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Review: “probability cheatsheet” 2

Additivity:

Conditional probability:

Probability chain rule:

Bayes’ rule:

Independence:

Law of total probability + Conditional probability:



Announcements 2/12

• HW3 will be posted tomorrow (2/13)

• We highly recommend Piazza for class communications
• This way all class staff can be on the same page in helping you 

with the problems



Quiz

• A roulette wheel has 38 wedges: one each with the

numbers 1 through 36, one labeled 0 and one labeled 00.

Each wedge has a pocket that a metal ball can land in.

With each spin, the ball lands in one of these pockets.

• Consider spinning the roulette wheel once. Let Z be the

event that the resulting number contains a zero. Let E be

the event that the number is even (both 0 and 00 are

considered even).

1.Find P(Z|E). Show your work!

2.Are E and Z independent? How do you know?



Quiz 

𝑃 𝑍 𝐸 =
𝑃 𝐸, 𝑍

𝑃 𝐸

𝑃 𝐸, 𝑍 = 5/38

𝑃 𝐸 = 20/38

⇒ 𝑃 𝑍 𝐸 =
5

20
=

1

4

0, 00, 10, 20, 30

0, 00 and 18 even numbers in {1,.., 36} 



Quiz

Are E and Z independent? 

Let’s check if 𝑃 𝑍 𝐸 = 𝑃(𝑍)..

𝑃 𝑍 = 5/38

this does not equal 𝑃 𝑍 𝐸 =
1

4
, so E and Z are not independent

0, 00, 10, 20, 30



Outline

• Random variables

• Distribution functions 

• probability mass functions (PMF)

• cumulative distribution function (CDF)

• Summarizing distributions: mean and variance

• Example discrete random variables

• Continuous random variables
• Probability density functions (PDF)

• Examples
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Random Variables
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Random variables (RVs, r.v.’s)

• A single random sample may have more than one 
characteristic that we can observe (i.e., it may be bi-
/multivariate data).

• We can represent each characteristic (e.g., gender, weight, 
cancer status, etc.) using a separate random variable.



Random Variable: Example

• X: people -> their genders



Random Variable: Example

• Y: people -> their class year



Random Variable: Example

• X: sequence of coin flips -> Number of heads



Types of Random Variables

• Discrete random variable: takes a finite or countable number of 
distinct values. 

• Continuous random variable: takes an infinite number of values within 
a specified range or interval.
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Distribution functions
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Discrete distributions

• When a random variable is discrete, its distribution is 
characterized by the probabilities assigned to each distinct 
value.

• The probability that the random variable takes a particular 
value comes from the probability associated with the set of 
individual outcomes that have that value. 

• This set is an event

• E.g. P(X = Female)



Discrete distributions

• How to find P(X = Female)?



Discrete distributions

• How to find P(X = Female)?



Discrete distributions

• What is the distribution of random variable X?
• P(X = Female), P(X = Male)



Discrete distributions

• What is the distribution of random variable X?

1

4

1

2

1

4



Properties of Discrete Distributions

• We can write P(X = x) to mean “The probability that the 
random variable X takes the value x”.

• What must be true of these probabilities?



Probability Mass function (PMF)



PMF is a table

• Think of the PMF as a lookup table.

• Best way to think of discrete random variables: they take 
various values, and each value has a certain probability of 
happening.

• Some random variables have a PMF that has an algebraic 
formula (more like functions you’re used to), but we’ll get to 
those later.



Visualizing discrete distributions

• Very simple distributions can be 
visualized with a pie chart.

• Can imagine a spinner mechanism 
that lands on a slice according to its 
probability.

• But, like pie charts, this is limited in its 
ability to convey information.



The spike plot

• An alternative is the spike plot

• Like a bar plot, but with 
probabilities, instead of frequencies 
or proportions, on the y-axis.



The cumulative distribution function (CDF)

• Often we are interested in the probability of falling in some range of 
values.

• For this purpose, we can use the cumulative distribution function (or 
CDF), which gives the “accumulated probability” up to a particular value.



Relating PMF to CDF

• How can we calculate F(x) from the PMF table f?
• Add up all the probabilities up to and including f(x).
• What is the value of F(-1)? F(-0.01)? F(0)?

• For discrete random variables, F(x) jumps at locations with 
nonzero probability mass



Relating PMF to CDF

• How could we find f(x) from a cumulative distribution function F?

• Only need to focus on “jumps”

• For jump locations x, f(x) = F(x) – F(value below x)



Exercise: using CDF and PMF

Given the CDF F:

• How to calculate P(X > x)?
• 1 – F(x)

• How about P(X ≥ x)?
• 1 – F(x) + f(x)

• f(x) can be 0 or nonzero, depending on whether x is a jump



Exercise: using CDF and PMF

Given the CDF F:

• How to calculate P(a < X ≤ b)?

= P(X ≤ b) - P(X ≤ a)

= F(b) – F(a)

• How to calculate P(a < X < b)? 
• (I’ll leave this to you as an exercise..)



