

CSC380: Principles of Data Science

Statistics 2

Chicheng Zhang

Outline

Interval estimation

Hypothesis testing

Interval estimation

Motivation

- Point estimation makes statements of the form:
 - "Given the data, I estimate the bias of the coin to be 0.73"
 - "Given the data, I estimate the mean height of UA students to be 172cm"
- In many applications, we'd like to make statements with uncertainty quantifications
 - "Given the data, I estimate the bias of the coin to be 0.73 \pm 0.05"
 - "Given the data, I estimate the mean height of UA students to be 172 \pm 2cm"
- This is called *interval estimation*

Interval Estimation: basic setup

$$\theta \to X_1, \dots, X_n \to I_n = [\hat{\theta}_n \pm b_n]$$

data generation process

Confidence Interval (CI) for θ

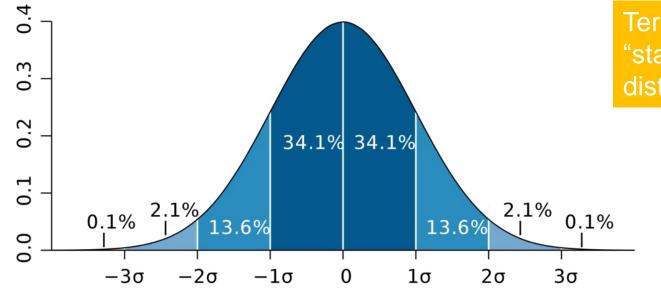
Examples

Coin toss: $\theta = p, X_1, ..., X_n \sim \text{Bernoulli}(p)$ Student height: $\theta = \mu, X_1, ..., X_n \sim N(\mu, 8^2)$

Goal: construct I_n using data, such that with 95% confidence (say), $\theta \in I_n$

We will mostly focus on estimating θ = population mean, and will take $\hat{\theta}_n$ = sample mean. How to choose b_n ? uncertainty of our estimate

Recall: Normal distribution



Terminology: "standard" normal distribution := N(0,1)

Fact If $X \sim N(\mu, \sigma^2)$, then

$$P(-1.96\sigma \le X - \mu \le 1.96\sigma) = 0.95$$

In words:

with 95% confidence, X falls within 1.96 standard deviation of μ

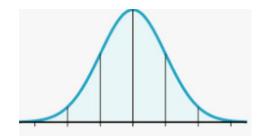
i.e, with 95% confidence, μ falls within 1.96 standard deviation of X [X - 1.96 σ , X + 1.96 σ] is a 95% confidence interval for μ • Let $X_1, ..., X_n$ be iid with mean μ and variance σ^2 . Then for large n, the sample mean \overline{X}_n roughly follow a normal distribution:

$$\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right) = N\left(\mu, \left(\frac{\sigma}{\sqrt{n}}\right)^2\right)$$

Constructing confidence interval

• Let $X_1, ..., X_n$ be iid with mean μ and variance σ^2 . Then for large n, the sample mean \overline{X}_n roughly follow a normal distribution:

$$\bar{X}_n \approx N\left(\mu, \left(\frac{\sigma}{\sqrt{n}}\right)^2\right)$$



Corollary with 95% confidence, μ lies within 1.96 $\frac{\sigma}{\sqrt{n}}$ of \overline{X}_n

Our confidence interval for
$$\mu$$
: $I_n = [\bar{X}_n - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{X}_n + 1.96 \frac{\sigma}{\sqrt{n}}]$

Example Assume that UA students' heights (in centimeters) follow $N(\mu, 8^2)$, and we observe 4 students' heights:

163, 171, 179, 167

Find a 95% confidence interval for μ

Sample mean population stddev Solution $I = [\overline{X}_n - 1.96 \frac{\sigma}{\sqrt{n}}, \overline{X}_n + 1.96 \frac{\sigma}{\sqrt{n}}]$ $= 170 \qquad \sigma = 8 \qquad n=4$

Plugging in all values, $I_n = [170 \pm 7.84] = [162.1, 177.8]$

• What if we'd like to find 99% confidence interval? 99.9%?

