

CSC380: Principles of Data Science

Basic machine learning 2

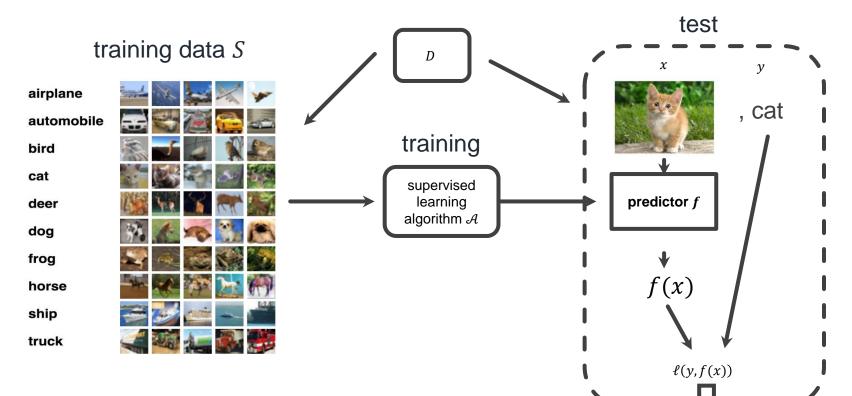
Chicheng Zhang

Outline

- Classification basics
- Nearest neighbor Classification
- Logistic regression

Classification recap

Supervised learning setup in one figure



- Goal: design learning algorithm \mathcal{A} , such that:
- after training, its output predictor *f* has low test error

Test error: average of $\ell(y, f(x))$ in test set

Classification

•	The labels are categorical	airplane
	J	automol
		bird
•	Loss function ℓ : measures the quality of	cat
	prediction \hat{y} respect to true label y	deer
		dog
		frog
•	$\ell(y, \hat{y}) = I(y \neq \hat{y})$	horse
		ship
_	I indicator of predicate 1 if true 0 if false	

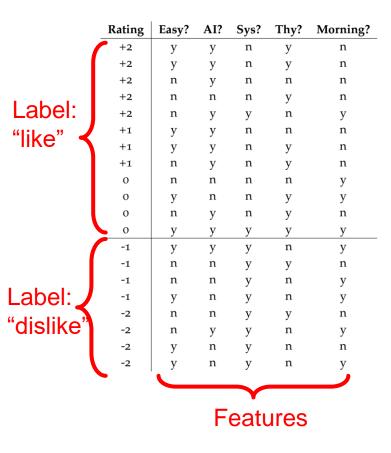
1: Indicator of predicate; 1 if true; 0 if faise •

rplane	
ıtomobile	
rd	
ıt	
er	M 47
og	19% 1. 100
og	
orse	
nip	ینے 🌽 🥌
uck	

truck

Nearest Neighbor Classification

Example: Course Recommendation



Suppose we'd like to build a recommendation system for classes

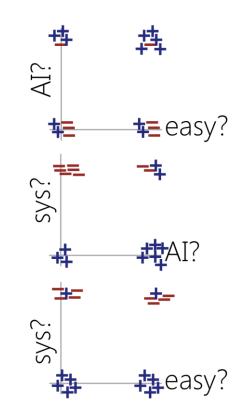
We've collected information about many past classes

We can frame this as a classification problem:

Predict like/dislike from class features

Example: Course Recommendation

	Rating	Easy?	AI?	Sys?	Thy?	Morning?
	+2	у	у	n	у	n
	+2	у	у	n	У	n
	+2	n	у	n	n	n
1 - 1 - 1	+2	n	n	n	У	n
Label:	+2	n	у	У	n	У
	+1	у	у	n	n	n
	+1	У	у	n	У	n
	+1	n	у	n	У	n
	0	n	n	n	n	У
	0	у	n	n	У	У
	0	n	у	n	У	n
	0	у	у	У	У	У
	-1	у	у	У	n	У
	-1	n	n	У	У	n
	-1	n	n	У	n	У
Label: 🤳	-1	у	n	У	n	У
<u> </u>	-2	n	n	У	У	n
-	-2	n	у	У	n	У
	-2	у	n	У	n	n
	-2	у	n	У	n	У
	Y					
	Features					



Each course's feature is Represented as points in 5-dimensional space

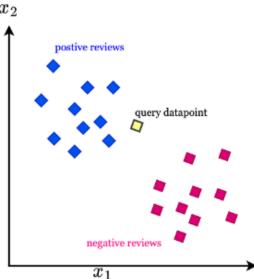
That's too many dimensions to plot...so we look at 2D projections...

