
CSC380: Principles of Data Science

Basic machine learning 3

Chicheng Zhang

1

Outline

• Support Vector Machines

• Nonlinear models
• Basis functions, kernels
• Neural networks

• Unsupervised learning: clustering

2

Support vector machines

3

Classification

For this section (SVMs):

• We will focus on classification

with binary labels

• We will use the convention that the labels of examples are
in {−1,+1}

Linear classifier is a hyperplane

21

2

4

A linear classifier in d dimensions is given

by a hyperplane, defined as follows:

For points that lie on the hyperplane, we have:

5

Notation: inner product

• Inner product (dot product):

𝑎 ⋅ 𝑏 = σ𝑖=1
𝑑 𝑎𝑖 ⋅ 𝑏𝑖

• Another way to find it:

𝑎, 𝑏 = ||𝑎||2 ⋅ ||𝑏||2 ⋅ cos(𝜃)

where 𝜃 ∈ 0, 𝜋 is the angle between them

6Math Interlude: geometry of inner product

Same as 𝑎𝑇𝑏

Separating Hyperplane

21

2

4

A hyperplane h(x) splits the original d-

dimensional space into two half-spaces.

If the input dataset is linearly separable:

7

Separating Hyperplane: weight vector

21

2

4

Let a1 and a2 be two arbitrary points that lie on

the hyperplane, we have:

Subtracting one from the other:

Fact The weight vector w is orthogonal to

the hyperplane.

8

w also known as the normal vector

Linear Decision Boundary

Any boundary that separates classes is equally good on training data

[Source: http://www-bcf.usc.edu/~gareth/ISL/]

But are they equally good on unseen test data?

Which boundary is better, red or green?

http://www-bcf.usc.edu/~gareth/ISL/

Classifier Margin

The margin measures minimum
distance between each class and the
decision boundary

Observation Decision boundaries with
larger margins are more likely to
generalize to unseen data

Idea Learn the classifier with the largest
margin that still separates the data…

…we call this a max-margin classifier

Recap 4/14

Observation Decision boundaries with
larger margins are more likely to generalize
to unseen data

Linear classification 𝑓 𝑥 = 𝑤 ⋅ 𝑥 + 𝑏

Predict + if 𝑓 𝑥 > 0

gives decision boundaries that are straight

Support vector machines (SVMs) find
decision boundary with large margins

Background: distance of a point to decision boundary

A linear classifier is given by

Decision boundary is now at 𝑓(𝑥) = 0 and
distance of 𝑥 to it is:

Where the norm of the weights is

Known as the distance from a

point to a plane equation:

wiki/Distance_from_a_point_to_a_plane

https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_plane

Example

Linear classifier: 𝑓 𝑥 = 0.8𝑥1 + 0.6𝑥2 + 1

Decision boundary: 0.8𝑥1 + 0.6𝑥2 + 1 = 0

Distance of (2,2) to the boundary?

Distance of (-2,-3) to the boundary?

Here distances are signed:

sign represents which side the point is at

i.e, the predicted label

0.8 × 2 + 0.6 × 2 + 1

0.82 + 0.62
= 3.8

0.8 × −2 + 0.6 × (−3) + 1

0.82 + 0.62
= −2.4

+

_

Classification margin

Given linear classifier 𝑤 ⋅ 𝑥 + 𝑏, its classification margin on

labeled example (𝑥, 𝑦) is
𝑦 𝑤⋅𝑥+𝑏

||𝑤||2

Example 𝑓 𝑥 = 0.8𝑥1 + 0.6𝑥2 + 1,

Margin > 0 ⇔ correct classification

Margin > 0 and larger margin: correct with higher confidence

+

margin = +1 × 3.8 = 3.8

margin = − −2.4 = 2.4

margin = −1 × 3.8 = −3.8

𝒙 𝒚

(2,2) +

(−2,−3) −

(2,2) −

||𝑤||2 = 1

_

_label x distance

+

_

Margin and Support Vectors

Over all n points, the margin of the linear

classifier is the minimum distance of a

point from the separating hyperplane:

All the points that achieve this minimum

distance are called support vectors.