Fact If
$$X \sim N(\mu, \sigma^2)$$
, then standard normal CDF
 $P(-k \sigma \le X - \mu \le k \sigma) = 2\Phi(k) - 1$

Setting

$$2\Phi(k) - 1 = p \Rightarrow k = \Phi^{-1}\left(\frac{p+1}{2}\right)$$

Our *p* confidence interval for μ :

$$I_n = \left[\bar{X}_n \pm \Phi^{-1} \left(\frac{p+1}{2}\right) \frac{\sigma}{\sqrt{n}}\right]$$

р	$\Phi^{-1}\left(\frac{p+1}{2}\right)$			
0.95	1.96			
0.99	2.58			
0.999	3.29			

Example Assume that UA students' heights (in centimeters) follow $N(\mu, 8^2)$, and we observe 4 students' heights:

163, 171, 179, 167

Find 99%, 99.9% confidence intervals for μ

Solution

our *p*-Cl for
$$\mu$$
: $I_n = [\bar{X}_n \pm \Phi^{-1} \left(\frac{p+1}{2}\right) \frac{\sigma}{\sqrt{n}}]$
 $p = 0.99 \Rightarrow [159.7, 180.3]$

 $p = 0.999 \Rightarrow [156.9, 183.1]$

p	$\Phi^{-1}\left(\frac{p+1}{2}\right)$
0.95	1.96
0.99	2.58
0.999	3.29

Confidence interval: observations

p-Cl for
$$\mu$$
: $I_n = [\overline{X}_n \pm \Phi^{-1} \left(\frac{p+1}{2}\right) \frac{\sigma}{\sqrt{n}}]$

 $p = 0.95 \Rightarrow [162.1, 177.8]$ $p = 0.99 \Rightarrow [159.7, 180.3]$ $p = 0.999 \Rightarrow [156.9, 183.1]$

The center is always at \overline{X}_n

The width of the interval depends on:

- Sample size *n*: width smaller when *n* larger
- Confidence level p: width larger when p closer to 1
- Population stddev σ : width larger when σ large (more noise)

What if σ is unknown?

• We will address this soon..

Confidence interval: interpretation

Example Assume that UA students' heights (in centimeters) follow $N(\mu, 8^2)$, and we observe 4 students' heights: 163, 171, 179, 167 we found that a 95% CI for μ is [162.1, 177.8]

Can we say "with probability 95%, the population mean height μ lies in interval [162.1, 177.8]"?

No! This is a common misinterpretation

- μ is deterministic, and [162.1, 177.8] is deterministic, Then, what does "95% probability"
- Proposition $\mu \in [162.1, 177.8]$ is either true or false!

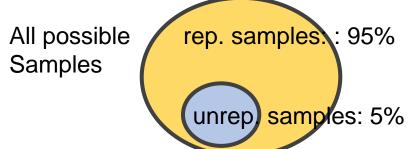
13

mean?

Example Assume that UA students' heights (in centimeters) follow $N(\mu, 8^2)$, and we observe 4 students' heights: 163, 171, 179, 167

True: With probability 0.95 over the draw of a sample, $[\bar{X}_n \pm 7.84]$ contains μ

As long as we are not extremely unlucky / our sample is mildly representative, my CI contains μ



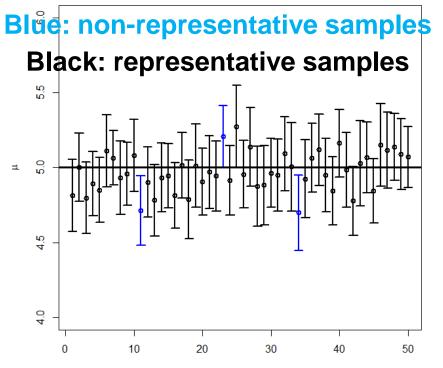
Example Assume that UA students' heights (in centimeters) follow $N(\mu, 8^2)$, and we observe 4 students' heights:

163, 171, 179, 167

CI for 50 samples of size 50 X~Nornal(5,1)

True: With probability 0.95 over the draw of a sample, $[\bar{X}_n \pm 1.96 \frac{\sigma}{\sqrt{n}}]$ contains μ

50 draws of samples \Rightarrow 50 CIs \Rightarrow expect 50× 95% = 47.5 CI's to contain μ



Samples

Example Assume that UA students' weights (in kgs) follow $N(\mu, \sigma^2)$, and we observe 4 students' weights:

60, 65, 70, 75

Find a 95% confidence interval for μ

Note The CI construction before $[\bar{X}_n - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{X}_n + 1.96 \frac{\sigma}{\sqrt{n}}]$ no longer works, since σ is *unknown*

How to fix this?