Transformations of random variables

• If 𝑋 is a random variable, then 𝑋 + 5, 3𝑋, 𝑋2, … , are all 
random variables

• Given any transformation function 𝑓, 𝑓(𝑋) is a random 
variable

• How to find the PMF of 𝑓(𝑋) based on that of 𝑋?
• First, find all values 𝑓(𝑋) can take

• For each value 𝑐, try to find P(𝑓 𝑋 = 𝑐)



Examples

• Suppose X has PMF 

• What is the PMF of Y = X + 5?
• Y can take values 6 and 4

• P(Y = 6) = P(X = 1) = 0.5

• P(Y = 4) = P(X = -1) = 0.5

𝑥 1 -1

𝑃(𝑋 = 𝑥) 0.5 0.5

𝒚 6 4

𝑃(𝑌 = 𝑦) 0.5 0.5



Examples (cont’d)

• Suppose X has PMF

• What is the PMF of 𝑍 = 3𝑋?

• What is the PMF of 𝑊 = 𝑋2?

Note: 𝑊 = 1 = {𝑋 = +1 or 𝑋 = −1}

𝑥 1 -1

𝑃(𝑋 = 𝑥) 0.5 0.5

𝒛 3 -3

𝑃(𝑍 = 𝑧) 0.5 0.5

𝒘 1

𝑃(𝑊 = 𝑤) 1



Mean and Variance
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Summarizing random variables

• As with data (lec. 2), it is useful to characterize the center and spread of 
a probability distribution.

• Let us ask questions like “what value do we expect to occur”, and “how 
confident are we in our prediction” (roughly, “how far off do we expect to 
be on average”)?



Mean (aka expectation, expected value)

• The mean of a random variable 𝑋 is also called its expected 
value. Usually written as 𝜇 or E[𝑋].

• As with a sample mean, it represents an average over the 
possible values; but the average is weighted by the probabilities.

• Makes sense if you think of probability as long-run proportion: in 
the long run, a value with a probability of 1/2 will occur twice as 
often as one with a probability 1/4, etc., so it should count twice 
as much in determining the average.



Example: expected winnings at Roulette

• 38 outcomes (18 red, 18 black, 2 green: 0, 
00) equally likely

• Suppose we bet on black. Define X which 
takes the value 1($) for outcomes where we 
win, and −1($) for outcomes where we lose.

• Its probability mass function is given by



Example: expected winnings at Roulette

• X’s PMF is

• Its expected value is 
𝜇 = −1 × 𝑃 𝑋 = −1 + 1 × 𝑃(𝑋 = 1)

= −
2

38

• Interpretation: how much net win do we expect in one spin 



Example: expected winnings at Roulette

• In general we have: 

• Ex: find the mean of the random variable with PMF

• Ans: 0 x 0.7 + 1 x 0.2 + 2 x 0.1 = 0.4

Summation is over all values X can take



Expectation formula

• Given RV 𝑋 and its PMF, how do we find E[𝑋 + 5], E[3𝑋], 
etc?

• Idea 1: find the PMF of the transformed RV and use the 
definition of expectation 

• Idea 2: use the following fact: 

Expectation formula 

E 𝑓 𝑋 =෍

𝑥

𝑓 𝑥 ⋅ 𝑃 𝑋 = 𝑥



Expectation formula: example

• Suppose X has PMF

• Find: E 𝑋 + 5 , E 𝑋2

Expectation formula 

E 𝑓 𝑋 =෍

𝑥

𝑓 𝑥 ⋅ 𝑃 𝑋 = 𝑥

• E 𝑋 + 5 = 1 + 5 × 0.5 + −1 + 5 × 0.5 = 5

• E 𝑋2 = 12 × 0.5 + −1 2 × 0.5 = 1

𝑥 1 -1

𝑃(𝑋 = 𝑥) 0.5 0.5



Variance

• The variance, written 𝜎2 or Var(𝑋) or E[ 𝑋 − 𝜇 2] is the 
“expected squared deviation” from the mean. It is just a 
weighted average of the squared deviations corresponding 
to the individual values.

• E[ 𝑋 − 𝜇 2] – expectation of 𝑋 − 𝜇 2, another RV



Example: Roulette

• X’s PMF is

• Its expected value is 𝜇 = −
2

38

• Its variance is 
𝜎2 = −1 − 𝜇 2 ⋅ 𝑃 𝑋 = −1 + 1 − 𝜇 2 ⋅ 𝑃(𝑋 = 1)

= −1 − −
2

38

2

×
20

38
+ 1 − −

2

38

2

×
18

38

= … ≈ 0.997



Standard deviation

• Just as with a sample, the standard deviation, 𝜎, is the 
square root of the variance.

• E.g. in the roulette example, 𝜎 = 0.997 ≈ 0.998
• In one spin, the “typical” variation of our balance is 0.998



Announcements 2/17

• Quiz 3 graded

• We will have a quiz next time (2/19)



Recap 2/17

• Discrete random variables
• PMF, CDF

• Summary of the distributions

Expectation formula 

E 𝑓 𝑋 =෍

𝑥

𝑓 𝑥 ⋅ 𝑃 𝑋 = 𝑥



Exercise

• Find the mean and variance for the random variable with 
PMF given by

Ans:

• 𝜇 = 0 × 0.7 + 1 × 0.2 + 2 × 0.1 = 0.4

• 𝜎2 = 0.42 × 0.7 + 0.62 × 0.2 + 1.62 × 0.1

= 0.44

• For a random variable X, when is its 𝜎2 zero?



Properties of expectation

• What will happen to the roulette game if we bet $2 instead of $1?

• The new PMF becomes

• The new expected winnings are then

𝜇 = −2 × 𝑃 𝑋 = −2 + 2 × 𝑃(𝑋 = 2)

= −
4

38

• What’s the relationship between this value and the old expected 
value? 

