ∈ 0, 𝜋 is the angle between them

6Math Interlude: geometry of inner product

Same as 𝑎𝑇𝑏



Separating Hyperplane
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4

A hyperplane h(x) splits the original d-

dimensional space into two half-spaces. 

If the input dataset is linearly separable:
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Separating Hyperplane: weight vector
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Let a1 and a2 be two arbitrary points that lie on 

the hyperplane, we have:

Subtracting one from the other:

Fact The weight vector w is orthogonal to 

the hyperplane.

8

w also known as the normal vector 



Linear Decision Boundary

Any boundary that separates classes is equally good on training data

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]

But are they equally good on unseen test data?

Which boundary is better, red or green?

http://www-bcf.usc.edu/~gareth/ISL/


Classifier Margin

The margin measures minimum 
distance between each class and the 
decision boundary

Observation Decision boundaries with 
larger margins are more likely to 
generalize to unseen data

Idea Learn the classifier with the largest 
margin that still separates the data…

…we call this a max-margin classifier



Recap 4/14

Observation Decision boundaries with 
larger margins are more likely to generalize 
to unseen data

Linear classification 𝑓 𝑥 = 𝑤 ⋅ 𝑥 + 𝑏

Predict + if 𝑓 𝑥 > 0

gives decision boundaries that are straight

Support vector machines (SVMs) find 
decision boundary with large margins



Background: distance of a point to decision boundary

A linear classifier is given by

Decision boundary is now at 𝑓(𝑥) = 0 and 
distance of 𝑥 to it is: 

Where the norm of the weights is 

Known as the distance from a 

point to a plane equation:

wiki/Distance_from_a_point_to_a_plane

https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_plane


Example 

Linear classifier: 𝑓 𝑥 = 0.8𝑥1 + 0.6𝑥2 + 1

Decision boundary: 0.8𝑥1 + 0.6𝑥2 + 1 = 0

Distance of (2,2) to the boundary?

Distance of (-2,-3) to the boundary?

Here distances are signed: 

sign represents which side the point is at 

i.e, the predicted label 

0.8 × 2 + 0.6 × 2 + 1

0.82 + 0.62
= 3.8

0.8 × −2 + 0.6 × (−3) + 1

0.82 + 0.62
= −2.4

+

_



Classification margin

Given linear classifier 𝑤 ⋅ 𝑥 + 𝑏, its classification margin on 

labeled example (𝑥, 𝑦) is 
𝑦 𝑤⋅𝑥+𝑏

||𝑤||2

Example 𝑓 𝑥 = 0.8𝑥1 + 0.6𝑥2 + 1,

Margin > 0 ⇔ correct classification 

Margin > 0 and larger margin: correct with higher confidence

+

margin = +1 × 3.8 = 3.8

margin = − −2.4 = 2.4

margin = −1 × 3.8 = −3.8

𝒙 𝒚

(2,2) +

(−2,−3) −

(2,2) −

||𝑤||2 = 1

_

_label x distance

+

_



Margin and Support Vectors

Over all n points, the margin of the linear 

classifier is the minimum distance of a 

point from the separating hyperplane: 

All the points that achieve this minimum 

distance are called support vectors.
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Maximum margin classifier

We can formulate finding a maximum

margin classifier as an optimization problem:

Find 𝑤, 𝑏,𝑀 ≥ 0 such that

maximize 𝑀

with the constraints that 
𝑦𝑖 𝑤⋅𝑥𝑖+𝑏

||𝑤||2
≥ 𝑀 for all 𝑖 Allows 

large M Does not 

allows large M

𝑤 ⋅ 𝑥 + 𝑏 = 0
𝑤 ⋅ 𝑥 + 𝑏 = 0



Math Interlude: optimization problems

• The above falls to the general form of 
maximize 𝑓(𝑥)

subject to 

𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… ,𝑚

• These are called constrained optimization 
problems

• Due to the constraints, finding the maximizer 
requires more care.. 

• Still, solvable by many standard packages

x: Optimization 

variables

constraints

unconstrained maximizer

constrained maximizer



Math Interlude: optimization problems

Example Find the solution of 

maximize −𝑥2 subject to 𝑥 ≥ 1 and 𝑥 ≤ 2

Solution We can draw a picture.. 

The objective is maximized at 𝑥 = 1

Note: the constrained maximizer is 

not the vertex of the parabola 

(unconstrained maximizer)



Support vector machine: extension

Problem 1: The maximum margin solution can be sensitive to 
outliers



Support vector machine: extension

Problem 1: The maximum margin solution can be sensitive to 
outliers

Maybe prone to overfitting!