15

Maximum margin classifier

We can formulate finding a maximum

margin classifier as an optimization problem:

Find 𝑤, 𝑏,𝑀 ≥ 0 such that

maximize 𝑀

with the constraints that
𝑦𝑖 𝑤⋅𝑥𝑖+𝑏

||𝑤||2
≥ 𝑀 for all 𝑖 Allows

large M Does not

allows large M

𝑤 ⋅ 𝑥 + 𝑏 = 0
𝑤 ⋅ 𝑥 + 𝑏 = 0

Math Interlude: optimization problems

• The above falls to the general form of
maximize 𝑓(𝑥)

subject to

𝑔𝑖 𝑥 ≤ 0, 𝑖 = 1,… ,𝑚

• These are called constrained optimization
problems

• Due to the constraints, finding the maximizer
requires more care..

• Still, solvable by many standard packages

x: Optimization

variables

constraints

unconstrained maximizer

constrained maximizer

Math Interlude: optimization problems

Example Find the solution of

maximize −𝑥2 subject to 𝑥 ≥ 1 and 𝑥 ≤ 2

Solution We can draw a picture..

The objective is maximized at 𝑥 = 1

Note: the constrained maximizer is

not the vertex of the parabola

(unconstrained maximizer)

Support vector machine: extension

Problem 1: The maximum margin solution can be sensitive to
outliers

Support vector machine: extension

Problem 1: The maximum margin solution can be sensitive to
outliers

Maybe prone to overfitting!

Support vector machine: extension

• Problem 2: The maximum margin solution may not even
exist

Perhaps requiring the output

classifier to predict every example

correctly is too strict?

Solution: soft margins – allow

mistakes on some training examples

requirement of “hard margins”

Soft margin support vector machines

Find 𝑤, 𝑏,𝑀, such that

maximize 𝑀

with the constraints that
𝑦𝑖 𝑤⋅𝑥𝑖+𝑏

||𝑤||2
≥ 𝑀(1 − 𝜉𝑖) for all 𝑖

and 𝜉𝑖 ≥ 0, σ𝑖 𝜉𝑖 ≤ 𝐶

𝜉𝑖: slack variables

allows some examples to be on the wrong side (𝜉𝑖 > 0)

𝐶: # in-margin examples allowed

𝜉𝑖 = 2

𝑀

other 𝜉𝑖 = 0

Soft margin support vector machines

• Large 𝐶

Many points inside the margin,

many points on the wrong side

of the line

Soft margin support vector machines

• Smaller 𝐶

Fewer points inside the margin,

Fewer points on the wrong side

of the line

Soft margin support vector machines

• Even smaller 𝐶

Even fewer points inside the margin,

Very few points on the wrong side

of the line

Smaller 𝐶 => More overfitting => Lower bias, higher complexity

As usual, we can choose 𝐶 by cross validation

Nonlinear prediction models

26

Nonlinear basis functions; kernels

27

Linear Models

Linear Regression Fit a linear
function to the data,

[Image: Murphy, K. (2012)] [Image: Hastie et al. (2001)]

Logistic Regression Learn a
decision boundary that is linear in the
data,

Nonlinear Data

What if our data are not
well-described by a linear

function?

What if classes are not
linearly-separable?

[Source: Murphy, K. (2012)]

Nonlinear prediction problems

• Nearest neighbor methods are OK, but they suffer from the
curse of dimensionality

In high dimensions, all points are (kind-of) far from each other

Alternative approach:

We can reduce learning nonlinear models

to learning linear models

For high-dimensional data,

most cells are empty!