• Doubling the individual values (w/o changing probs) doubles the 
expected value



Properties of expectation

• This works in general: if we change the values of a random 
variable by multiplying by a constant, the expectation gets 
multiplied by a constant.

• To see this, recall the expectation formula:

𝐸 𝑎𝑋 = ෍

𝑥

𝑎𝑥 𝑃 𝑋 = 𝑥 = 𝑎෍

𝑥

𝑥 𝑃(𝑋 = 𝑥) = 𝑎𝐸[𝑋]



Properties of expectation

• Sometimes called “linearity of expectation”

𝑎

𝐸[𝑎𝑋]



Properties of Variance

• What will happen to the variance if we multiply every value of 
a random variable by a constant 𝑎?

• This is as if we increase our bet in the roulette game

• Variance = expected squared deviation

• All squared deviations are scaled by 𝑎2, making variance also 
scaled by 𝑎2



Properties of Variance

• In other words, Var 𝑎𝑋 = 𝑎2Var(𝑋)

• How would standard deviation change accordingly?
• scaled by |𝑎| (!)



Properties of Variance

Alternative formula for finding variance 

Var 𝑋 = E 𝑋2 − E 𝑋 2

This sometimes simplifies calculations quite a bit

Example X has PMF

• E 𝑋2 = 1

• E 𝑋 = −
2

38

• ⇒ Var 𝑋 = 1 −
2

38

2
= 0.997



Example Discrete Random Variables
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Uniform distribution over a set

Suppose X is the outcome of throwing a fair 
N-faced die. Its PMF is:

for 𝑘 = 1, . . , 𝑁

Discrete Uniform PMF
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Uniform distribution over a set

We denote this by 𝑋 ∼ Uniform(𝑆)

• Selecting a student from a class

• Drawing a card from a shuffled deck

• Choosing a letter from the alphabet 

More generally, consider 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑁}; 𝑋 is 
drawn from the uniform distribution of 𝑆, then

𝑃(𝑋 = 𝑘) =
1

𝑁 if 𝑘 ∈ {𝑣1, 𝑣2, … , 𝑣𝑁}

0 otherwise

Discrete Uniform PMF



numpy.random

To generate a sample from a uniform discrete distribution,

numpy.random.choice([2,5,6])

Example output: 2
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Binomial distribution

• Suppose we perform 𝑛 repeated independent trials, each with success 
probability 𝑝, what is the distribution of the number of successes 𝑋?

• What values can 𝑋 take?
𝑚 = 0,1, … , 𝑛

• We have seen that 𝑃 𝑋 = 𝑚 =
𝑛

𝑚
⋅ 𝑝𝑚(1 − 𝑝)𝑛−𝑚

• In this case, 𝑋 is said to be drawn from a binomial distribution, denoted 
by 

𝑋 ∼ Bin(𝑛, 𝑝)



Galton Boards

• Illustration of binomial distribution

• Bead has 10 chances hitting a peg 

• each time a peg is hit, bead 
randomly bounces to the left or the 
right with equal probabilities

• Number of times it bounces to the 
left: 

𝑋 ∼ Bin(10, 0.5)

https://en.wikipedia.org/wiki/Galton_board


Binomial distribution

• 𝑋 ∼ Bin(𝑛, 𝑝)

• 𝑋 ′𝑠 PMF is “Bell-shaped”

Facts:

• E 𝑋 = ?
• 𝑛𝑝

• Var 𝑋 = 𝑛𝑝(1 − 𝑝)
• Small when 𝑝 is close to 0 or 1



Bernoulli distribution

• What does 𝑋 ∼ Bin(1, 𝑝) mean?

• This is called the Bernoulli distribution with 

parameter 𝑝, abbreviated as Bernoulli(𝑝)

𝑥 0 1

𝑃(𝑋 = 𝑥) 1-p p



Geometric distribution

• Suppose we perform repeated independent trials with 
success probability 𝑝. What is the distribution of 𝑋, the 
number of trials needed to get a success?

• (related to a question in HW)

• Applications: 
• Call center: # calls before encountering first dissatisfied customer
• Basketball: # shots before scoring the first 
• Networking: # attempts before a successful transmission
• Gambling: # plays before first win



Geometric distribution

• How to find P(𝑋 = 𝑥)?

• Let’s draw a probability tree.. 

• Example: 𝑝 =
1

38
(roulette)

• P 𝑋 = 1 = 𝑝

• P 𝑋 = 2 = 1 − 𝑝 𝑝

• P 𝑋 = 3 = 1 − 𝑝 2 𝑝

• …
https://randombooks.org/geometric-distribution.html

𝑋 = 1

𝑋 = 2

𝑋 = 3



Geometric distribution 

• In conclusion, 
P 𝑋 = 𝑥 = 𝑝 1 − 𝑝 𝑥−1

for 𝑥 = 1,2,…

Fact: 

• E 𝑋 = ?

•
1

𝑝

• Var 𝑋 =
1−𝑝

𝑝2

• Smaller when 𝑝 tends to 1



Continuous Random Variables
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Continuous random variables

• Discrete random variables take 
values in a discrete set

• Their CDFs are discontinuous  

• Continuous random variables 
take values in a continuous set

• Their CDFs are continuous  



Example: dart

• Dartboard with radius 1; dart lands uniformly at random on 
the board

• 𝑋: distance to the center

• What is the CDF of X?