Confidence interval for mean with unknown variance 17

•
$$[\bar{X}_n - 1.96 \frac{\sigma}{\sqrt{n}}, \bar{X}_n + 1.96 \frac{\sigma}{\sqrt{n}}]$$
 no longer works, since σ is unknown

• We can try replace σ with its estimate

$$\hat{\sigma}_n = \sqrt{\frac{1}{n-1}} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

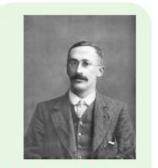
and return $[\bar{X}_n - 1.96 \frac{\hat{\sigma}_n}{\sqrt{n}}, \bar{X}_n + 1.96 \frac{\hat{\sigma}_n}{\sqrt{n}}]$

- This is OK, but it is too aggressive to be valid
 - may contain μ with probability much lower than 95%...

The student-t distribution

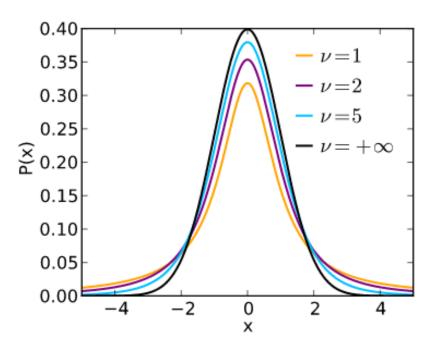
Fact $X_1, ..., X_n$ is an iid sample with unknown $\mu \& \sigma^2$. Let $\hat{\sigma}_n = \sqrt{\frac{1}{n-1}\sum_{i=1}^n (X_i - \bar{X}_n)^2}$. Then, approximately: $\sqrt{n} \frac{\bar{X}_n - \mu}{\hat{\sigma}_n} \sim \text{student-t}(n-1)$ Abbreviated as t(n-1) degree of freedom

student-t(ν) is a family of distributions



William S Gosset (aka Student)

While working at Guinness



Announcements 4/30

- Quiz 12 next Monday
- We have a list of sample questions to help prepare for the final

Recap 4/30

- Confidence interval: estimate unknown quantity (e.g. population mean μ) with uncertainty quantification
- Baby confidence interval (sample of size 1) if $X \sim N(\mu, 1)$, then [X - 1.96, X + 1.96] is a 95% confidence interval for μ
- General confidence interval

if $X_1, \dots, X_n \sim N(\mu, \sigma^2)$, $[\overline{X}_n - 1.96 \frac{\sigma}{\sqrt{n}}, \overline{X}_n + 1.96 \frac{\sigma}{\sqrt{n}}]$ is a 95% confidence interval for μ

What if σ is unknown?

The student-t distribution

Fact $X_1, ..., X_n$ is an iid sample with unknown $\mu \& \sigma^2$. Let $\hat{\sigma}_n =$ sample stddev. Then, approximately:

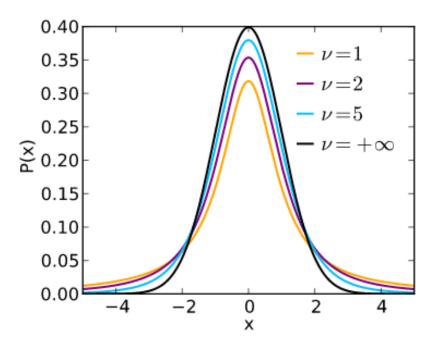
$$\sqrt{n} \frac{X_n - \mu}{\widehat{\sigma}_n} \sim \text{Student-t}(n-1)$$

degree of freedom Abbreviated as $t(n-1)$

student-t(ν) is a family of distributions

William S Gosset (aka Student)

While working at Guinness



The student-t distribution

student-t(ν) distribution family

- goes to Gaussian when ν is large
- generally has heavier tail than Gaussian

import scipy.stats as st

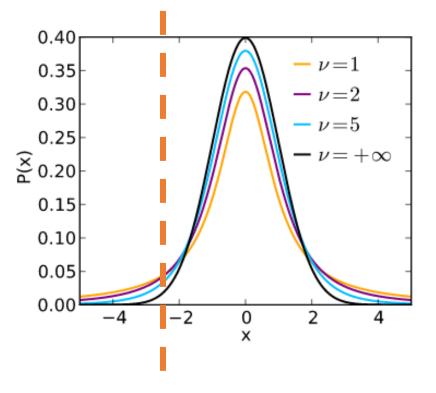
st.t.ppf(0.975,df=2) => 4.302652729911275

st.t.ppf(0.975,df=5) => 2.5705818366147395

st.t.ppf(0.975,df=10) => 2.2281388519649385

st.t.ppf(0.975,df=100) \Rightarrow 1.9839715184496334

Recall: st.norm.ppf(0.975) gives 1.96



Confidence interval for mean with unknown variance 23

Example Assume that UA students' weights (in kgs) follow $N(\mu, \sigma^2)$, and we observe 4 students' weights: 60, 65, 70, 75 Find a 95% confidence interval for μ

