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● Probability

● Statistics

● Data Visualization

● Predictive modeling

● Clustering



Outline

• Basic setup of parameter estimation

• Plug-in estimators

• Maximum-likelihood estimators
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Probability and Statistics

Probability: Given a distribution, compute probabilities of data/events.

Inference / Estimation

Statistics: Given data, compute/infer the distribution or its properties.

[ Source: Wasserman, L. 2004 ]

e.g., data = outcome of coin flip
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E.g., Given 5 fair coin flips, what is the probability of #heads ≥ 3?

E.g., We observed 5 flips of a coin 𝐻, 𝑇, 𝑇, 𝑇, 𝑇. How fair is the coin?



Intuition Check

Suppose that we toss a coin 100 times.  We don’t know if the 
coin is fair or biased…

Question 2 Now suppose that out of 100 tosses we observed 73 heads 
and 27 tails.  Is the coin fair?  Why or why not?

Question 3 How might we estimate the bias of the coin
with 73 heads and 27 tails?

Question 1 Suppose that we observe 52 heads and 48 tails.  Is the coin 
fair?  Why or why not?
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Perhaps fair

Perhaps unfair

Let’s see..



Estimating Coin Bias

We can model each coin toss as a Bernoulli random variable,

Recall that    is the coin bias (probability of heads) and that,

Suppose we observe N coin flips                  , estimate     using sample mean

Why is this a good guess?

𝑋 ~ Bernoulli 𝑝  => PMF
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Law of large numbers ⇒ Ƹ𝑝 ≈ 𝑝 

x=0 x=1

1-p p



Good & bad estimators

Example Estimate 𝜃 = 𝜇 = σ𝑥 𝑥𝑓(𝑥) for an unknown distribution

Say true 𝜃 = 3.5

Our dataset 𝑋1, 𝑋2, 𝑋3, 𝑋4 are 3,6,5,-2. 

Can try to estimate 𝜃 using any function of 𝑋1, … , 𝑋4: 
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෠𝜃𝑁

1

4
෍

𝑖=1

4

𝑋𝑖
min 𝑋1, . . , 𝑋4 + max 𝑋1, . . , 𝑋4

2
𝑋1 ⋅ 𝑋4

3 2 −6



Good & bad estimators

• Given an already-drawn sample, the quality of an estimator

e.g.
1

4
σ𝑖=1

4 𝑋𝑖  or 𝑋1 ⋅ 𝑋4

depends on the representativeness of the sample

Example Coin toss 𝑋 ~ Bernoulli 𝑝 = 0.5  

• If we are unlucky to observe 1, 1, 1, 1, then both estimators 
perform badly 

• When we say “
1

4
σ𝑖=1

4 𝑋𝑖 is a better estimator than 𝑋1 ⋅ 𝑋4”, what 
exactly do we mean?
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Parameter Estimation: basic framework

We pose a model in the form of a probability distribution, 
with unknown parameters of interest 𝜽   ,

Observe a sample of N independent identically distributed (iid) data points

Find an estimator to estimate parameters of interest,

Note: 𝜃 fixed and unknown; መ𝜃𝑁 is a random variable 
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𝑝𝜃

𝑥1, … , 𝑥𝑁 ~ 𝑝𝜃, 

e.g. biased coin: 

𝜃 = 𝑝
𝑝𝜃: Bernoulli(p)

e.g. one sample: 1, 0, 0, 0, 0

e.g. sample mean
1/5 for the first dataset

another draw of sample: 0, 1, 0, 1, 1

3/5 for the second dataset



Parameter Estimation: basic framework

• We pose a model in the form of a probability distribution 𝑝𝜃,  
with unknown parameters of interest 𝜽

• Where do such models come from?