Reducing nonlinear prediction to linear

Two main approaches:

• Transforming the label

• Transforming the feature

Approach 1: Transforming the label

Suppose that we want to predict the number of earthquakes
that occur of a certain magnitude. Our data are given by,

Fitting a linear regression

is not very helpful

Approach 1: Transforming the label

Suppose that we want to predict the number of earthquakes
that occur of a certain magnitude. Our data are given by,

But plotting outputs on

a logarithmic scale reveals

a strong linear

relationship…

(log frequency)

log 𝑦 = 𝑤 ⋅ 𝑥 + 𝑏

We will do linear regression

with new label log 𝑦

Approach 2: transforming the features

Not Linearly separable Linearly separable

𝜙 𝑥1, 𝑥2 = (𝑥1, 𝑥2, 𝑥1
2 + 𝑥2

2)

Approach 2: transforming the features

• A basis function can be any function of the input features X

• Define a set of m basis functions

• Fit a linear model in terms of basis functions,

• Model is linear in the basis transformations

• Model is nonlinear in the data X

Common “All-Purpose” Basis Functions

• Linear basis functions recover the original linear model,

• Quadratic or capture 2nd order interactions

• An order p polynomial captures higher-order
nonlinearities (but requires O(𝑑𝑝) parameters)

• Nonlinear transformation of single inputs,

• An indicator function specifies a region of the input,

Returns mth dimension of X

I(A)=1 if A happens, =0 otherwise

Example 1: Polynomial Basis Functions

Create three two-dimensional data points [0,1], [2,3], [4,5]:

Compute quadratic features ,

These are now our new data and ready to fit a model…

Example 2: Polynomial Regression

Create a 3rd order polynomial (cubic) regression data,

Create cubic features ,

Example 2: Polynomial Regression

Example: Piecewise Constant Regression

Decompose the input space into 3 regions
with indicator basis functions,

Fit linear regression model,

Effectively fits 3 constant functions to
data in each region

[Source: Hastie et al. (2001)]

Kernels

Fact Many machine learning algorithms output linear models
of the form 𝑤 = σ𝑖 𝛼𝑖 𝑥𝑖 and thus makes prediction by

෍

𝑖

𝛼𝑖 𝑥𝑖 ⋅ 𝑥 + 𝑏

when learning with basis functions, the trained models make
prediction by

෍

𝑖

𝛼𝑖 𝜙(𝑥𝑖) ⋅ 𝜙 𝑥 + 𝑏

popular kernels: polynomial, radial

Sometimes called ‘dual variables’ Examples: SVM, logistic regression

kernel: generalizes inner products;

captures similarity between examples

Training examples

Kernel SVM

Applying kernel SVMs to nonlinear data

obtains flexible nonlinear decision boundaries

polynomial (d=3) kernel radial kernel

Example: Fisher’s Iris Dataset

Train 8-degree polynomial kernel SVM classifier,

[Source: https://stackabuse.com/implementing-svm-and-kernel-svm-with-pythons-scikit-learn/]

Generate predictions on held-out test data,

Show confusion matrix and classification accuracy,

https://stackabuse.com/implementing-svm-and-kernel-svm-with-pythons-scikit-learn/

Kernel SVM in Scikit Learn

• General kernel-based SVM lives in:

sklearn.svm.svc(kernel=‘kernel_name’)

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC

Neural networks

47

Basis Functions

Basis functions transform linear models into nonlinear ones…

…but it may be difficult to find a good basis transformation

Linear Regression
Classification

(Logistic Regression)

Learning Basis Functions

Wouldn’t it be great if we could learn a basis function so that a
simple linear model performs well…

This is called “representation learning”

Neural networks provides a flexible way to do this…

Neural Net

Warped Space
Data Space

Ignore the circled points…I

reused these from the SVM slides

Neural Networks

Forms of NNs are used all over the place nowadays…

AI Chat Bots Self-Driving Cars

Machine Translation

Creepy Robots

Rosenblatt’s Perceptron

In 1957 Frank Rosenblatt constructed
the first (single layer) neural network

known as a “perceptron”

He demonstrated that it is capable of
recognizing characters projected onto a

20x20 “pixel” array of photosensors

Despite recent attention,
neural networks are fairly old

Rosenblatt’s Perceptron

Perceptron

• In Rosenblatt’s perceptron, the inputs are tied directly to output

• “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanics” (1962)