• 𝑃 𝑋 ≤ 𝑥 =
𝜋 𝑥2

𝜋
= 𝑥2 for 𝑥 ∈ [0,1]

• Thus, 

• 𝐹 𝑥 = ቐ

0, 𝑥 < 0

𝑥2, 𝑥 ∈ [0,1]
1, 𝑥 > 1



Example: dart

• Dartboard with radius 1; lands uniformly at random on the 
board

• 𝑋: distance to the center

• E.g. 𝑃 𝑋 ≤ 0.3 = 0.32 = 0.09

• Can you find 𝑃(𝑋 = 0.3)?
• 𝑃 𝑋 = 0.3 = 0! 

• The area of the circle of radius 0.3 is zero



Continuous random variables

• Fact for a continuous random variable 𝑋, the probability that 
it takes a specific value 𝑥 is 0. 

• In other words, 

• P(X=x) = F(x) – F(value below x)

is still true

• Maybe mind-blowing at first sight
• All outcomes have zero probabilities?!

𝑥

Value below 𝑥



Maybe it is not that weird..

• Q1: Probability that your house water 
usage tomorrow is 20.58 gallon?

• 0

• Q2: Probability that your house water 
usage tomorrow is between 20 and 
25 gallon?

• A more useful question 
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CDF for continuous RVs

• Suppose F is the CDF of 

continuous random variable 𝑋

• What is 𝑃 𝑎 < 𝑋 ≤ 𝑏 ?
• 𝐹 𝑏 − 𝐹(𝑎)

• What is 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 ?
• Same!

• 𝑃 𝑎 < 𝑋 < 𝑏 , 𝑃 𝑎 ≤ 𝑋 < 𝑏 also have the same value

• Why? 𝑃 𝑋 = 𝑎 = 𝑃 𝑋 = 𝑏 = 0



Announcements 2/19

For HW & Quiz & Exam, to get full credit:
• Show your steps

“The size of the sample space is 36, the event E has 5 outcomes 
{(1,5), (2,4), (3,3), (4,2), (5,1)}, and thus the probability P(E) is |E|/|S| 
= 5/36”

• If you answer is a fraction, present its simplified form
• E.g. 15/35 => 3/7



Quiz 4

• Fill in the missing value for the Probability Mass Function below

• Fill in the missing value for the Cumulative Distribution Function below 
(not the same random variable as above).

• Fill in the missing values for the PMF and CDF below

PMF should sum to 1 => 0.2  

Last point in the CDF should 

always be 1

F(2) = f(1) + f(2) => f(2) = 0.25

F(4) = F(3) + f(4) => F(4) = 0.9



Recap: continuous random variables

• Continuous RVs are those whose CDFs are continuous (no 
jumps)

• E.g. 𝑋: distance to the center

• Different from discrete RVs, the sum of the probabilities of all 
outcomes are not 1

• In fact, P 𝑋 = 𝑥 = 0 for all 𝑥



CDF for continuous RVs

• Suppose 𝐹 𝑥 = 𝑃(𝑋 ≤ 𝑥) is the CDF of continuous RV 𝑋

𝐹 generally satisfies properties: 

• 𝐹 is continuous (no jumps)

• 𝐹 is monotonically increasing

• 𝐹 goes to 0 as 𝑥 → −∞
• Abbrev. 𝐹 −∞ = 0

• 𝐹 goes to 1 as 𝑥 → +∞



Continuous random variables

• What is the analogue of PMF for continuous RVs?

• Can we define function 𝑓 such that

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 =“sum over 𝑓(𝑥), 𝑥 ∈ [𝑎, 𝑏]”

• We cannot use 𝑃 𝑋 = 𝑥 , since it takes value 0 everywhere

• Need something else



Math interlude: integration 76

• How to calculate the area under 
the curve of 𝑓(𝑥), for 𝑥 ∈ [𝑎, 𝑏]?

• This problem is called integration,

and the area of interest is denoted by 

න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

Reads “the integral of 𝑓 from a to b”



Math interlude: integration 77

Applications of integration

• 𝑥: time, 𝑓(𝑥): speed

• 𝑎׬
𝑏
𝑓 𝑥 𝑑𝑥: total distance traveled

• 𝑥: time (hour), 𝑓(𝑥): power consumption (in Watts)

• 𝑎׬
𝑏
𝑓 𝑥 𝑑𝑥: total energy used (in Watt-hours)



Math interlude: integration 78

Why the weird ׬ symbol?

׬‘ ’ is a stylized version of ‘S’, representing 
sum 

This comes from approximating the area 
using a series of small rectangles  

෍

𝑖=1

𝑛

𝑓 𝑥𝑖 𝑥𝑖+1 − 𝑥𝑖 ≔෍𝑓 𝑥 Δ𝑥

With the partition being finer, this tends to 

𝑎׬
𝑏
𝑓 𝑥 𝑑𝑥 (HW4) 𝑥1 𝑥2 𝑥𝑛



Math interlude: integration 79

• How to calculate the area under the curve of 𝑓(𝑥), for 𝑥 ∈
[𝑎, 𝑏]?

• Fact (Fundamental Theorem of Calculus, Newton-Leibniz)

𝑎׬
𝑏
𝑓 𝑥 𝑑𝑥 can be calculated by: 

• Finding 𝐹, the antiderivative of 𝑓

• Evaluate 𝐹 𝑏 − 𝐹(𝑎) (abbrev. 𝐹 𝑥 |𝑎
𝑏)

• What is antiderivative?