• Models are found by trial and errors in different applications
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Bigger picture: Connection to Machine Learning

• Statistical inference is sometimes called “probabilistic machine 
learning”: 

1. Model how the data is generated by probabilistic models, but with parameters 
unspecified (modeling assumption / generative story)

2. (Training) Learn the model parameter ෠𝜃 

3. (Test) Make prediction / decision based on the learned model 𝑃(𝑧; ෠𝜃) 
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http://slideplayer.com/slide/4527958/

In Statistics, we mostly stop at step 2 

Machine Learning cares more about 

step 3: prediction & decision



How good is an estimator

• We can get a sense of the quality of an estimator ෠𝜃𝑛 by 
plotting its probability distribution
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Good: have to be very unlucky 

to have a bad estimate
Bad Bad

Distribution of ෠𝜃𝑛

Recall: ෠𝜃𝑛 is a random variable 



How good is an estimator

• Quantitatively, we can use the mean squared error (MSE) to 
measure the quality of an estimator  
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Low 

MSE
High MSE

MSE = E መ𝜃𝑛 − 𝜃
2

Distribution of ෠𝜃𝑛

High MSE

High bias High variance



Bias

• Bias: expected overestimate of 𝜃

• Bias ෠𝜃𝑛 = E ෠𝜃𝑛 − 𝜃

• An estimator is unbiased if Bias ෠𝜃𝑛 = 0
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also denoted as 𝜇෡𝜃𝑛



Variance

• Variance: how much ෠𝜃𝑛 deviate from its mean 

•  Var ෠𝜃𝑛 = E ( ෠𝜃𝑛−E ෠𝜃𝑛 )2  
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Distribution of መ𝜃𝑛



The bias-variance decomposition

Fact The MSE of an estimator ෠𝜃𝑛 can be decomposed as:

MSE = Bias ෠𝜃𝑛
2

+ Var ෠𝜃𝑛

Justification
MSE = E ( ෠𝜃𝑛−𝜇෡𝜃𝑛

+ 𝜇෡𝜃𝑛
− 𝜃)2

= E ( ෠𝜃𝑛−𝜇෡𝜃𝑛
)2 + (𝜇෡𝜃𝑛

− 𝜃)2 + 2( ෠𝜃𝑛 − 𝜇෡𝜃𝑛
)(𝜇෡𝜃𝑛

− 𝜃)

16

Variance Bias 0 (why?)

𝜇෡𝜃𝑛
: the mean of ෠𝜃𝑛



Bias and Variance

Suppose an archer takes multiple shots at a target…

Accurate

Precise

Accurate

Not Precise

Not Accurate

Not Precise

Not Accurate

Precise
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• Target = 𝜃

• Each shot = an estimate መ𝜃

• Bias ≈ systematic error

• Variance ≈ random error



Coinflip

Example Observe n coin flips 𝑋1, … , 𝑋𝑛 ∼ Bernoulli(𝑝)

We use the sample mean ത𝑋𝑛 =
1

𝑛
σ𝑖=1

𝑛 𝑋𝑖 to estimate 𝑝. Find this 
estimator’s bias, variance, MSE.

E[ ത𝑋𝑛] =
1

𝑛
σ𝑖=1

𝑛 E 𝑋𝑖 = 𝑝 ⇒  Bias = 0

 Var ത𝑋𝑛 =
1

𝑛2
σ𝑖=1

𝑛 Var 𝑋𝑖

MSE = Bias2 + Variance =
𝑝(1 − 𝑝)

𝑛
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𝑝(1 − 𝑝)

=
𝑝(1 − 𝑝)

𝑛



Coinflip: Laplace’s estimator

Example Observe n coin flips 𝑋1, … , 𝑋𝑛 ∼ Bernoulli(𝑝)

Consider another estimator Ƹ𝑝𝐵 =
1+σ𝑖 𝑋𝑖

2+𝑛

e.g. 7 successes out of 10 trials, 

sample mean ത𝑋𝑛:
7

10
= 0.7  

new estimator Ƹ𝑝𝐵:
8

12
= 0.67  

This is called “Laplace’s Law of Succession” estimator 

Laplace (1814) used it to estimate the probability of sun rising tomorrow

19



In-class exercise: bias & variance of Laplace’s estimator

Example Observe n coin flips 𝑋1, … , 𝑋𝑛 ∼ Bernoulli(𝑝)

Consider another estimator ො𝑝𝐵 =
1+σ𝑖 𝑋𝑖

2+𝑛
. Find the bias and 

variance of ො𝑝𝐵. 