• Criticized by Marvin Minsky in book “Perceptrons” since can only learn linearly-separable functions

• The perceptron is just linear classification in disguise

Multilayer Perceptron

[Source: http://neuralnetworksanddeeplearning.com]

Input layer

perceptrons

Hidden layer

perceptrons

This is the quintessential Neural Network…

…also called Feed Forward Neural Net or Artificial Neural Net

Adding hidden layers
allows NN to learn
arbitrary functions

http://neuralnetworksanddeeplearning.com/

Modern Neural Networks: “deep learning”

[Source: Krizhevsky et al. (NeurIPS 2012)]

Modern Deep Neural networks have many hidden layers

…and have millions - trillions of parameters to learn

Handwritten Digit Classification

Classifying handwritten digits is the “Hello World” of NNs

Modified National Institute of
Standards and Technology

(MNIST) database contains 60k
training and 10k test images

Each character is centered
in a 28x28=784 pixel

grayscale image

Multilayer Perceptron for MNIST Classification[Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk]

Each image pixel is a

number in [0,1] indicated

by highlighted color

Every neuron receives signal from

the previous layer, processes them,

and emits signal to the next layer

https://www.youtube.com/watch?v=aircAruvnKk

Feedforward Procedure

Each node computes a
weighted combination of nodes

at the previous layer…

Then applies a nonlinear
function to the result

Often, we also introduce

a constant bias parameter

𝒙𝟏, . . , 𝒙𝒏: nodes at previous layer

Nonlinear Activation functions

We call this an activation function and typically write it in vector form,

An early choice was the logistic function,

Later found to lead to slow learning and the
rectified linear unit (ReLU) become popular,

Multilayer Perceptron

Final layer is typically a linear
model… each output node is

computed by

Recall that for binary logistic
regression with 2 classes,

x: Vector of activations from

previous layer

[Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk]

Each parameter has some

impact on the output…need to

tweak (learn) all parameters

simultaneously to improve

prediction accuracy

16 16

10

https://www.youtube.com/watch?v=aircAruvnKk

Announcements 4/16

• Quiz 9 graded

• HW5 graded

• Office hours participation instances can now be earned
more than once a week

Quiz 10

Suppose we have two linear classifiers:

𝑓 𝑥 = 4𝑥1 + 3𝑥2 + 6, 𝑔 𝑥 = 4𝑥1 + 3𝑥2
and a training set

1. Visualize 𝑓, 𝑔 and the training set in a 2D plane

2. What are the margins of 𝑓 and 𝑔 on these points?

3. Which of 𝑓, 𝑔 has a smaller margin on the whole training set?

(Hint: 32 + 42 = 5)

𝒙 𝒚

(1,1) +

(−1,−1) −

Quiz 10

• 𝑓 𝑥 = 4𝑥1 + 3𝑥2 + 6,

• 𝑔 𝑥 = 4𝑥1 + 3𝑥2

• f’s margin on the dataset = min(2.6, 0.2) = 0.2

• g’s margin on the dataset = min(1.4, 1.2) = 1.4

𝒙 𝒚

(1,1) +

(−1,−1) −

f’s margin g’s margin

+
4 + 3 + 6

5
= 2.6

−
−4 − 3 + 6

5
= 0.2

1.4

1.4

Larger

Smaller

Multilayer Perceptron for MNIST Classification[Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk]

Each image pixel is a

number in [0,1] indicated

by highlighted color

Every neuron receives signal from

the previous layer, processes them,

and emits signal to the next layer

Output layer:

probability of each class

𝑧 = 𝜎(𝑤 ⋅ 𝑥 + 𝑏)

https://www.youtube.com/watch?v=aircAruvnKk

Training Multilayer Perceptron

For each training example,

predict label and adjust

weights…

• How to score final layer output?

• How to adjust weights?