Math interlude: integration 80

• 𝑓 can have many antiderivatives

• Useful example
• 𝑓: speed(time); 𝐹: distance(time)

• E.g. 𝑓 𝑥 = 1
• 𝐹 𝑥 = 𝑥, 𝐹 𝑥 = 𝑥 + 2 are all valid antiderivatives
• All antiderivatives of 𝑓 are equal up to a constant 
• We use the shorthand 𝐹 𝑥 = 𝑥 + 𝐶 to emphasize this

𝑓 𝐹
Antiderivative

Derivative



Math interlude: integration 81

• Examples
• 𝑓 𝑥 = 𝑥

• 𝑓 𝑥 = 𝑥𝑚

• 𝑓 𝑥 =
1

𝑥

𝑓 𝐹

Antiderivative

Derivative

𝐹 𝑥 =
1

2
𝑥2

𝐹 𝑥 =
𝑥𝑚+1

𝑚+1
(𝑚 ≠ −1)

𝐹 𝑥 = ln 𝑥



Math interlude: integration 82

Example find 0׬
2
𝑥2 𝑑𝑥

• Step 1: find 𝐹, antiderivative of 𝑥2

• 𝐹 𝑥 =
𝑥3

3

• Step 2: evaluate 𝐹 at both end 
points

• 𝐹 2 =
8

3
, 𝐹 0 = 0

• Ans = 𝐹 2 − 𝐹 0 =
8

3



Math interlude: integration 83

Example find ׬−∞
0
𝑒𝑥 𝑑𝑥

• Step 1: find 𝐹, antiderivative of 𝑒𝑥

• 𝐹 𝑥 = 𝑒𝑥

• Step 2: evaluate 𝐹 at both end 
points

• 𝐹 0 = 1, 𝐹 −∞ = 0

• Ans = 𝐹 0 − 𝐹 −∞ = 1



Probability density function (PDF)

Fact For continuous random variable 𝑋, there is a function 𝑓𝑋
(abbrev. 𝑓) such that for any 𝑎, 𝑏,

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓(𝑥) 𝑑𝑥

function 𝑓 is called the probability density function of X



Probability density function (PDF)

• 𝑓(𝑥) measures how likely 𝑋 takes value in the neighborhood
of 𝑥

• graph of 𝑓: “histogram of infinite samples of 𝑋”

• Another view: 𝑋 is drawn from

a pile of sand

• 𝑓(𝑥): height of sand a location 𝑥

• A random sample 𝑋 is drawn by choosing a grain of sand from 
the pile and return its location



Probability density function (PDF)

Example 𝑋: lifetime of a lightbulb, has PDF

𝑓 𝑥 = 2𝑥, 0 < 𝑥 < 1

Find P(0.3 < 𝑋 < 0.5)

Soln This is equal to 

න
0.3

0.5

2𝑥 𝑑𝑥 = 𝑥2 ቚ
0.3

0.5
= 0.52 − 0.32 = 0.16



Properties of PDF

• Nonnegativity: 𝑓 𝑥 ≥ 0 for all 𝑥

• Normalized:

∞−׬
+∞

𝑓(𝑥) 𝑑𝑥 = 1

• Why? 
• The integral represents 𝑃 −∞ ≤ 𝑋 ≤ +∞



Relationship between PDF and CDF

• How to find CDF 𝐹 based on PDF 𝑓?

𝐹 𝑏 = 𝑃 𝑋 ≤ 𝑏 = ∞−׬
𝑏
𝑓(𝑥) 𝑑𝑥

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓(𝑥) 𝑑𝑥



Math interlude: integration 89

Indefinite integral

𝐹𝑎 𝑏 = න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥

Example

• 𝑥: time, 𝑓(𝑥): speed

• 𝐹𝑎 𝑏 : displacement at time 𝑏
(relative to time 𝑎)

Fact: 

𝑓 is the derivative of 𝐹𝑎
(i.e., 𝐹𝑎 is an antiderivative of 𝑓) 



Relationship between PDF and CDF

• How to find PDF 𝑓 based on CDF 𝐹?

• 𝐹 is an indefinite integral of 𝑓 => 𝑓 𝑥 = 𝐹′(𝑥)

• 𝐹 has large slope at 𝑥 => 𝑓 𝑥 is large

𝐹 𝑏 = ∞−׬
𝑏
𝑓(𝑥) 𝑑𝑥



Example: dart

• 𝑋: distance to the center

𝐹 𝑥 = ቐ

0, 𝑥 < 0

𝑥2, 𝑥 ∈ [0,1]
1, 𝑥 > 1

• What is the PDF of 𝑋?



Example: dart

What is the PDF of 𝑋?