Solution 

 E ො𝑝𝐵 =
1+E[σ𝑖 𝑋𝑖]

2+𝑛
=

1+𝑛𝑝

2+𝑛
 ⇒  Bias =

1−2𝑝

2+𝑛

 Var ො𝑝𝐵 = Var
σ𝑖 𝑋𝑖

2+𝑛
=

1

2+𝑛 2
σ𝑖=1

𝑛 Var 𝑋𝑖 =
𝑛 𝑝(1−𝑝)

2+𝑛 2

 MSE = Bias2 + Variance = ⋯
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A biased estimator 

Smaller than that of 

sample mean



Comparison of two estimators

• Let’s compare the two MSEs with n=10

• MSE of ത𝑋𝑛: 
𝑝(1−𝑝)

10

• MSE of ො𝑝𝐵: 
1+6𝑝−6𝑝2

144
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𝑝

ത𝑋𝑛

Ƹ𝑝𝐵

Is an unbiased estimator “better” than a biased one?  It depends…



Announcements 4/23

• Project: If you analyze other interesting questions other than 
crimes, you are welcome to run them by me or the TAs. 

• We are generally happy to support the questions you are excited about!

• You’re welcome to fill out SCS survey
•  2nd lowest HW points will be dropped if we have >80% response rate

• Quiz 10 graded
• if you don’t see your grade on D2L

      let us know

• Quiz 11 next Monday 
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Recap 4/23

• The parameter estimation problem
𝜃 → 𝑋1, … , 𝑋𝑛  → ෠𝜃𝑛

• ෠𝜃𝑛 is a random variable 

• Bias ෠𝜃𝑛 = E ෠𝜃𝑛 − 𝜃

• Var ෠𝜃𝑛 = E ( ෠𝜃𝑛−E ෠𝜃𝑛 )2  

• MSE = Bias ෠𝜃𝑛
2

+ Var ෠𝜃𝑛  

• measures the overall quality of an estimator

23

data generation process estimator



Warmup question: coinflips

Example Observe n coin flips 𝑋1, … , 𝑋𝑛 ∼ Bernoulli(𝑝)

Consider a “blind” estimator Ƹ𝑝 =
1

2
. 

What is Ƹ𝑝’s bias and variance?

 Bias Ƹ𝑝 = E Ƹ𝑝 − 𝑝 =
1

2
− 𝑝

 Variance Ƹ𝑝 = 0

 MSE Ƹ𝑝 = Bias Ƹ𝑝 2 + Variance Ƹ𝑝 =
1

2
− 𝑝

2
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Bias-Variance Tradeoff

MSE

tuning parameter 𝑏
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Consider a family of estimators Ƹ𝑝𝑏 =
𝑏+σ𝑖 𝑋𝑖

2𝑏+𝑛
 for coinflips

𝑏 ↑ ⇒ bias ↑, variance ↓

There is some ‘sweet spot’ in choosing 𝑏

This is known as bias-variance tradeoff

akin to bias-complexity tradeoff we saw in ML



Plug-in estimators
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Plug-in estimators 27

Property of distribution: 𝜃 Property of samples: ෠𝜃𝑁

Mean: 𝜇 = E 𝑋 = σ𝑥 𝑥𝑓(𝑥) Sample Mean: ത𝑋 =
1

𝑁
σ𝑖=1

𝑁 𝑋𝑖

Variance: 𝜎2 = Var 𝑋 = E[ 𝑋 − 𝜇 2] Sample Variance: ෢𝜎2 =
1

𝑁
σ𝑖=1

𝑁 (𝑋𝑖 − 𝜇)2 ?

