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Outline

» Basic setup of parameter estimation
* Plug-in estimators

« Maximume-likelihood estimators



Probability and Statistics :

Probability: Given a distribution, compute probabillities of data/events.

Probability

/_\

Data generating process Observed data

\_//

Inference / Estimation

Statistics: Given data, compute/infer the distribution or its properties.

[ Source: Wasserman, L. 2004 ]



Intuition Check 5

Suppose that we toss a coin 100 times. We don’t know if the
coin is fair or biased...

Question 1 Suppose that we observe 52 heads and 48 tails. Is the coin
fair? Why or why not? Perhaps fair

Question 2 Now suppose that out of 100 tosses we observed 73 heads

and 27/ tails. Is the coin fair? Why or why not? J
Perhaps unfair

Question 3 How might we estimate the bias of the coin \

with 73 heads and 27 tails?

Letl’s see..

| .



Estimating Coin Bias

We can model each coin toss as a Bernoulli random variable,

X ~ Bernoulli(p) => PMF n
-p p

Recall that p Is the coin bias (probability of heads) and that,
E[X]|=p

Suppose we observe N coin flips 1, ..., TN, estimate p using sample mean
|
=5
n=1

Why is this a good guess? Law of large numbers = p = p




Good & bad estimators

Example Estimate 6 = u = )., xf (x) for an unknown distribution

Say true 6 = 3.5
Our dataset X4, X,, X5, X, are 3,6,5,-2.
Can try to estimate 8 using any function of X4, ..., X4:

4

~ 1 in(Xq,..,X,) + X,.,X

By szi min (X, 4) + max(X; 4) X, X,
i=1 2

3 2 —6



Good & bad estimators
* Given an already-drawn sample, the guality of an estimator
e.g.
14
ZZi:l Xl or X1 * X4_
depends on the representativeness of the sample

Example Coin toss X ~ Bernoulli(p = 0.5)

* If we are unlucky to observe 1, 1, 1, 1, then both estimators
perform badly

* When we say “% >+ . X; is a better estimator than X; - X,”, what
exactly do we mean?



Parameter Estimation: basic framework 9

We pose a model in the form of a probabillity distribution,
with unknown parameters of interest 6

Po

Observe a sample of N distributed (iid) data points

xl, ...,xN ~ p91
Find an estimator to estimate parameters of interest,
On =r(z1,...,ZN)

Note: 6 fixed and unknown; 8y is a random variable



Parameter Estimation: basic framework

* We pose a model in the form of a probability distribution pg,
with unknown parameters of interest 0

* Where do such models come from?
* Models are found by trial and errors in different applications

|

S All models are approximations.
s \\\:‘j Essentially, all models are
wrong, but some are useful.

However, the approximate

nature of the model must

always be borne in mind.
George Box

More science quotes at Today in Science History todayinsci.com

\



Bigger picture: Connection to Machine Learning

» Statistical inference is sometimes called “probabilistic machine
learning”:

1. Model how the data is generated by probabilistic models, but with parameters
unspecified (modeling assumption / generative story)

2. (Training) Learn the model parameter 8
3. (Test) Make prediction / decision based on the learned model P(z; 8)

& In Statistics, we mostly stop at step 2
:g-’ » probabilistic
tE» model
Machine Learning cares more about

step 3: prediction & decision

http://slideplayer.com/slide/4527958/

11



How good Is an estimator 12

« We can get a sense of the quality of an estimator 6,, by
plotting Iits probability distribution Recall: §,, is a random variable

Distribution of 8,,
]

0 6 0

Good: have to be very unlucky Bad Bad
to have a bad estimate



How good Is an estimator

» Quantitatively, we can use the mean squared error (MSE) to
measure the quality of an estimator
A 2
MSE =E|(6,, — 0
Distribution of 6,, [( ; ) ]

Low High MSE High MSE ,
MSE /

High bias High variancg’




Bias 14

| | Distribution of &
* Bias: expected overestimate of 6

. Bias(8,,) = E[8,] - Pa—

also denoted as up_

- An estimator is unbiased if Bias(6,,) = 0



Variance

» Variance: how much 8,, deviate from its mean

+ Var(8,) = E[(8,—E[8,])?]

Distribution of 8,,

15



The bias-variance decomposition 16

Fact The MSE of an estimator 8,, can be decomposed as:

Justification

MSE = Bias(én)2 + Var(@n)

ug, : the mean of 6,

MSE = E[(@n—ugn + g, — 0)?]