Support vector machine: extension

• Problem 2: The maximum margin solution may not even 
exist

Perhaps requiring the output 

classifier to predict every example 

correctly is too strict?

Solution: soft margins – allow 

mistakes on some training examples

requirement of “hard margins”



Soft margin support vector machines

Find 𝑤, 𝑏,𝑀, such that

maximize 𝑀

with the constraints that 
𝑦𝑖 𝑤⋅𝑥𝑖+𝑏

||𝑤||2
≥ 𝑀(1 − 𝜉𝑖) for all 𝑖

and 𝜉𝑖 ≥ 0, σ𝑖 𝜉𝑖 ≤ 𝐶

𝜉𝑖: slack variables 

allows some examples to be on the wrong side (𝜉𝑖 > 0)

𝐶: # in-margin examples allowed 

𝜉𝑖 = 2

𝑀

other 𝜉𝑖 = 0



Soft margin support vector machines

• Large 𝐶

Many points inside the margin,

many points on the wrong side

of the line



Soft margin support vector machines

• Smaller 𝐶

Fewer points inside the margin,

Fewer points on the wrong side

of the line



Soft margin support vector machines

• Even smaller 𝐶

Even fewer points inside the margin,

Very few points on the wrong side

of the line

Smaller 𝐶 => More overfitting => Lower bias, higher complexity 

As usual, we can choose 𝐶 by cross validation 



Nonlinear prediction models
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Nonlinear basis functions; kernels
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Linear Models

Linear Regression Fit a linear 
function to the data,

[ Image: Murphy, K. (2012) ] [ Image: Hastie et al. (2001) ]

Logistic Regression Learn a 
decision boundary that is linear in the 
data,



Nonlinear Data

What if our data are not
well-described by a linear 

function?

What if classes are not 
linearly-separable?

[Source: Murphy, K. (2012) ]



Nonlinear prediction problems

• Nearest neighbor methods are OK, but they suffer from the 
curse of dimensionality

In high dimensions, all points are (kind-of) far from each other

Alternative approach:

We can reduce learning nonlinear models

to learning linear models

For high-dimensional data, 

most cells are empty!



Reducing nonlinear prediction to linear 

Two main approaches: 

• Transforming the label

• Transforming the feature 



Approach 1: Transforming the label

Suppose that we want to predict the number of earthquakes 
that occur of a certain magnitude.  Our data are given by,

Fitting a linear regression

is not very helpful



Approach 1: Transforming the label

Suppose that we want to predict the number of earthquakes 
that occur of a certain magnitude.  Our data are given by,

But plotting outputs on

a logarithmic scale reveals

a strong linear 

relationship…

(log frequency)

log 𝑦 = 𝑤 ⋅ 𝑥 + 𝑏

We will do linear regression

with new label log 𝑦



Approach 2: transforming the features 

Not Linearly separable Linearly separable

𝜙 𝑥1, 𝑥2 = (𝑥1, 𝑥2, 𝑥1
2 + 𝑥2

2)



Approach 2: transforming the features 

• A basis function can be any function of the input features X

• Define a set of m basis functions

• Fit a linear model in terms of basis functions,

• Model is linear in the basis transformations

• Model is nonlinear in the data X



Common “All-Purpose” Basis Functions

• Linear basis functions recover the original linear model,

• Quadratic                     or                         capture 2nd order interactions

• An order p polynomial                               captures higher-order 
nonlinearities (but requires O(𝑑𝑝) parameters)

• Nonlinear transformation of single inputs,

• An indicator function specifies a region of the input,

Returns mth dimension of X

I(A)=1 if A happens, =0 otherwise





Example 1: Polynomial Basis Functions

Create three two-dimensional data points [0,1], [2,3], [4,5]:

Compute quadratic features                                     ,

These are now our new data and ready to fit a model…



Example 2: Polynomial Regression

Create a 3rd order polynomial (cubic) regression data,

Create cubic features                     ,



Example 2: Polynomial Regression



Example: Piecewise Constant Regression

Decompose the input space into 3 regions 
with indicator basis functions,

Fit linear regression model,

Effectively fits 3 constant functions to 
data in each region

[Source: Hastie et al. (2001)]



Kernels

Fact Many machine learning algorithms output linear models 
of the form 𝑤 = σ𝑖 𝛼𝑖 𝑥𝑖 and thus makes prediction by 