෢𝜎2 =
1

𝑁
෍

𝑖=1

𝑁

(𝑋𝑖 − ത𝑋)2

Correlation: 𝜌(𝑋, 𝑌) =
E[(𝑋−𝜇𝑋)(𝑌−𝜇𝑌)]

𝐸[ 𝑋−𝜇𝑋
2]𝐸[ 𝑌−𝜇𝑌

2]
Sample Correlation:

1

𝑁
σ𝑖(𝑋𝑖− ത𝑋)(𝑌𝑖− ത𝑌)

1

𝑁
σ𝑖=1

𝑁 (𝑋𝑖− ത𝑋)2 1

𝑁
σ𝑖=1

𝑁 (𝑌𝑖− ത𝑌)2



Plug-in estimators

What is the sample median estimating?

• Median of data distribution 𝐹−1 1

2

What is the sample mode estimating?
• Mode of data distribution argmax𝑥 𝑓(𝑥)

What is the sample minimum estimating?
• The minimum possible value that can be taken min{𝑥: 𝑓 𝑥 > 0} 
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Sample variance estimator 

• Using ෢𝜎2 =
1

𝑁
σ𝑖=1

𝑁 (𝑋𝑖 − ത𝑋)2 to estimate population variance 𝜎2, 

𝑁 = 2

29

True 𝜎2: 1.0

෢𝜎2 is a biased estimator of 𝜎2!

෢𝜎2’s mean: 0.5



Sample variance estimator 

• Fact E[෢𝜎2] =
𝑁−1

𝑁
𝜎2

• I.e. ෢𝜎2 has bias 
𝑁−1

𝑁
𝜎2 − 𝜎2 = −

1

𝑁
𝜎2

• the bias can be significant if the sample size 𝑁 is small

• How can we make it unbiased?

 Scale it:  ෢𝜎1
2 =

𝑁

𝑁−1
෢𝜎2 =

1

𝑁−1
σ𝑖=1

𝑁 (𝑋𝑖 − ഥ𝑋)2

30

see reading for more details



Sample variance estimator 

• Using ෢𝜎1
2 =

1

𝑁−1
σ𝑖=1

𝑁 (𝑋𝑖 − ത𝑋)2 to estimate population variance 𝜎2, 

𝑁 = 2
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True 𝜎2: 1.0

෢𝜎1
2 is an unbiased estimator of 𝜎2

෢𝜎1
2’s mean: 1.0



Sample variance estimator 

• For large 𝑁, ෢𝜎2 has negligible bias, and is close to ෢𝜎1
2
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Maximum likelihood estimators
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Likelihood

• Likelihood: joint probability of observing this sample given model 
parameter

Example 4 flips of a coin -> [H, T, H, H]. 

What is the likelihood of observing this sample if p = 0.75?

                                       0.753 0.251

What is the likelihood of observing this sample if p = 0.25?

           0.253 0.751

Larger likelihood seems to correspond to more plausible model

34

Larger



Maximum likelihood estimators (MLE)

• Likelihood function: joint PMF / PDF of the data as a function of 
unknown parameter 𝜃

• Let 𝑋1, … , 𝑋𝑛 be an iid sample with PMF / PDF 𝑓(𝑥; 𝜃)

𝐿 𝜃 = ෑ

𝑖=1

𝑛

𝑓(𝑋𝑖; 𝜃)

• The maximum likelihood principle: find parameter 𝜃 that maximizes the 
likelihood

• Equivalently, we try to find 𝜃 that maximizes log-likelihood ln 𝐿 𝜃

ln 𝐿 𝜃 = ෍

𝑖=1

𝑛

ln 𝑓(𝑋𝑖; 𝜃)

35

How well 𝜃 “explains” 

data point 𝑋𝑖 



Maximum likelihood estimator: coin flip

Example 𝑋1, … , 𝑋𝑛 ∼ Bernoulli(𝑝). Find the MLE for 𝑝.