Observation: examples with same labels tend to be closer!

8

Nearest neighbor classification

- Given a new course, would like to predict its label (+/-)
- Idea: Find its most similar course in the training set, and use that course's label to predict

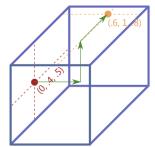


Measuring nearest neighbors

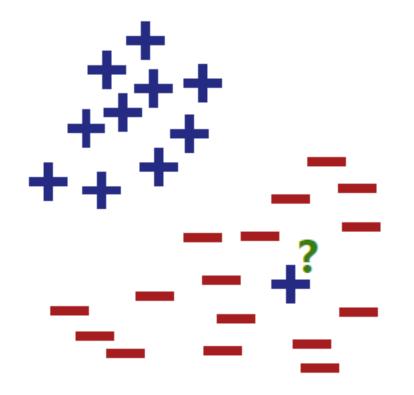
- Oftentimes convenient to work with feature $x \in \mathbb{R}^d$ ٠
- Distances in \mathbb{R}^d :
 - (popular) Euclidean distance $d_2(x, x') = \sqrt{\sum_{f=1}^d (x(f) x'(f))^2}$ Manhattan distance $d_1(x, x') = \sum_{f=1}^d |x(f) x'(f)|$

 - If we shift a feature, would the distance change?
 - What about scaling a feature?
- How to extract features as **real values**? •
 - Boolean features: $\{Y, N\} \rightarrow \{0, 1\}$
 - Categorical features: {Red, Blue, Green, Black}
 - Convert to {1, 2, 3, 4}?
 - Better one-hot encoding: (1,0,0,0), .., (0,0,0,1) (IsRed?/isGreen?/isBlue?/IsBlack?)

notation x(f): x = (x(1), ..., x(d))



Robustify Nearest Neighbor Classification



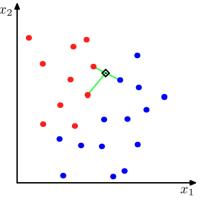
Query point ? Will be classified as + but should be

Problem: predicting using 1 nearest neighbor's label can be sensitive to noisy data

How to mitigate this?

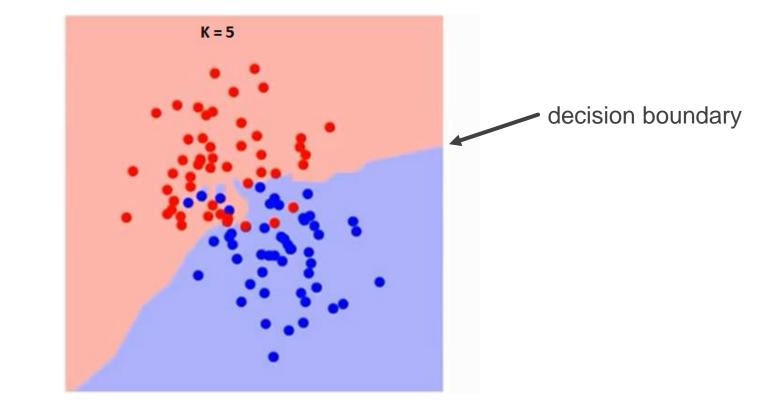
k-nearest neighbors (k-NN): main concept

- Training set: $S = \{ (x_1, y_1), ..., (x_m, y_m) \}$
- **Key insight**: given test example *x*, its label should resemble the labels of *nearby points*