Solution

sample mean $\sqrt{4}\frac{X_4 - \mu}{\hat{\sigma}_4} \sim t(3)$ st.t.ppf(0.975,df=3) => 3.18 sample stddev Therefore, $P\left(\left|\sqrt{4}\frac{X_4-\mu}{\widehat{\sigma}_4}\right| \le 3.18\right) \ge 0.95$

Confidence interval for mean with unknown variance ²⁴

Example Assume that UA students' weights (in kgs) follow $N(\mu, \sigma^2)$, and we observe 4 students' weights:

60, 65, 70, 75

Find a 95% confidence interval for μ

Solution With 95% confidence,

$$\left| \sqrt{4} \frac{X_4 - \mu}{\hat{\sigma}_4} \right| \le 3.18$$

$$\Rightarrow \ \mu \in \left[\overline{X}_4 - 3.18 \frac{\hat{\sigma}_4}{\sqrt{4}}, X_4^{-5} + 3.18 \frac{\hat{\sigma}_4}{\sqrt{4}} \right]$$

Our confidence interval

Plugging data,

our CI is [67.5 - 10.3, 67.5 + 10.3] = [57.2, 77.8]

Confidence interval for mean with unknown variance ²⁵

General result given a sample $X_1, ..., X_n$ drawn from a distribution with mean μ , a *p*-confidence interval (e.g. *p*=95%) is

$$\left[\overline{X}_n - w \frac{\widehat{\sigma}_n}{\sqrt{n}}, \overline{X}_n + w \frac{\widehat{\sigma}_n}{\sqrt{n}}\right],$$

where w is the
$$\left(\frac{1+p}{2}\right)$$
-quantile of the $t(n-1)$ distribution

Example p=0.95, n=4 \Rightarrow w = 3.18

st.t.ppf(0.975,df=3) => 3.18

p=0.99, n=4 $\Rightarrow w = 5.84$ p=0.99, n=9 $\Rightarrow w = 3.35$

- How to construct confidence intervals for μ ?
- We consider the probability distributions of the following statistics:

z-statistic
$$\sqrt{n} \frac{X_n - \mu}{\sigma}$$
~ $N(0,1)$ when σ is knownt-statistic $\sqrt{n} \frac{\overline{X}_n - \mu}{\widehat{\sigma}_n}$ ~ $t(n-1)$ when σ is unknown

and make use of that they cannot take values that are too extreme

- general CI construction follows a similar principle
 - Define pivotal quantity and use its quantile to guide CI construction

Hypothesis testing

Hypothesis

• Statements about parameter / property θ of a distribution / population

Examples

- Average GPA < 2.8
- Probability of head of a coin > 0.6
- People eat more on weekends than weekdays

Simple vs. composite hypotheses

- $\theta = 3.2$ (simple), $\theta \in \{3.2, 4\}$ (composite), $\theta \in [3.2, 4]$ (composite)
- One-sided vs. two-sided
- $\theta > 3.2$ (one-sided), $\theta < 1.5$ or $\theta > 3.2$ (two-sided), $\theta \neq 2$ (two-sided)

Hypothesis testing

Hypothesis testing: choosing from two hypotheses:

- Null hypothesis H_0
 - Status quo, assumption believed to be true
 - Coin in my pocket, probability of head p = 0.5
- Alternative hypothesis H_1 : Complement of H_0
 - Novel finding after research
 - Coin has probability of head $p \neq 0.5$

- How to test?
- Design experiment, collect data, check:

If data shows strong evidence against H_0 : Reject H_0 (in favor of H_1)

Else

Do not reject H_0 Note: does not necessarily mean "accept H_0 "

- Analogy with the legal principle:
 - Presume innocent (H_0) until proven guilty (H_1) with strong evidence against innocence