• 𝑓 𝑥 is the derivative of 𝐹
• 𝑓 𝑥 = 0, 𝑥 < 0

• 𝑓 𝑥 = 2𝑥, 𝑥 ∈ 0,1

• 𝑓 𝑥 = 0, 𝑥 > 0



How to find the distribution of a continuous RV

We can follow this recipe:

• Step 1: Find its CDF 𝐹 𝑥 = 𝑃 𝑋 ≤ 𝑥

• Step 2: find its PDF 𝑓 𝑥 by taking derivative of 𝐹



In-class activity: ruler

• We choose 𝑋 uniformly at random from [𝑎, 𝑏], two points in 
a ruler

• Find the CDF and PDF of 𝑋

a b



In-class activity: ruler

• What is the CDF 𝐹 𝑥 = 𝑃(𝑋 ≤ 𝑥)?
• 𝐹 𝑥 = 0, 𝑥 < 𝑎

• 𝐹 𝑥 =
𝑥−𝑎

𝑏−𝑎
, 𝑥 ∈ 𝑎, 𝑏

• 𝐹 𝑥 = 1, 𝑥 > 𝑏

a bx



In-class activity: ruler

• Now that we have CDF 𝐹

• What is the PDF 𝑓 𝑥 = 𝐹′(𝑥)?
• 𝑓 𝑥 = 0, 𝑥 < 𝑎

• 𝑓 𝑥 =
1

𝑏−𝑎
, 𝑥 ∈ 𝑎, 𝑏

• 𝑓 𝑥 = 0, 𝑥 > 𝑏

• This is also known as the uniform

distribution over 𝑎, 𝑏 , abbrev. 

Uniform([𝑎, 𝑏])



Announcements 2/24

• HW2 was graded last Wednesday 

• We will have a quiz next lecture (2/26)

• I am planning to have a midterm review session in the 2nd

half of next Monday’s lecture (3/3)



Recap 2/24

• Probability density function characterizes the 
distribution of continuous RVs

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = න
𝑎

𝑏

𝑓(𝑥) 𝑑𝑥

• 𝑓 𝑥 = 𝐹′(𝑥), where 𝐹 is CDF of 𝑋

Many ways to think of 𝑓:

• Histograms of samples of 𝑋

• 𝑋 as a pile of sand – heights of the sand



Recap 2/24

• Is 𝑓 𝑥 equal to 𝑃 𝑋 = 𝑥 ?
• No -- 𝑃 𝑋 = 𝑥 = 0 always

• Correct interpretation of 𝑓 𝑥 : probability density (not 
probability)

• Probability = probability density × size of region

• Bonus question: 
• Are there real-world RVs that are neither discrete nor continuous?



Plan 2/24

• Transformations of continuous RVs

• Summarizing continuous RVs: expectation, variance

• Useful continuous RVs



Continuous uniform distribution Uniform([𝑎, 𝑏])

• Its CDF 𝐹
• 𝐹 𝑥 = 0, 𝑥 < 𝑎

• 𝐹 𝑥 =
𝑥−𝑎

𝑏−𝑎
, 𝑥 ∈ 𝑎, 𝑏

• 𝐹 𝑥 = 1, 𝑥 > 𝑏

• Its PDF 𝑓 𝑥 ?
• 𝑓 𝑥 = 0, 𝑥 < 𝑎

• 𝑓 𝑥 =
1

𝑏−𝑎
, 𝑥 ∈ 𝑎, 𝑏

• 𝑓 𝑥 = 0, 𝑥 > 𝑏

a b



Uniform distribution

Example Draw 1,000 samples from a uniform distribution on [-1,0),

102

redline: PDF of uniform distr.



Transformations of a continuous RV

• Given a continuous RV 𝑋 and any transformation 𝑓, 𝑓(𝑋) is 
a random variable (e.g. 𝑋 + 5, 3𝑋, 𝑋2) 

• Applications: 
• 𝑋: temperature tomorrow in Celsius, 1.8𝑋 + 32: temp in 

Fahrenheit
• 𝑋: seismic wave amplitude; log10(𝑋): Richter magnitude

• How to find the distribution of 𝑌 = 𝑓(𝑋) based on that of 𝑋?
• First, find 𝑌’s CDF
• Take derivative to find 𝑌’s PDF



Transformations of a continuous RV

Example Suppose 𝑋 ∼ Uniform([0,1]). Find the distribution of 
𝑌 = 𝑋 + 𝑏. 

Step 1: write down the CDF of 𝑋

Step 2: write down the CDF of 𝑌

P 𝑌 ≤ 𝑦 = 𝑃 𝑋 ≤ 𝑦 − 𝑏 = 𝐹(𝑦 − 𝑏)

• 𝑦 < 𝑏: 0 

• 𝑦 ∈ [𝑏, 𝑏 + 1]: 𝑦 − 𝑏

• 𝑦 > 𝑏 + 1: 1

𝐹 𝑥 = 𝑃(𝑋 ≤ 𝑥) = ቐ
0, 𝑥 < 0
𝑥, 𝑥 ∈ [0,1]
1, 𝑥 > 1



Transformations of a continuous RV

Step 2: write down the CDF of 𝑌

(do you recognize this CDF?)

Step 3: Take derivative to get the PDF of 𝑌

In summary, 𝑌 ∼ Uniform([𝑏, 𝑏 + 1])

P 𝑌 ≤ 𝑦 = ൞

0, 𝑦 < 𝑏
𝑦 − 𝑏, 𝑦 ∈ [𝑏, 𝑏 + 1]

1, 𝑦 > 𝑏 + 1

𝑓𝑌(𝑦) = ൞

0, 𝑦 < 𝑏
1, 𝑦 ∈ [𝑏, 𝑏 + 1]
0, 𝑦 > 𝑏 + 1



In-class activity: scaling an RV

• Example Suppose 𝑋 ∼ Uniform([0,1]). Find the distribution 
of 𝑍 = 𝑎𝑋. 