- Function
 - input: x
 - find the k nearest points to x from S; call their indices N(x)
 - output:
 - (classification) the majority vote of $\{y_i : i \in N(x)\}$
 - (regression) the average of $\{y_i : i \in N(x)\}$

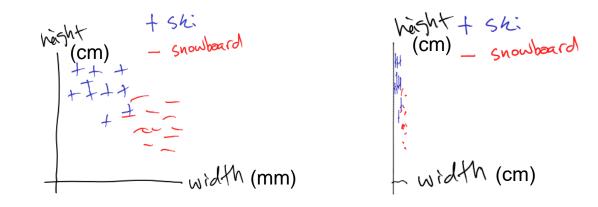
k-NN classification example



13

Issue 1: scaling

- Features having different scales can be problematic.
- Ex: ski vs. snowboard classification



• One solution: feature standardization

Make sure features are scaled fairly

- Features having different scale can be problematic
- [Definition] Standardization
 - For each feature f, compute $\mu_f = \frac{1}{m} \sum_{i=1}^m x_f^{(i)}$, $\sigma_f = \sqrt{\frac{1}{m} \sum_{i=1}^m \left(x_f^{(i)} \mu_f\right)^2}$
 - Then, transform the data by $\forall f \in \{1, ..., d\}, \forall i \in \{1, ..., m\}, x_f^{(i)} \leftarrow \frac{x_f^{(i)} \mu_f}{\sigma_f}$

after transformation, each feature has mean 0 and variance 1

- Be sure to keep the "standardize" function and apply it to the test points.
 - Save $\{(\mu_f, \sigma_f)\}_{f=1}^d$

• For test point
$$x^*$$
, apply $x_f^* \leftarrow \frac{x_f^* - \mu_f}{\sigma_f}$, $\forall f$

15

Issue 2: irrelevant features

here's a case in which there consider the effect of an is one relevant feature x_1 and a 1irrelevant feature x_2 on distances and NN rule classifies each instance nearest neighbors correctly Test example x_2 Test example x_1 x_1

Mitigation: feature selection

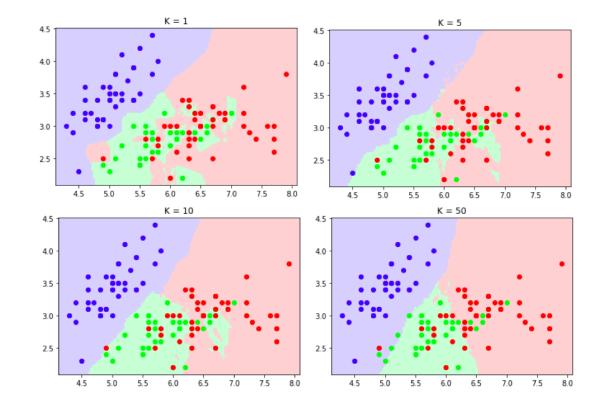
Issue 3: choosing k

- Q: If we set k = m, then what classification rule does it look like?
 - Predict majority label everywhere
 - Underfitting
- Q: If we set k = 1, what would be the training error (assume there is no repeated train data point)?
 - 0
 - Overfitting

Issue 3: choosing k

k can be viewed as a model complexity measure

Smaller *k* results in a more complex model



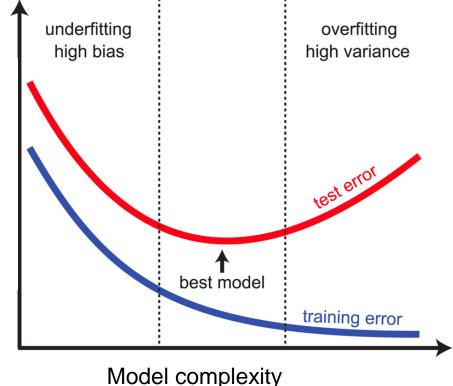
Issue 3: choosing k

We'd like to choose appropriate k to balance model bias and complexity

We can choose k in the same way we chose λ in ridge regression

"Default" approach: cross validation

Prediction error



Scikit-learn nearest neighbors

```
class sklearn.neighbors.NearestNeighbors(*, n_neighbors=5, radius=1.0,
algorithm='auto', leaf_size=30, metric='minkowski', p=2, metric_params=None,
n_jobs=None)
```