= E[(On—ug )* + (ug, — 0)* +2(6, — 1z )(ug, — 0)|

/0 \

Variance Bias 0 (why?)



Bias and Variance 17

Suppose an archer takes multiple shots at a target...

Low Variance High Variance
2 -
g * Target =46
Accurate Accurate « Each shot = an estimate é
Precise Not Precise
, * Bias = systematic error
s » Variance ~ random error
2

Not Accurate Not Accurate
Precise Not Precise




Coinflip 18

Example Observe n coin flips Xl, ..., Xp ~ Bernoulli(p)

We use the sample mean X,, = —Z 1 X; to estimate p. Find this
estimator’s bias, variance, MSE." .

— 1 . \
E[X,] = 7=, E[X;] = p = Bias = 0

I .

1
nZ

Var[X,,] =

n=1 Val‘[Xi] _ p(ln_ p)
p(1—-p)

1 —
MSE = Bias? + Variance = p(1 —p)

n




Coinflip: Laplace’s estimator 19

Example Observe n coin flips X3, ..., X;;, ~ Bernoulli(p)
2+n

Consider another estimator pg =
e.g. 7 successes out of 10 trials,
sample mean X,;: 1—70 = 0.7

new estimator pB = 0.67

This is called “Laplace’s Law of Succession” estimator
Laplace (1814) used it to estimate the probability of sun rising tomorrow



In-class exercise: bias & variance of Laplace’s estimatorz

Example Observe n coin flips X, ..., X;, ~ Bernoulli(p)
Consider another estimator pg = 2%t Find the bias and

: ~ 2+n
variance of pg.
Solution
~ 1+E[).; X|] 1+np : 1-2p
E[pB] — 2+7; = = Dt = Bilas = > A biased estimator
A1 i Xi|l 1 n __np(1l-p) Smaller than that of
Var[pB] = Var 2+n] T (24+n)2 =1 V&I‘[Xi] — (2+n)2 sample mean

MSE = Bias? + Variance = -



Comparison of two estimators

 Let's compare the two MSEs with n=10

o MSE Of Xn p(i;p) § Unbia-sed esﬁliﬁmator )?n
E < Biased estimator pp
g I | |
0.0 0.2 04 0.6 0.8
p

Is an unbiased estimator “better” than a biased one? It depends...

21

1.0



Announcements 4/23 22

 Project: If you analyze other interesting questions other than
crimes, you are welcome to run them by me or the TAs.

* We are generally happy to support the questions you are excited about!

* You're welcome to fill out SCS survey
« 2nd |owest HW points will be dropped if we have >80% response rate

Review Grades for Quiz 10

* Quiz 10 graded

* if you don’t see your grade on D2L -.

let us know

Minimum Median Maximum

* Qu 1z 11 next Mond ay 0.4 0.8 1.0 0.77 0.12



Recap 4/23 23

* The parameter estimation problem
60 - X, ..,X,, =0,

data generation process estimator

« ., is a random variable
. Bias(én) — E[én] — 0 Distribution of Q

+Var(8,) = E[(8,—E[6,])?]

~ \N2 A~
* MSE = Bias(@n) + Var(Hn)
* measures the overall quality of an estimator




Warmup question: coinflips

Example Observe n coin flips X3, ..., X;;, ~ Bernoulli(p)

Consider a “blind” estimator p = %

What is p’s bias and variance?

. A A 1
Bias(p) = E[p] —p =5—p

Variance(p) = 0

2
MSE(p) = Bias(p)? + Variance(p) = G — p)

24



Bias-Variance Tradeoff 25

Consider a family of estimators p, = b;bzifi for coinflips

b T = bias T, variance |

There is some ‘'sweet spot’ in choosing b

This is known as bias-variance tradeoff P _ .
tuning parameter b

akin to bias-complexity tradeoff we saw in ML



26



Plug-in estimators 27

Property of distribution: 6 Property of samples: 8y
Mean: u = E[X] = ), xf (x) Sample Mean: X = %z?’zlxi
Variance: o2 = Var[X] = E[(X — n)?] Sample Variance: o2 =% N (X — w22
N

E[(X—px) (Y —uy)] < i(Xi—X)(V;-7)

VEI(X—pux)2]E[(Y —py)?]

Correlation: p(X,Y) = Sample Correlation:

(B IR Sl (v P2



Plug-in estimators 28
12479

What is the sample median estimating? Sample median
- Median of data distribution F~1 G)

| Median

K

What Is the sample mode estimating?