Training Multilayer Perceptron

One way to score (square loss): based on difference between final layer

and one-hot vector of true class… ℓ 𝜃 = σ𝑗 𝑓𝑗 𝑥; 𝜃 − 𝑦𝑗
2

Input

[Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk]

https://www.youtube.com/watch?v=aircAruvnKk

Training Multilayer Perceptron: for classification

For classification, it is more popular to use:

• A softmax layer as final output

𝑝𝑐 =
𝑒𝑧𝑐

σ𝑗=1
𝐾 𝑒

𝑧𝑗
, 𝑐 = 1,… , 𝐾

gives probability estimate of each class given
example 𝑃(𝑌 = 𝑐 ∣ 𝑋 = 𝑥)

• Cross-entropy (CE) loss for training

ℓ Ԧ𝑝, 𝑦 = log
1

𝑝𝑦
measures the neural network’s “surprise” of seeing
label 𝑦 on this example

E.g. 𝑦 = 2, ℓ Ԧ𝑝, 𝑦 = log
1

0.90
-> small

𝑝𝑧

E.g. 𝑦 = 4, ℓ Ԧ𝑝, 𝑦 = log
1

0.01
-> large

Training Multilayer Perceptron

Our loss function for ith example is error in terms of weights / biases…

13,002 Parameters

in this network

…minimize loss over all training data…

This is a super high-dimensional optimization (13,002
dimensions in this example)…how do we solve it?

Gradient descent: the go-to method for optimization

Gradient descent

• Gradient descent: Move in direction of greatest local
improvement (greedily)

• “Knob turning”

• ”knob” = weight of an edge

• If a neuron increases the probability of an incorrect
prediction, its knobs will be turned down.

• If a neuron increases the probability of a correct
prediction, its knobs will be turned up.

69

70

Deep learning, a field of machine learning

Dog 90%

Mop 10%

Learning algorithm
(backpropagation)

71

72

Deep learning with backpropagation

73

Deep learning with backpropagation

74

Deep learning with backpropagation

75

O ops!

Deep learning with backpropagation

76

Decrease signal on ”synapses”
that fired incorrectly!

Deep learning with backpropagation

77

Increase signal on ”synapses”
that did not fire sufficiently!

Deep learning with backpropagation

78

79

Collection of all weights

and biases in the network

80

One training example

81

Partial derivative of the cost function

C for each parameter (weight or

bias) in the network

82

Learning rate, which is a

hyper parameter

Neural network demo

• Tensorflow neural network playground

Visualizes:

• hidden neurons

• weights & biases

• learning curves (training & test losses vs number of iterations)

Let’s try:

• editing the weights

• using no hidden layers

• using no hidden layers + basis functions

• using 1 hidden layer with 4 nodes

• playing with a harder dataset

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=4,2&seed=0.48518&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false

Regularization

With four parameters I can fit an elephant. With five I
can make him wiggle his trunk. - John von Neumann

Our example model has 13,002
parameters…that’s a lot of elephants!

Regularization is critical to avoid overfitting…

…numerous regularization schemes
are used in training neural networks

Model complexity

P
re

d
ic

ti
o

n
 e

rr
o

r

Regularization: Weight Decay

In neural network terminology, adding an L2 penalty is called weight decay

Scikit-Learn : Multilayer Perceptron

Fetch MNIST data from www.openml.org :

Train test split (60k / 10k),

Create MLP classifier instance,

• Single hidden layer (50 nodes)

• Use stochastic gradient descent

• Maximum of 10 learning iterations

• Small L2 regularization alpha=1e-4

http://www.openml.org/

Scikit-Learn : Multilayer Perceptron

Fit the MLP and print stuff…

Visualize the weights for each node…

…magnitude of weights indicates which
input features are important in prediction

More Advanced Topics

Many other NN architectures exist beyond MLP
• Convolutional NN (CNN) For image processing / computer vision.