• Step 1: write down the CDF of 𝑋

• Step 2: write down the CDF of 𝑍

• Step 3: Take derivative to get the PDF of 𝑍

• Conclusion: 𝑍 ∼ Uniform([0, 𝑎])



Shifting a continuous RV

• In general: 

• 𝑋 + 𝑏 has a PDF that is a translation of 𝑋’s PDF (by 𝑏 units)

• 𝑓𝑋+𝑏 𝑥 = 𝑓𝑋 𝑥 − 𝑏



Scaling a continuous RV

• 𝑎𝑋’s PDF is 𝑋’s PDF stretched by a factor of 𝑎 horizontally

• 𝑓𝑎𝑋 𝑥 =
1

|𝑎|
𝑓𝑋

𝑥

𝑎

PDF of 𝑋

PDF of 2𝑋

PDF of 4𝑋



Scaling a continuous RV

• Given 𝑋’s PDF; what does −𝑋’s PDF look like?



Summarizing Continuous Random Variables

112



Mean (aka Expected Value, Expectation)

• Weighted average of values of a random variable where 
weights are probabilities, denoted as 𝜇, or E 𝑋

• Expectation as center of gravity

E 𝑋 =෍

𝑥

𝑥 ⋅ 𝑃 𝑋 = 𝑥 E 𝑋 = න𝑥 𝑓 𝑥 𝑑𝑥



Mean

Example 𝑋: Time until a lightbulb fails. Its pdf:

𝑓 𝑥 = 2𝑥, 0 < 𝑥 < 1

What is E[X]?

E X = න
R

𝑥 𝑓 𝑥 𝑑𝑥

= න
0

1

𝑥 2𝑥 𝑑𝑥 = න
0

1

2𝑥2 𝑑𝑥 =
2

3



Expectation formula

• How to find E 𝑟 𝑋 given the probability distribution of 𝑋?

• For discrete RVs we saw: 

E 𝑟 𝑋 =෍

𝑥

𝑟 𝑥 ⋅ 𝑃 𝑋 = 𝑥

• For continuous RVs, 

E 𝑟 𝑋 = න𝑟 𝑥 𝑓 𝑥 𝑑𝑥

Rule of the lazy statistician: could also find it by first 

finding pdf of 𝑟 𝑋 which would require many further 

calculations. Lazy prefers easy. 



Expectation formula

Example Assume the pdf of the previous example, 

𝑓 𝑥 = 2𝑥, 0 < 𝑥 < 1

Find E[ 𝑋]

E 𝑋 = න
R

𝑥 𝑓 𝑥 𝑑𝑥

= න
0

1

𝑥 2𝑥 𝑑𝑥 = න
0

1

2𝑥
3
2 𝑑𝑥 =

4

5



Variance

• Variance of 𝑋 measures how spread out the distribution of 𝑋
is

• Defn: Var 𝑋 = 𝜎2 = E[ 𝑋 − 𝜇 2]

• Fact: Var 𝑋 = E 𝑋2 − E 𝑋 2 continues to hold

Mean of 𝑋



Variance

Example Assume the pdf of the previous example, 

𝑓 𝑥 = 2𝑥, 0 < 𝑥 < 1

Find Var(𝑋).

Soln We saw before that E 𝑋 =
2

3
. Let’s try to find E 𝑋2

E 𝑋2 = න
0

1

𝑥2 2𝑥 𝑑𝑥 =
2

4
=
1

2

Var 𝑋 =
1

2
−

2

3

2
≈ 0.055



PDF of 𝑋

PDF of 2𝑋

PDF of 4𝑋

Properties of Mean & variance

How does 𝑎𝑋’s mean & variance relate to those of 𝑋?

Fact same as discrete RVs, for continuous RVs, it continues to hold 
that 

• E 𝑎𝑋 = 𝑎 E 𝑋

• Var(𝑎𝑋) = 𝑎2Var(𝑋)

• How about E 𝑋 + 𝑏 and Var 𝑋 + 𝑏 ?



Properties of Mean & variance

How about E 𝑋 + 𝑏 and Var 𝑋 + 𝑏 ?

Fact

• E 𝑋 + 𝑏 = E 𝑋 + 𝑏

• Var(𝑋 + 𝑏) = Var(𝑋)



Properties of Mean & variance

• How about E 𝑎𝑋 + 𝑏 and Var 𝑎𝑋 + 𝑏 ?

• E.g. Celsius to Fahrenheit, 𝑎 = 1.8, 𝑏 = 32

• We can now combine the previous results to get:

• E 𝑎𝑋 + 𝑏 = E 𝑎𝑋 + 𝑏 = 𝑎E 𝑋 + 𝑏

• Var 𝑎𝑋 + 𝑏 = Var 𝑎𝑋 = 𝑎2 ⋅ Var[𝑋]



Useful Continuous Probability Distributions

122



Continuous Uniform Distribution

• 𝑋 ∼ Uniform([𝑎, 𝑏])

𝑓(𝑥) =

0, 𝑦 < 𝑎
1

𝑏−𝑎
, 𝑦 ∈ [𝑎, 𝑏]

0, 𝑦 > 𝑏

• Mean: E 𝑋 =
𝑎+𝑏

2

• Variance: (Hint: Uniform([0,1]) has a variance of 1/12)

Var 𝑋 =
𝑏−𝑎 2

12



Exponential Distribution

• Denoted as 𝑋 ∼ Exp(𝜆)

• 𝑓 𝑥 = 𝜆𝑒−𝜆𝑥, 𝑥 > 0

• 𝜆: scale parameter

Examples:

• Time between geyser eruptions

• Time between customers

• Lifetime of lightbulbs

• Time of radioactive particle decays



Exponential Distribution

• 𝑋 ∼ Exp(𝜆)

• Exponential distribution is the continuous analogue of geometric 
distribution!