* Mode of data distribution argmax,. f(x)

5,23, 6, 9,5, 4, 9,5

What Is the sample minimum estimating?
* The minimum possible value that can be taken min{x: f(x) > 0}



Sample variance estimator 29

» Using o2 = %Z’i"zl(Xi — X)? to estimate population variance o2,

N =2 .

- True g°: 1.0 02’s mean: 0.5
s = 100000

X = np.random.normal(@,1, [n,s]) —

# ddof is @(1) for dividing by n (n-1) o2 is a biased estimator of ¢?!

svar_b = np.var(X,axis=0,ddof=0)
mean_svar_b = np.mean(svar_b)

frequency
s — Bl [ b
=] un =] [ =]

k=
wn

L=
=]

0o o5 10 L5 2.0 2.5 3.IEI 3.5 4.0
sample variance (biased)



Sample variance estimator

e Fact E[EE] — EO-Z see reading for more details

— . N—1 1
e |.e. 0% has bias TO'Z —0'2 = —NO'Z

* the bias can be significant if the sample size N is small

« How can we make it unbiased?
) 5 1

Scale it: af = %02 = = N (Xi — X)2

30



Sample variance estimator 31

- Using o2 = ﬁ N . (X; — X)? to estimate population variance o2,

N =2
n=2 2 —
s = 100000 True 0°: 1.0 o{’s mean: 1.0

X = np.random.normal(@,1, [n,s])
# ddof is @(1) for dividing by n (n-1)

IEIED E WaUEP LSS ) G TR of is an unbiased estimator of ¢*
mean_svar_b = np.mean(svar_b)

30

2.5

a
=]

frequency

10 1.5 2.0 2.5 3,0 .'!jE 4.0
sample variance (unbiased)

(=]
o
=]
wn

=2 od |
=] LA [=1
‘ L L



Sample variance estimator

» For large N, 2 has negligible bias, and is close to o2

frequency

e
o

b
ka

=] -
LA o
i i

o

L=
L=
o

[y
un
i

n=50

s = 100000

X = np.random.normal(®,1, [n,s])

# ddof is @(1) for dividing by n (n-1)
svar_b = np.var(X,axis=0,ddof=0)
mean_svar_b = np.mean(svar_b)

0.5 10 L5 2.0 2.5 3.0 35 4.0
samble variance (biased)
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Maximum likelihood estimators



Likelihood 34

* Likelihood: joint probability of observing this sample given model
parameter

Example 4 flips of a coin -> [H, T, H, H]J.
What is the likelihood of observing this sample if p = 0.75?

0.75% 0.251 Larger
What is the likelihood of observing this sample if p = 0.25?
0.253 0.751

Larger likelihood seems to correspond to more plausible model



Maximum likelihood estimators (MLE) 35

* Likelihood function: joint PMF / PDF of the data as a function of
unknown parameter 6

e Let X4, ..., X,, be an iid sample with PMF / PDF f(x;0)
Lo = ﬂf (X 6) —"" o o™

* The maximum likelihood prlnC|pIe flnd parameter 6 that maximizes the
likelihood

* Equivalently, we try to find 6 that n;taximizes log-likelihood In L(8)

In L(6) = z In £ (X;; 0)
=1



Maximum likelihood estimator: coin flip 36

Example X4, ..., X,, ~ Bernoulli(p). Find the MLE for p.

E.g.1,0,1,1,
1-p P

Lp)=p-(1—=p)-p-p
Solution L(p) = [I;=1 f(Xi;p) = p™ (1 —p)™
here, n, and n,; are the number of 0O's and 1’s in the sample

We would like to solve maximize,¢fq 11 p™"* (1 — p)"o

Equivalently, maximize,efg 1111 Inp + ng In(1 — p)



Math Interlude: optimization problems

p: Optimization

» Recall: maximize,epo 1111 Inp + 1 In(1 — p) variables

IS a constrained optimization problem

p € [0,1]: constraint

Note Setting the objective’s derivative to zero and solve for p
gives a stationary point, but
* It may be local maximum, or even local minimum
* It may fall out of constraint set % Stationary Points

are found where the gradient is zero

* We recommend always plotting
the objective function to check




Maximum likelihood estimator: coin flip

maximize,epo 1171 In p + ng In(1 — p)

-2

* E.g. when n, = 1,n; = 3, we have.:

* |Its global maximizer indeed lie in its only
stationary point

Stationary point can be found by

n Ng __ _ _ _
= ( =>p= = — = sample mean s
p 1_p n1+n0 n

38



Maximum likelihood for Fixed-variance Gaussians =

Example Assume that UA students’ heights (in centimeters)
follow N (u, 8%), and we observe 4 students’ heights:

163, 171, 179, 167
Find the maximum likelihood estimator for u

Solution
Step 1: write down the log-likelihood function

InL(pw) =Xis In fx ) o = 218

(163—p)?
2% 82

: : 1
the sum has 4 terms -- e.g. the first term is In —



Maximum likelihood for Fixed-variance Gaussians

» Step 2: simplify the log-likelihood function

4 samples: 163, 171, 179, 167

« Step 3: find u that maximizes log-likelihood:

Recall Fact the u that minimizes Yi_ (x; —w)?isu=x

the u that maximizes L(u) i1s x = 163“71:179“67 =170




Maximum likelihood for Fixed-variance Gaussians «

Summary given the data we have, we estimate that UA
students’ heights follow N (170, 82)

How would you use it to predict an unseen UA student’s height?
perhaps 170cm Is a decent guess..

General Fact Fixed o (e.g. 0 = 8). Assume samples x4, ..., x,,

are drawn from N(u, 62). Then the MLE for u is sample mean
X1+ -+ Xy

X =
n



Maximum likelihood for Fixed-variance Gaussians

Among all N(u, 6%)’s, u = x has the highest likelihood

Maximum Likelihood Estimation

m—— 0del
mm data

- |0g likelihood

| | 1 | | | | |
—8 —b6 —4 =2 0 2 4 ¥ 8 10

42



Maximum likelihood for General Gaussians 43

Suppose we observe n data points from a Gaussian model N(u, 6%)
and wish to estimate both u and o

Say we only need to choose from the following three Gaussians...

High Low Low
Likelihood Likelihood (mean) Likelihood (variance)

-0.2 -0.1 00 01 0z 03 -0.3 -0.2 -0.1 0.0 01 02 03 03 -0.2 -0.1 00 01 02 03

Here, L(p, 0%) = [1i=, f (x;; 1, 0) (x — “)2>

1
fxiu,0) = S0 2 28 <_ 202



Maximum likelihood for General Gaussians 44

Fact Assume samples x4, ..., x,, are drawn from N(u, 0%). Then the
MLE for u, o Is given by:

u = x (sample mean)

o = \/% Y (x; — x)* (sample standard deviation)

Example Assume that UA students’ weights (in kg) follow a
Gaussian, and we observe 4 students’ weights: 60, 65, 70, 75

The MLE p = 60+65+70+75 _ 67.5.

MLE g =--- =5.6
Therefore our estimate of UA students’ weights ~ N(67.5, 5.6%)




Maximum likelihood: Iin-class exercise 45

Wait time at the barbershop: Suppose you go to a barbershop
every quarter. You want to be able to predict the waiting time.
You have collected 4 data points (in minutes) from last year:

3,2,6,5

Suppose we model the waliting time using an exponentlal
distribution Exponential(4): -

>
=

f(X) — /18_/1)6 ;i SA\
2 -

* Find the maximum likelihood estimator forA ¢ 7 1 . . .
* How would you use this to predict your next waiting time?




Maximum likelihood: Iin-class exercise 46

Step 1: write down the log-likelihood function
In L(A) = X1 1In f (x5 4) fOo ) = e ™™

Step 2: simplify the log-likelihood function
InL(A) =X"-(nAd —Ax))=nlnd —AX; ,x;

for our dataset, this is Dataset: 3, 2, 6, 5
4InA —AB3+2+6+5)=4In1 —161




Maximum likelihood: Iin-class exercise 47

» Step 3. maximize the log-likelihood function
Maximize L(1) =4lnA —16 1

It has only one stationary point,
which corresponds to its maximum

can be found by solving L'(1) = 0

i 16 =0 A .
—_— — ﬁ —
A 4



Maximum likelihood: Iin-class exercise 48

Summary given the data, we estimate the waltlng time to follow

- rL=05

the Exponential (/1 = Z) distribution — o

o |
2
0
o

S ]
o

probability density

How would you use this to predict your next waiting time?

We can use the mean of our learned distribution:

% = 4 (minutes)



Poisson distribu_tion 49

diameter that strike Earth in a
year

X e | 9 @ A

PX=x)=e*—, x=0,1,.. sl | -
X! R s

Models: =tsr

- #meteorites greater than 1-meter =~ | ¢4,

» #laser photons hitting a detector

n a time interval Named after Poisson (1837)

Recherches sur la probabilité
des jugements en matiere
criminelle et en matiere civile

- #calls received In a call center in
a time interval
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