෍

𝑖

𝛼𝑖 𝑥𝑖 ⋅ 𝑥 + 𝑏

when learning with basis functions, the trained models make 
prediction by 

෍

𝑖

𝛼𝑖 𝜙(𝑥𝑖) ⋅ 𝜙 𝑥 + 𝑏

popular kernels: polynomial, radial

Sometimes called ‘dual variables’ Examples: SVM, logistic regression

kernel: generalizes inner products; 

captures similarity between examples 

Training examples



Kernel SVM

Applying kernel SVMs to nonlinear data

obtains flexible nonlinear decision boundaries

polynomial (d=3) kernel radial kernel





Example: Fisher’s Iris Dataset

Train 8-degree polynomial kernel SVM classifier,

[ Source: https://stackabuse.com/implementing-svm-and-kernel-svm-with-pythons-scikit-learn/ ]

Generate predictions on held-out test data,

Show confusion matrix and classification accuracy,

https://stackabuse.com/implementing-svm-and-kernel-svm-with-pythons-scikit-learn/


Kernel SVM in Scikit Learn

• General kernel-based SVM lives in:

sklearn.svm.svc(kernel=‘kernel_name’)

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC


Neural networks
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Basis Functions

Basis functions transform linear models into nonlinear ones…

…but it may be difficult to find a good basis transformation

Linear Regression
Classification

( Logistic Regression )



Learning Basis Functions

Wouldn’t it be great if we could learn a basis function so that a 
simple linear model performs well…

This is called “representation learning” 

Neural networks provides a flexible way to do this…

Neural Net

Warped Space
Data Space

Ignore the circled points…I

reused these from the SVM slides



Neural Networks

Forms of NNs are used all over the place nowadays…

AI Chat Bots Self-Driving Cars

Machine Translation

Creepy Robots



Rosenblatt’s Perceptron

In 1957 Frank Rosenblatt constructed 
the first (single layer) neural network 

known as a “perceptron”

He demonstrated that it is capable of 
recognizing characters projected onto a 

20x20 “pixel” array of photosensors

Despite recent attention, 
neural networks are fairly old



Rosenblatt’s Perceptron

Perceptron

• In Rosenblatt’s perceptron, the inputs are tied directly to output

• “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanics” (1962)

• Criticized by Marvin Minsky in book “Perceptrons” since can only learn linearly-separable functions

• The perceptron is just linear classification in disguise



Multilayer Perceptron

[ Source: http://neuralnetworksanddeeplearning.com ]

Input layer

perceptrons

Hidden layer

perceptrons

This is the quintessential Neural Network…

…also called Feed Forward Neural Net or Artificial Neural Net

Adding hidden layers 
allows NN to learn 
arbitrary functions

http://neuralnetworksanddeeplearning.com/


Modern Neural Networks: “deep learning”

[ Source: Krizhevsky et al. (NeurIPS 2012) ]

Modern Deep Neural networks have many hidden layers

…and have millions - trillions of parameters to learn



Handwritten Digit Classification

Classifying handwritten digits is the “Hello World” of NNs

Modified National Institute of 
Standards and Technology 

(MNIST) database contains 60k 
training and 10k test images

Each character is centered 
in a 28x28=784 pixel 

grayscale image



Multilayer Perceptron for MNIST Classification[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Each image pixel is a

number in [0,1] indicated

by highlighted color

Every neuron receives signal from 

the previous layer, processes them, 

and emits signal to the next layer

https://www.youtube.com/watch?v=aircAruvnKk


Feedforward Procedure

Each node computes a 
weighted combination of nodes 

at the previous layer…

Then applies a nonlinear 
function to the result

Often, we also introduce

a constant bias parameter

𝒙𝟏, . . , 𝒙𝒏: nodes at previous layer 



Nonlinear Activation functions

We call this an activation function and typically write it in vector form,

An early choice was the logistic function,

Later found to lead to slow learning and the 
rectified linear unit (ReLU) become popular,



Multilayer Perceptron

Final layer is typically a linear 
model… each output node is 

computed by

Recall that for binary logistic 
regression with 2 classes,

x: Vector of activations from

previous layer



[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Each parameter has some 

impact on the output…need to 

tweak (learn) all parameters 

simultaneously to improve 

prediction accuracy

16 16

10

https://www.youtube.com/watch?v=aircAruvnKk


Announcements 4/16

• Quiz 9 graded

• HW5 graded

• Office hours participation instances can now be earned 
more than once a week



Quiz 10

Suppose we have two linear classifiers:

𝑓 𝑥 = 4𝑥1 + 3𝑥2 + 6,                   𝑔 𝑥 = 4𝑥1 + 3𝑥2
and a training set

1. Visualize 𝑓, 𝑔 and the training set in a 2D plane

2. What are the margins of 𝑓 and 𝑔 on these points?

3. Which of 𝑓, 𝑔 has a smaller margin on the whole training set?

(Hint: 32 + 42 = 5)