• Recurrent NN (RNN) For sequence data (e.g. acoustic signals, video, etc.),
long short-term memory (LSTM) is popular

• Generative Adversarial Nets (GANs) For generating creepy deepfakes

• Transformers For generating text (e.g. ChatGPT)

Many open areas being researched

• More reliable uncertainty estimates

• Robustness to input perturbations

• Interpretability

• Better scalability

Resources

There are tons of excellent resources for learning about neural
networks online…here are two quick ones:

3Blue1Brown Youtube channel has a nice four-part intro:

https://www.youtube.com/watch?v=aircAruvnKk

Free book by Michael Nielson uses MNIST example in Python:

http://neuralnetworksanddeeplearning.com/

https://www.youtube.com/watch?v=aircAruvnKk
http://neuralnetworksanddeeplearning.com/

Unsupervised learning: clustering

91

Unsupervised learning

Training data only contains inputs 𝑥, and does not have labels 𝑦

Goal: uncovering structure underlying the data

Understanding 𝑝(𝑥) (generative) instead of 𝑝(𝑦 ∣ 𝑥) (discriminative)

Two useful subproblems:

Clustering: uncovering hidden “classes” in data

Component analysis: finding meaningful projections of data

Motivation of clustering: patient study

• Goal: assign customized treatments to patients

Clustering

Input: 𝑘: the number of clusters

dataset: 𝑆 = {𝑥1, … , 𝑥𝑛}

Output:

• clusters 𝐺𝑖 𝑖=1
𝑘 whose disjoint union is 𝑆

• we also often obtain ‘centroids’ – centers of each cluster

• Q: what would be a reasonable definition of centroids?

94

Centroid of a point set

A centroid 𝑐 of point set 𝑆 = {𝑧1, … , 𝑧𝑛} should be close to all points in
that set

A reasonable definition: 𝑐 = argmin
𝑤∈ℝ𝑑

σ𝑖=1
𝑛 𝑧𝑖 − 𝑤 2

• When 𝑑 = 1: 𝑐 = ҧ𝑧 =
1

𝑛
σ𝑖=1
𝑛 𝑧𝑖 (*)

• Fact: (*) is still true for general 𝑑

95

Recap 4/21

• Clustering:

finding hidden classes using unlabeled data

We will likely have a quiz next Monday (4/28)

Planning to release HW7 today

Imbalanced classification

• In imbalanced classification, training using original data may
result in blind classifier that always predict majority class

• Ways to mitigate: re-balancing the datasets

• See Piazza more additional notes

K-means clustering algorithm [Lloyd’82]

- Initialize Cluster Centroids

- Until Convergence:

- Cluster Assignment: for each point, assign it to the

cluster with the nearest centroid

- Recompute Centroid: for each cluster, recompute its

centroid to be the cluster mean

Initialization 99

Arbitrary/random initialization of 𝑐1 and 𝑐2

Iteration 1 100

(A) update the cluster assignments (B) Update the centroids 𝑐1, 𝑐2

Iteration 2 101

(A) update the cluster assignments (B) Update the centroids 𝑐1, 𝑐2

Iteration 3 102

(A) update the cluster assignments (B) Update the centroids 𝑐1, 𝑐2

Iteration 4 103

(A) update the cluster assignments (B) Update the centroids 𝑐1, 𝑐2

Iterating until Convergence

Animation from Kaggle

https://www.kaggle.com/ryanholbrook/clustering-with-k-means

Promise of Convergence

Plot of the cost function J after each cluster assignment step and recompute centroid step

But may converge to a local rather
than global minimum of J.

Location of centroid 𝑘
=1 if 𝑥𝑛 is assigned to cluster 𝑘
=0 otherwise

Image from Andrew NG Coursera Machine Learning Course

Solution quality highly
dependent on initialization!