• E 𝑋 =
1

𝜆
(average life of lightbulb / particle)

• Var 𝑋 =
1

𝜆

2



Exponential Distribution

Example Draw 1,000 samples from
exponential with 

126

scale = 𝜆



Gaussian Distribution

Gaussian (a.k.a. Normal) distribution with location 𝜇 and scale 
𝜎2 parameters,

𝑝 𝑥 =
1

2𝜋𝜎2
exp −

𝑥 − 𝜇 2

2𝜎2

Abbreviated as 𝑁(𝜇, 𝜎2)

Perhaps the most important distribution

in prob & stats

Does the shape of the curve ring a bell?

127

Similar to binomial 

distribution!



Distributions that follow Gaussian 128

(From https://studiousguy.com/real-life-examples-normal-distribution/)

Birth Weight

Shoe size

Q: Do they actually follow

exact Gaussians?

No exactly, but very close



Gaussian Distribution

Observations:

• Larger 𝜎2 ⇒ 𝑝 𝑥 more “spread out”

• Larger 𝜇 ⇒ 𝑝 𝑥 ’s center shifts to the right more

Fact if 𝑋 ∼ 𝑁(𝜇, 𝜎2)

• E 𝑋 = 𝜇

• Var 𝑋 = 𝜎2

P
D

F



Gaussian Distribution

Linear transformations of Gaussian is still Gaussian

Fact if 𝑋 ∼ 𝑁(𝜇, 𝜎2), then 𝑌 = 𝑎𝑋 + 𝑏 is still Gaussian

What are the parameters of 𝑌’s Gaussian distribution?

• E 𝑌 = E 𝑎𝑋 + 𝑏 = 𝑎𝜇 + 𝑏

• Var 𝑌 = Var 𝑎𝑋 + 𝑏 = Var 𝑎𝑋 = 𝑎2𝜎2

• So, 𝑌 ∼ 𝑁(𝑎𝜇 + 𝑏, 𝑎2𝜎2)



The standard Gaussian distribution

• Gaussian distribution with 𝜇 = 0 and 𝜎2 = 1

• Denoted by 𝑍 ∼ 𝑁(0,1)

• Its PDF denoted by 𝜙 𝑧 , and CDF denoted by Φ 𝑧



The standard Gaussian distribution

• PDF: 𝜙 𝑧 =
1

2𝜋
exp −

𝑧2

2

• CDF: Φ 𝑧 = ∞−׬
𝑧 1

2𝜋
exp −

𝑧2

2
𝑑𝑧

• Φ does not have a closed form, but it is a very important 
function

• We can find the value of Φ by calling scipy.stats.norm.cdf



Calculating probabilities about Gaussians

• Symmetry of 𝜙 => Φ −𝑎 = 1 − Φ(𝑎)



Calculating probabilities about Gaussians

• Suppose 𝑋 ∼ 𝑁(5, 22), how can I calculate 𝑃(1 < 𝑋 < 8)?

• From normal to standard normal

• 𝑋 ∼ 𝑁(𝜇, 𝜎2)
 𝑋 − 𝜇 ∼ 𝑁(0, 𝜎2)

 𝑍 =
𝑋−𝜇

𝜎
∼ 𝑁(0,1)

• We can write P(𝑎 < 𝑋 < 𝑏) using P(𝑐 < 𝑍 < 𝑑), which in 
turn can be written in Φ. Here is how.. 



Calculating probabilities about Gaussians

• P 𝑎 < 𝑋 < 𝑏

= 𝑃
𝑎−𝜇

𝜎
< 𝑍 <

𝑏−𝜇

𝜎

= Φ
𝑏−𝜇

𝜎
−Φ

𝑎−𝜇

𝜎

Example Suppose 𝑋 ∼ 𝑁(5, 22), calculate 𝑃 1 < 𝑋 < 8

This is Φ
8−5

2
−Φ

1−5

2
= Φ 1.5 − Φ(−2)



Calculating probabilities about Gaussians

• Φ 1.5 − Φ(−2)

= Φ 1.5 − (1 − Φ 2 )



Calculating probabilities about Gaussians

• What is the probability that a Gaussian RV 𝑋 is within 1 std 
of its mean? What about 2, 3?

• P 𝜇 − 𝑘𝜎 ≤ 𝑋 < 𝜇 + 𝑘𝜎



Calculating probabilities about Gaussians

• 𝑝𝑘 = P 𝜇 − 𝑘𝜎 ≤ 𝑋 < 𝜇 + 𝑘𝜎

= 𝑃 −𝑘 < 𝑍 < 𝑘

= 2Φ 𝑘 − 1

In words,

• With probability about 95%, 𝑋 is within 2 std of its mean

• With overwhelming prob. (99.7%), 𝑋 within 3 std of mean



CDF of Gaussian Distributions

• 𝐹: CDF of Gaussian 𝑁(𝜇, 𝜎2)

• 𝐹 𝜇 =
1

2

• 𝐹 𝑥 changes fast when 𝑥 starts to move away from 𝜇

• 𝐹’s “sensitive range” is about [𝜇 − 3𝜎, 𝜇 + 3𝜎]



Backup
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