𝒙 𝒚

(1,1) +

(−1,−1) −



Quiz 10

• 𝑓 𝑥 = 4𝑥1 + 3𝑥2 + 6,          

• 𝑔 𝑥 = 4𝑥1 + 3𝑥2

• f’s margin on the dataset = min(2.6, 0.2) = 0.2

• g’s margin on the dataset = min(1.4, 1.2) = 1.4

𝒙 𝒚

(1,1) +

(−1,−1) −

f’s margin g’s margin

+
4 + 3 + 6

5
= 2.6

−
−4 − 3 + 6

5
= 0.2

1.4

1.4

Larger

Smaller



Multilayer Perceptron for MNIST Classification[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Each image pixel is a

number in [0,1] indicated

by highlighted color

Every neuron receives signal from 

the previous layer, processes them, 

and emits signal to the next layer

Output layer: 

probability of each class

𝑧 = 𝜎(𝑤 ⋅ 𝑥 + 𝑏)

https://www.youtube.com/watch?v=aircAruvnKk


Training Multilayer Perceptron

For each training example, 

predict label and adjust 

weights…

• How to score final layer output?

• How to adjust weights?



Training Multilayer Perceptron

One way to score (square loss): based on difference between final layer 

and one-hot vector of true class… ℓ 𝜃 = σ𝑗 𝑓𝑗 𝑥; 𝜃 − 𝑦𝑗
2

Input

[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

https://www.youtube.com/watch?v=aircAruvnKk


Training Multilayer Perceptron: for classification

For classification, it is more popular to use:

• A softmax layer as final output

𝑝𝑐 =
𝑒𝑧𝑐

σ𝑗=1
𝐾 𝑒

𝑧𝑗
, 𝑐 = 1,… , 𝐾

gives probability estimate of each class given 
example 𝑃(𝑌 = 𝑐 ∣ 𝑋 = 𝑥)

• Cross-entropy (CE) loss for training

ℓ Ԧ𝑝, 𝑦 = log
1

𝑝𝑦
measures the neural network’s “surprise” of seeing 
label 𝑦 on this example

E.g. 𝑦 = 2, ℓ Ԧ𝑝, 𝑦 = log
1

0.90
-> small  

𝑝𝑧

E.g. 𝑦 = 4, ℓ Ԧ𝑝, 𝑦 = log
1

0.01
-> large 



Training Multilayer Perceptron

Our loss function for ith example is error in terms of weights / biases…

13,002 Parameters

in this network

…minimize loss over all training data…

This is a super high-dimensional optimization (13,002 
dimensions in this example)…how do we solve it?

Gradient descent: the go-to method for optimization



Gradient descent

• Gradient descent: Move in direction of greatest local 
improvement (greedily)

• “Knob turning”

• ”knob” = weight of an edge

• If a neuron increases the probability of an incorrect 
prediction, its knobs will be turned down. 

• If a neuron increases the probability of a correct 
prediction, its knobs will be turned up. 

69
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Deep learning, a field of machine learning

Dog 90%

Mop 10%

Learning algorithm
(backpropagation)
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Deep learning with backpropagation



73

Deep learning with backpropagation
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Deep learning with backpropagation
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O ops!

Deep learning with backpropagation
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Decrease signal on ”synapses” 
that fired incorrectly!

Deep learning with backpropagation
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Increase signal on ”synapses” 
that did not fire sufficiently!

Deep learning with backpropagation
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Collection of all weights 

and biases in the network
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One training example
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Partial derivative of the cost function 

C for each parameter (weight or 

bias) in the network
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Learning rate, which is a 

hyper parameter



Neural network demo

• Tensorflow neural network playground

Visualizes: 

• hidden neurons

• weights & biases

• learning curves (training & test losses vs number of iterations)

Let’s try: 

• editing the weights

• using no hidden layers

• using no hidden layers + basis functions

• using 1 hidden layer with 4 nodes 

• playing with a harder dataset

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4,2&seed=0.48518&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false


Regularization

With four parameters I can fit an elephant.  With five I 
can make him wiggle his trunk. - John von Neumann

Our example model has 13,002 
parameters…that’s a lot of elephants!  