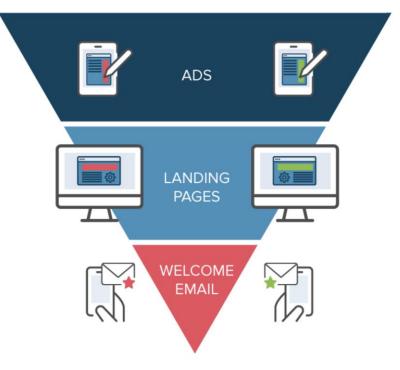
Application: A/B Testing

These days, Internet companies run A/B testing extensively

Try out an alternative of user interface (UI) on <u>randomly chosen subset of users</u> to collect their feedback (e.g. rating)

• E.g, choosing b/w **list view** vs grid view

How do we know if the new UI is better than older one? (i.e., statistically significant)



(from optimizely.com)

Application: A/B Testing

Evaluator:	1	2	3	4	5	6
Old UI	5	2	2	5	4	2
New UI	4	4	1	3	3	5

Compute the score differences:

Evaluator:	1	2	3	4	5	6
Score difference X	-1	+2	-1	-2	-1	+3

Can view *X*'s as drawn from some distribution with unknown mean μ

"Does new UI improve over old UI?" is now a hypothesis testing problem:

$$H_0: \mu \le 0, \qquad \qquad H_1: \mu > 0$$

we can perform e.g. t-test based on data (we will see)

- More specifically:
 - Design experiment
 - Design test statistic W (related to hypothesis)
 - Find distribution of W under H_0
 - Compute w, value of W applied on the data X_1, \ldots, X_n
 - Reject H_0 if $w \in R$, for "reasonable" rejection region R

Example Assume that UA students' heights (in centimeters) follow $N(\mu, 8^2)$, test the hypothesis

$$H_0: \mu = 168, \qquad \qquad H_1: \mu \neq 168$$

Suppose we observe 4 students' heights: 173, 181, 189, 177

Informally: reject H_0 if \overline{X}_n is far from 168 Formally: define $Z = \frac{\sqrt{n}(\overline{X}_n - 168)}{8}$. Reject H_0 if $|Z| \ge c$ We will see where the $\frac{\sqrt{n}}{8}$ factor comes from. How to choose c?

Hypothesis testing

• How to choose *c*?

• Significance level α : $P_{H_0}(|Z| \ge c) \le \alpha$ $Z = \frac{\sqrt{n}(\bar{X}_n - 168)}{8}$

Type-I error: we reject H_0 (due to \overline{X}_n far from 168), but H_0 is true

- Usually α is small, e.g. 0.05
- I.e., stay with the null hypothesis as long as our sample is 95%-representative Smaller α => more inclined to stay with H₀ => Need stronger evidence to reject H₀

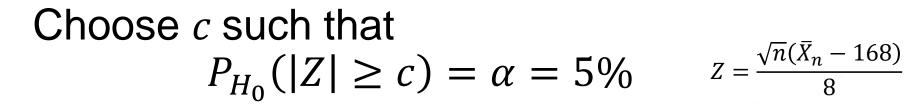
rep. samples. : 95%

unrep) samples: 5%

All possible

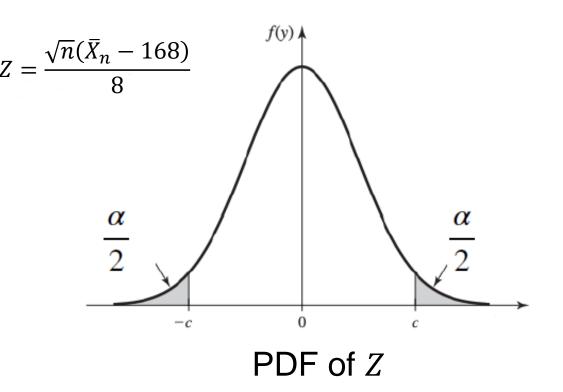
Samples

Hypothesis testing



Reject H_0 if $|Z| \ge c$, i.e. Z falls in the shaded region

Let's find the value of c...