Solution 𝐿 𝑝 = ς𝑖=1
𝑛 𝑓 𝑋𝑖; 𝑝 = 𝑝𝑛1 1 − 𝑝 𝑛0

here, 𝑛0 and 𝑛1 are the number of 0’s and 1’s in the sample

We would like to solve maximize𝑝∈[0,1] 𝑝
𝑛1 1 − 𝑝 𝑛0 

Equivalently, maximize𝑝∈[0,1]𝑛1 ln 𝑝 + 𝑛0 ln(1 − 𝑝)

36

x=0 x=1

1-p p
E.g. 1, 0, 1, 1,

𝐿 𝑝 = 𝑝 ⋅ 1 − 𝑝 ⋅ 𝑝 ⋅ 𝑝 



Math Interlude: optimization problems

• Recall: maximize𝑝∈[0,1]𝑛1 ln 𝑝 + 𝑛0 ln(1 − 𝑝)

is a constrained optimization problem

Note Setting the objective’s derivative to zero and solve for 𝑝 
gives a stationary point, but 

• It may be local maximum, or even local minimum

• It may fall out of constraint set 

• We recommend always plotting 

 the objective function to check

𝑝: Optimization 

variables

𝑝 ∈ 0,1 : constraint



Maximum likelihood estimator: coin flip

maximize𝑝∈[0,1]𝑛1 ln 𝑝 + 𝑛0 ln(1 − 𝑝)

• E.g. when 𝑛0 = 1, 𝑛1 = 3, we have: 

• Its global maximizer indeed lie in its only

stationary point

Stationary point can be found by 
𝑛1

𝑝
−

𝑛0 

1−𝑝
= 0

38

⇒ 𝑝 =
𝑛1

𝑛1+𝑛0
=

𝑛1

𝑛
= sample mean



Maximum likelihood for Fixed-variance Gaussians

Example Assume that UA students’ heights (in centimeters) 
follow 𝑁(𝜇, 82), and we observe 4 students’ heights: 

         163, 171, 179, 167

Find the maximum likelihood estimator for 𝜇

Solution

Step 1: write down the log-likelihood function

                 ln 𝐿 𝜇 = σ𝑖=1
𝑛 ln 𝑓(𝑥𝑖; 𝜇)
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the sum has 4 terms -- e.g. the first term is ln
1

2𝜋82
−

163−𝜇 2

2×82

𝑓 𝑥𝑖; 𝜇 =
1

2𝜋82
exp −

𝑥𝑖 − 𝜇 2

2 × 82



Maximum likelihood for Fixed-variance Gaussians

• Step 2: simplify the log-likelihood function

ln 𝐿 𝜇 = ෍

𝑖=1

𝑛

ln
1

2𝜋82
−

𝑥𝑖 − 𝜇 2

2 × 82
 

                                 = −
1

128
σ𝑖=1

4 𝑥𝑖 − 𝜇 2 − 11.99

• Step 3: find 𝜇 that maximizes log-likelihood:

 the 𝜇 that maximizes 𝐿 𝜇  is ҧ𝑥 =
163+171+179+167

4
= 170

40

4 samples: 163, 171, 179, 167

Recall Fact the 𝜇 that minimizes σ𝑖=1
4 𝑥𝑖 − 𝜇 2 is 𝜇 = ҧ𝑥



Maximum likelihood for Fixed-variance Gaussians

Summary given the data we have, we estimate that UA 
students’ heights follow 𝑁(170, 82)

How would you use it to predict an unseen UA student’s height?

perhaps 170cm is a decent guess.. 