Regularization is critical to avoid overfitting…

…numerous regularization schemes 
are used in training neural networks

Model complexity
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Regularization: Weight Decay

In neural network terminology, adding an L2 penalty is called weight decay





Scikit-Learn : Multilayer Perceptron

Fetch MNIST data from www.openml.org :

Train test split (60k / 10k),

Create MLP classifier instance,

• Single hidden layer (50 nodes)

• Use stochastic gradient descent

• Maximum of 10 learning iterations

• Small L2 regularization alpha=1e-4

http://www.openml.org/


Scikit-Learn : Multilayer Perceptron

Fit the MLP and print stuff…

Visualize the weights for each node…

…magnitude of weights indicates which 
input features are important in prediction



More Advanced Topics

Many other NN architectures exist beyond MLP
• Convolutional NN (CNN) For image processing / computer vision.

• Recurrent NN (RNN) For sequence data (e.g. acoustic signals, video, etc.), 
long short-term memory (LSTM) is popular

• Generative Adversarial Nets (GANs) For generating creepy deepfakes

• Transformers For generating text (e.g. ChatGPT)

Many open areas being researched

• More reliable uncertainty estimates

• Robustness to input perturbations

• Interpretability

• Better scalability 



Resources

There are tons of excellent resources for learning about neural 
networks online…here are two quick ones:

3Blue1Brown Youtube channel has a nice four-part intro:

https://www.youtube.com/watch?v=aircAruvnKk

Free book by Michael Nielson uses MNIST example in Python:

http://neuralnetworksanddeeplearning.com/

https://www.youtube.com/watch?v=aircAruvnKk
http://neuralnetworksanddeeplearning.com/


Unsupervised learning: clustering
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Unsupervised learning

Training data only contains inputs 𝑥, and does not have labels 𝑦

Goal: uncovering structure underlying the data 

Understanding 𝑝(𝑥) (generative) instead of 𝑝(𝑦 ∣ 𝑥) (discriminative)

Two useful subproblems:

Clustering: uncovering hidden “classes” in data

Component analysis: finding meaningful projections of data



Motivation of clustering: patient study 

• Goal: assign customized treatments to patients



Clustering

Input: 𝑘: the number of clusters

dataset: 𝑆 = {𝑥1, … , 𝑥𝑛}

Output:

• clusters 𝐺𝑖 𝑖=1
𝑘 whose disjoint union is 𝑆

• we also often obtain ‘centroids’ – centers of each cluster

• Q: what would be a reasonable definition of centroids?

94



Centroid of a point set

A centroid 𝑐 of point set 𝑆 = {𝑧1, … , 𝑧𝑛} should be close to all points in 
that set

A reasonable definition: 𝑐 = argmin
𝑤∈ℝ𝑑

σ𝑖=1
𝑛 𝑧𝑖 − 𝑤 2

• When 𝑑 = 1: 𝑐 = ҧ𝑧 =
1

𝑛
σ𝑖=1
𝑛 𝑧𝑖 (*)

• Fact: (*) is still true for general 𝑑

95



Recap 4/21

• Clustering:

finding hidden classes using unlabeled data

We will likely have a quiz next Monday (4/28)

Planning to release HW7 today



Imbalanced classification

• In imbalanced classification, training using original data may 
result in blind classifier that always predict majority class

• Ways to mitigate: re-balancing the datasets

• See Piazza more additional notes



K-means clustering algorithm [Lloyd’82]

- Initialize Cluster Centroids

- Until Convergence:

- Cluster Assignment: for each point, assign it to the 

cluster with the nearest centroid 

- Recompute Centroid: for each cluster, recompute its 

centroid to be the cluster mean 



Initialization 99

Arbitrary/random initialization of 𝑐1 and 𝑐2



Iteration 1 100

(A) update the cluster assignments (B) Update the centroids 𝑐1, 𝑐2



Iteration 2 101

(A) update the cluster assignments (B) Update the centroids 𝑐1, 𝑐2



Iteration 3 102

(A) update the cluster assignments (B) Update the centroids 𝑐1, 𝑐2



Iteration 4 103

(A) update the cluster assignments (B) Update the centroids 𝑐1, 𝑐2



Iterating until Convergence

Animation from Kaggle

https://www.kaggle.com/ryanholbrook/clustering-with-k-means


Promise of Convergence

Plot of the cost function J after each cluster assignment step and recompute centroid step 

But may converge to a local rather 
than global minimum of J.

Location of centroid 𝑘
=1 if 𝑥𝑛 is assigned to cluster 𝑘
=0 otherwise



Image from Andrew NG Coursera Machine Learning Course

Solution quality highly 
dependent on initialization!

Convergence to local optima



Clustering: concluding remarks

Definition of clusters may be subjective and 
application-dependent

Hierarchical clustering

• multiresolution data analysis
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