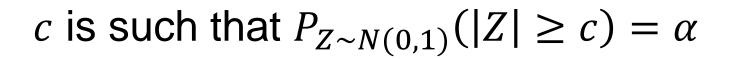


Hypothesis testing

 $Z = \frac{\sqrt{n}(\bar{X}_n - 168)}{\Omega} \sim N(0, 1)$

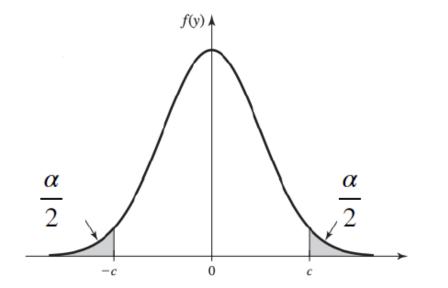
z-statistic: a statistic that is supposed to follow *N*(0,1)

Z is a valid z-statistic



• under H_0 , by central limit theorem:

$$\Rightarrow c = \Phi^{-1}(1 - \alpha/2)$$



E.g. $\alpha = 0.05 \Rightarrow c = \Phi^{-1}(0.975) = \text{st.norm.ppf}(0.975) = 1.96$

z-test

Example Assume that UA students' heights (in centimeters) follow $N(\mu, 8^2)$, test the hypothesis

$$H_0: \mu = 168, \qquad \qquad H_1: \mu \neq 168$$

Suppose we observe 4 students' heights: 173, 181, 189, 177

We reject if
$$Z = \frac{\sqrt{n}}{8} |\bar{X}_n - 168| \ge \Phi^{-1}(0.975)$$

1.96

z-statistic: a statistic that is supposed to follow *N*(0,1)

This is called a *z*-test

From data, Z = 3, so we reject H_0 .

General fact Assume that we have a set of samples $X_1, ..., X_n$ that follow $N(\mu, \sigma^2)$, test the hypothesis

 $H_0: \ \mu = \mu_0, \qquad \qquad H_1: \ \mu \neq \mu_0$ with significance level α

We can use the z-test:

Reject if
$$|Z| \ge \Phi^{-1}\left(1 - \frac{\alpha}{2}\right)$$
, where $Z = \frac{\sqrt{n}}{\sigma}(\overline{X}_n - \mu_0)$

rejection threshold r

Larger $n \Rightarrow$ more reject Larger $\alpha \Rightarrow$ more reject Larger $\sigma \Rightarrow$ less reject **General fact** Assume that we have a set of samples $X_1, ..., X_n$ that follow $N(\mu, \sigma^2)$, test the hypothesis

 $H_0: \ \mu = \mu_0, \qquad \qquad H_1: \ \mu \neq \mu_0$ with significance level α

z-test: Reject if
$$|Z| \ge \Phi^{-1} \left(1 - \frac{\alpha}{2}\right)$$

rejection threshold r

Example $\sigma = 8, n = 4, \overline{X}_n = 180$, use z-test to test if $\mu = 168$ $\alpha = 0.05 \Rightarrow r = 1.96$ $\alpha = 0.01 \Rightarrow r = 2.58$ $\alpha = 0.001 \Rightarrow r = 3.29$ reject H_0 $z = \frac{\sqrt{n}}{\sigma}(\overline{X}_n - \mu_0) = 3$ reject H_0 do not reject H_0 p-value

Example $\sigma = 8, n = 4, \overline{X}_n = 180$, test if $\mu = 168$ $\alpha = 0.05 \Rightarrow r = 1.96$ $\alpha = 0.01 \Rightarrow r = 2.58$ $\alpha = 0.001 \Rightarrow r = 3.29$ reject H_0 do not reject H_0

The p-value of z-test given this data, is between 0.01 and 0.001 (we will see its exact value soon..)

p-value: given the data & hypothesis test, p = the smallest α so that we can still reject H_0

E.g. $p \le 0.01 =$ even with a strong bias in keeping H_0 ($\alpha = 0.01$), we still reject H_0 Smaller p-value implies stronger evidence in rejecting H_0

p-value

Example $\sigma = 8$, n = 4, $\overline{X}_n = 180$, use z-test to test if $\mu = 168$. Find the test's p-value.