Convergence to local optima

Clustering: concluding remarks

Definition of clusters may be subjective and
application-dependent

Hierarchical clustering

• multiresolution data analysis

	Default Section
	Slide 1: CSC380: Principles of Data Science
	Slide 2: Outline
	Slide 3: Support vector machines
	Slide 4: Classification
	Slide 5: Linear classifier is a hyperplane
	Slide 6
	Slide 7: Separating Hyperplane
	Slide 8: Separating Hyperplane: weight vector
	Slide 9: Linear Decision Boundary
	Slide 10: Classifier Margin
	Slide 11: Recap 4/14
	Slide 12: Background: distance of a point to decision boundary
	Slide 13: Example
	Slide 14: Classification margin
	Slide 15: Margin and Support Vectors
	Slide 16: Maximum margin classifier
	Slide 17: Math Interlude: optimization problems
	Slide 18: Math Interlude: optimization problems
	Slide 19: Support vector machine: extension
	Slide 20: Support vector machine: extension
	Slide 21: Support vector machine: extension
	Slide 22: Soft margin support vector machines
	Slide 23: Soft margin support vector machines
	Slide 24: Soft margin support vector machines
	Slide 25: Soft margin support vector machines
	Slide 26: Nonlinear prediction models
	Slide 27: Nonlinear basis functions; kernels
	Slide 28: Linear Models
	Slide 29: Nonlinear Data
	Slide 30: Nonlinear prediction problems
	Slide 31: Reducing nonlinear prediction to linear
	Slide 32: Approach 1: Transforming the label
	Slide 33: Approach 1: Transforming the label
	Slide 34: Approach 2: transforming the features
	Slide 35: Approach 2: transforming the features
	Slide 36: Common “All-Purpose” Basis Functions
	Slide 37
	Slide 38: Example 1: Polynomial Basis Functions
	Slide 39: Example 2: Polynomial Regression
	Slide 40: Example 2: Polynomial Regression
	Slide 41: Example: Piecewise Constant Regression
	Slide 42: Kernels
	Slide 43: Kernel SVM
	Slide 44
	Slide 45: Example: Fisher’s Iris Dataset
	Slide 46: Kernel SVM in Scikit Learn
	Slide 47: Neural networks
	Slide 48: Basis Functions
	Slide 49: Learning Basis Functions
	Slide 50: Neural Networks
	Slide 51: Rosenblatt’s Perceptron
	Slide 52: Rosenblatt’s Perceptron
	Slide 53: Multilayer Perceptron
	Slide 54: Modern Neural Networks: “deep learning”
	Slide 55: Handwritten Digit Classification
	Slide 56: Multilayer Perceptron for MNIST Classification
	Slide 57: Feedforward Procedure
	Slide 58: Nonlinear Activation functions
	Slide 59: Multilayer Perceptron
	Slide 60
	Slide 61: Announcements 4/16
	Slide 62: Quiz 10
	Slide 63: Quiz 10
	Slide 64: Multilayer Perceptron for MNIST Classification
	Slide 65: Training Multilayer Perceptron
	Slide 66: Training Multilayer Perceptron
	Slide 67: Training Multilayer Perceptron: for classification
	Slide 68: Training Multilayer Perceptron
	Slide 69: Gradient descent
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83: Neural network demo
	Slide 84: Regularization
	Slide 85: Regularization: Weight Decay
	Slide 86
	Slide 87: Scikit-Learn : Multilayer Perceptron
	Slide 88: Scikit-Learn : Multilayer Perceptron
	Slide 89: More Advanced Topics
	Slide 90: Resources
	Slide 91: Unsupervised learning: clustering
	Slide 92: Unsupervised learning
	Slide 93: Motivation of clustering: patient study
	Slide 94: Clustering
	Slide 95: Centroid of a point set
	Slide 96: Recap 4/21
	Slide 97: Imbalanced classification
	Slide 98: K-means clustering algorithm [Lloyd’82]
	Slide 99: Initialization
	Slide 100: Iteration 1
	Slide 101: Iteration 2
	Slide 102: Iteration 3
	Slide 103: Iteration 4
	Slide 104: Iterating until Convergence
	Slide 105: Promise of Convergence
	Slide 106: Convergence to local optima
	Slide 107: Clustering: concluding remarks