General Fact Fixed 𝜎 (e.g. 𝜎 = 8). Assume samples 𝑥1, … , 𝑥𝑛 
are drawn from 𝑁 𝜇, 𝜎2 . Then the MLE for 𝜇 is sample mean 

ҧ𝑥 =
𝑥1 + ⋯ + 𝑥𝑛

𝑛
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Maximum likelihood for Fixed-variance Gaussians

Among all 𝑁 𝜇, 𝜎2 ’s,  𝜇 = ҧ𝑥 has the highest likelihood
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Maximum likelihood for General Gaussians 43

Suppose we observe n data points from a Gaussian model 𝑁(𝜇, 𝜎2) 
and wish to estimate both 𝝁 and 𝝈

Say we only need to choose from the following three Gaussians…

Here, 𝐿 𝜇, 𝜎2 = ς𝑖=1
𝑛 𝑓(𝑥𝑖; 𝜇, 𝜎)

High
Likelihood

Low
Likelihood (mean)

Low
Likelihood (variance)

𝑓 𝑥𝑖; 𝜇, 𝜎 =
1

2𝜋𝜎2
exp −

𝑥 − 𝜇 2

2𝜎2



Maximum likelihood for General Gaussians

Fact Assume samples 𝑥1, … , 𝑥𝑛 are drawn from 𝑁 𝜇, 𝜎2 . Then the 
MLE for 𝜇, 𝜎 is given by:

                                𝜇 = ҧ𝑥 (sample mean)

               𝜎 =
1

𝑛
σ𝑖=1

𝑛 𝑥𝑖 − ҧ𝑥 2 (sample standard deviation)

Example Assume that UA students’ weights (in kg) follow a 
Gaussian, and we observe 4 students’ weights: 60, 65, 70, 75 

The MLE 𝜇 =
60+65+70+75

4
= 67.5, 

       MLE 𝜎 = ⋯ = 5.6

Therefore our estimate of UA students’ weights ∼ 𝑁 67.5, 5.62
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Maximum likelihood: in-class exercise

Wait time at the barbershop: Suppose you go to a barbershop 
every quarter. You want to be able to predict the waiting time. 
You have collected 4 data points (in minutes) from last year: 

                                           3, 2, 6, 5

Suppose we model the waiting time using an exponential 
distribution Exponential(𝜆): 

                   𝑓 𝑥 = 𝜆𝑒−𝜆𝑥

• Find the maximum likelihood estimator for 𝜆

• How would you use this to predict your next waiting time?
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Maximum likelihood: in-class exercise

Step 1: write down the log-likelihood function

                 ln 𝐿 𝜆 = σ𝑖=1
𝑛 ln 𝑓(𝑥𝑖; 𝜆)

Step 2: simplify the log-likelihood function

              ln 𝐿 𝜆 = σ𝑖=1
𝑛 (ln 𝜆  − 𝜆 𝑥𝑖) = 𝑛 ln 𝜆 − 𝜆 σ𝑖=1

𝑛 𝑥𝑖

for our dataset, this is 
4 ln 𝜆 − 𝜆 3 + 2 + 6 + 5 = 4 ln 𝜆 − 16 𝜆

46

𝑓 𝑥; 𝜆 = 𝜆𝑒−𝜆𝑥

Dataset: 3, 2, 6, 5



Maximum likelihood: in-class exercise

• Step 3: maximize the log-likelihood function

Maximize 𝐿 𝜆 = 4 ln 𝜆 − 16 𝜆

It has only one stationary point, 

which corresponds to its maximum 

can be found by solving 𝐿′ 𝜆 = 0

47

4

𝜆
− 16 = 0 ⇒ 𝜆 =

1

4



Maximum likelihood: in-class exercise

Summary given the data, we estimate the waiting time to follow 

the Exponential 𝜆 =
1

4
 distribution 

How would you use this to predict your next waiting time?

We can use the mean of our learned distribution:

 
1

𝜆
= 4 (minutes)

48



Poisson distribution

𝑃 𝑋 = 𝑥 = 𝑒−𝑥
𝜆𝑥

𝑥!
, 𝑥 = 0, 1, . . 

Models: 

• #meteorites greater than 1-meter 
diameter that strike Earth in a 
year

• #laser photons hitting a detector 
in a time interval

• #calls received in a call center in 
a time interval

49

Named after Poisson (1837)

Recherches sur la probabilité 
des jugements en matière 
criminelle et en matière civile



Backup
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