• Reject with significance level α if

$$3 = |Z| \ge \Phi^{-1} \left(1 - \frac{\alpha}{2}\right)$$

• *p*-value = smallest α s.t. $3 \ge \Phi^{-1} \left(1 - \frac{\alpha}{2}\right)$
= solution of eqn " $3 = \Phi^{-1} \left(1 - \frac{\alpha}{2}\right)$ "
$$1 \text{ from scipy.stats import norm}$$

$$2 2*(1-\text{norm.cdf}(3))$$
np.float64(0.002699796063260207)
= 0.0027

• => We reject $\mu = 168$ with strong evidence

Other z-tests

Other tests can be found using the same reasoning

•
$$H_0: \mu = \mu_0, \text{ vs } H_1: \mu \neq \mu_0$$

one-sided hypothesis testing problem

- $H_0: \mu \le \mu_0, \text{ vs } H_1: \mu > \mu_0$
- $H_0: \mu \ge \mu_0$, vs $H_1: \mu < \mu_0$

$$|Z| \ge \Phi^{-1} \left(1 - \frac{\alpha}{2} \right) \quad Z = \frac{\sqrt{n}}{\sigma} (\bar{X}_n - \mu_0)$$

$$Z \ge \Phi^{-1}(1-\alpha)$$

$$Z \le \Phi^{-1}(\alpha)$$

Dojoct U if

All these are z-tests, since it uses the z-statistic $Z = \frac{\sqrt{n}}{\sigma} (\bar{X}_n - \mu_0)$

Other z-tests

- Other tests can be derived using the same reasoning
 - p-value of the test

• $H_0: \mu = \mu_0, \text{ vs } H_1: \mu \neq \mu_0$

 $2\big(1-\Phi(|Z|)\big)$

• $H_0: \mu \le \mu_0$, vs $H_1: \mu > \mu_0$

 $1 - \Phi(Z)$

• $H_0: \mu \ge \mu_0$, vs $H_1: \mu < \mu_0$

 $\Phi(Z)$

Example Assume that UA students' heights follow $N(\mu, 8^2)$, test the hypothesis

$$H_0: \mu \le 168, \qquad \qquad H_1: \mu > 168$$

we have collected a sample of size n = 4, with mean $\overline{X}_n = 180$. Find the p-value of the z-test.

Solution
$$Z = \frac{\sqrt{n}(\bar{X}_n - \mu_0)}{\sigma} = 3$$

 $p = 1 - \Phi(Z) = 1 - \Phi(3) = 0.0013$

= we reject H_0 with strong evidence

- Final exam logistics
 - You are welcome to bring a calculator
 - You are welcome to bring a letter-sized "cheatsheet"
 - LMK if you'd like me to discuss specific practice final questions!
- 7Student course survey will close on 5/7
 - The bonus will only increase your scores
- We will close collection of participation self-report this week
 - We need time in calculating the final grades

Quiz 12

You manage a snack room at work with a vending machine that fills soda cans with 12 oz of soda on average. The machine's standard deviation is known to be 1 oz, based on manufacturer specs.

A curious employee thinks the machine is cheating people—maybe overfilling or underfilling. You decide to investigate.

You take a random sample of 36 cans and find the average is 12.3 oz.

1. Compute the z-statistic (hint: $Z = \frac{\sqrt{n}(\bar{X}_n - \mu_0)}{\sigma}$)

2. If our z-test has significance level $\alpha = 0.05$, should we reach the conclusion that the machine is cheating people?

(hint: norm.ppf(0.95) = 1.64, norm.ppf(0.975) = 1.96)

Quiz 12

- Soda volume *X*: mean μ , stddev $\sigma = 1$
- The hypothesis testing problem:

$$H_0: \mu = 12,$$

no cheating

$$H_1: \mu \neq 12$$

cheating

• Data: n = 36, $\bar{X}_n = 12.3$

•
$$Z = \frac{\sqrt{n}(\bar{X}_n - \mu_0)}{\sigma} = \frac{6 \times (12.3 - 12)}{1} = 1.8$$

Quiz 12

If our z-test has significance level $\alpha = 0.05$, should we reach the conclusion that the machine is cheating people?

(hint: norm.ppf(0.95) = 1.64, norm.ppf(0.975) = 1.96)

our z-test:

$$|Z| \ge \Phi^{-1} \left(1 - \frac{\alpha}{2} \right)$$
$$= \Phi^{-1} (0.975) = 1.96$$

 $|1.8| < 1.96 \Rightarrow$ do not reject $H_0 \Rightarrow$ should not reach this conclusion

- Drawback of z-test: needs to know population stddev σ
- **Example** Suppose the #of medical inpatient days in nursing homes follow a distribution with mean μ and variance σ^2 . We'd like to perform hypothesis test between:

$$H_0: \mu = 200, \qquad \qquad H_1: \mu \neq 200$$

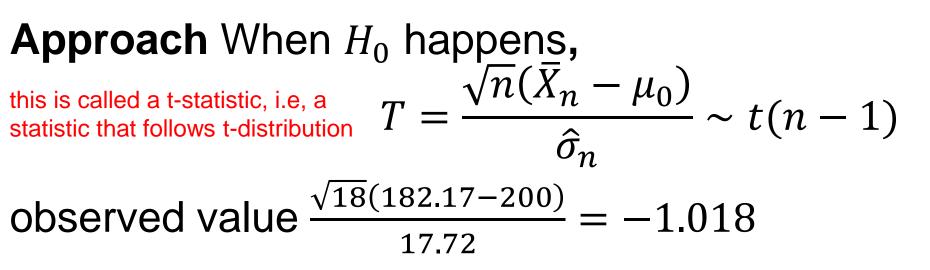
and we observe n = 18 samples with $\overline{X}_n = 182.17$ and $\hat{\sigma}_n = 17.72$ Should I reject H_0 ?

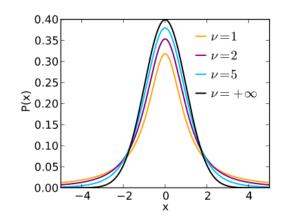
t-test

Example Suppose the #of medical inpatient days in nursing homes follow a distribution with mean μ and variance σ^2 . We'd like to perform hypothesis test between:

$$H_0: \mu = 200, \qquad \qquad H_1: \mu \neq 200$$

and we observe n = 18 samples with $\overline{X}_n = 182.17$ and $\hat{\sigma}_n = 17.72$



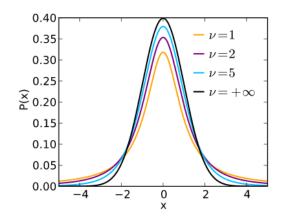


t-test

Approach We've seen that under H_0 , $T = \frac{\sqrt{n}(\bar{X}_n - \mu_0)}{\hat{\sigma}_n} \sim t(n-1)$

Our test with significance α :

reject when
$$|T| > F^{-1}\left(1 - \frac{\alpha}{2}\right)$$



F is now the CDF of the t(n-1) distribution

(Note how similar this is to the z-test)

$$|T| = 1.018$$

 $F^{-1}\left(1 - \frac{\alpha}{2}\right) = 2.11$
1 st.t.ppf(1-0.05/2, 17)
np.float64(2.1098155778331806)

thus, we do not reject H_0 : $\mu = 200$

Other t-tests

Other tests can be found using the same reasoning

•
$$H_0$$
: $\mu = \mu_0$, vs H_1 : $\mu \neq \mu_0$

Reject
$$H_0$$
 if:
 $|T| \ge F^{-1} \left(1 - \frac{\alpha}{2}\right)$
 $T = \frac{\sqrt{n}}{\hat{\sigma}_n} (\bar{X}_n - \mu_0)$

F: CDF of $t(n-1)$

• $H_0: \mu \le \mu_0$, vs $H_1: \mu > \mu_0$

$$T \ge F^{-1}(1-\alpha)$$

• H_0 : $\mu \ge \mu_0$, vs H_1 : $\mu < \mu_0$

 $T \leq F^{-1}(\alpha)$

All these are called t-test, since it relies on computing T, a t-statistic

Other t-tests

Other tests can be found using the same reasoning

p-value of the test

- $H_0: \mu = \mu_0, \text{ VS } H_1: \mu \neq \mu_0$ 2(1 F(|T|))
- $H_0: \mu \le \mu_0, \text{ vs } H_1: \mu > \mu_0$ 1 F(T)
- $H_0: \mu \ge \mu_0, \text{ vs } H_1: \mu < \mu_0$ F(T)

Example Metal fibers produced, length in millimeters; use t-test to test

$$H_0: \mu \le 5.2,$$
 $H_1: \mu > 5.2$
n=15 fibers measured, $\overline{X}_n = 5.4, \ \hat{\sigma}_n = 0.4226.$
Shall we reject H_0 at significance 0.05?

Solution The t-test is "reject if $T \ge F^{-1}(1-\alpha)$ " t-statistic $T = \frac{\sqrt{n}}{\hat{\sigma}_n}(\bar{X}_n - \mu_0) = 1.83$ rejection threshold $F^{-1}(1-\alpha) = \text{t.ppf}(0.95, 14) = 1.76$ we should reject