Unsupervised learner for implementing neighbor searches.

```
# 1. Load the Iris dataset
iris = load_iris()
X = iris.data  # Features
y = iris.target  # Target labels (species)
```



```
# 2. Split the dataset into training and testing sets (80% train, 20% test)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

```
# 3. Create the KNN classifier model
knn = KNeighborsClassifier(n_neighbors=3) # Use 3 nearest neighbors
```

```
# 4. Train the model on the training data
knn.fit(X_train, y_train)
```

Scikit-learn nearest neighbors

```
# 5. Make predictions on the test set
y_pred = knn.predict(X_test)
```

```
# 6. Evaluate the model using accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f'Accuracy of the KNN model: {accuracy * 100:.2f}%')
```

```
# Optionally, display the predictions vs. actual values
print(f'Predictions: {y_pred}')
print(f'Actual: {y_test}')
```

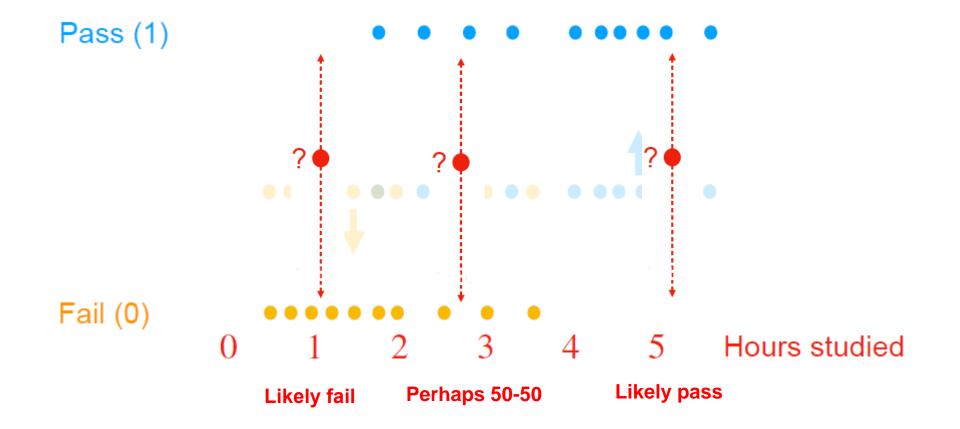
Logistic regression

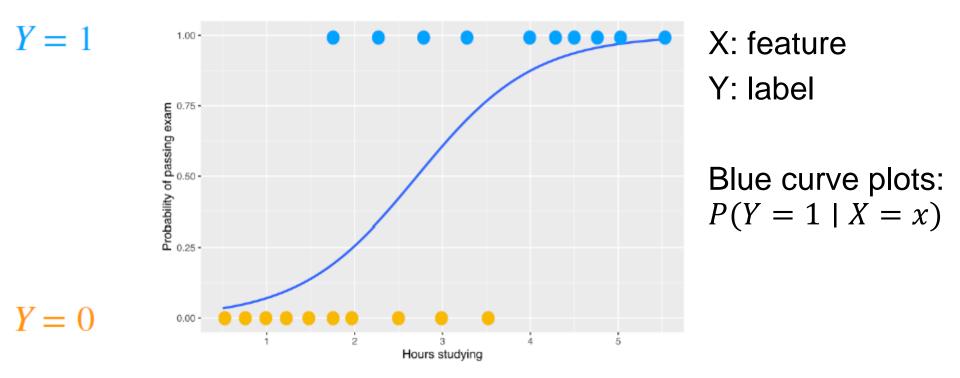
Training data: number of hours studied for the course. We also have Pass (1) or Fail (0) label for the data points.

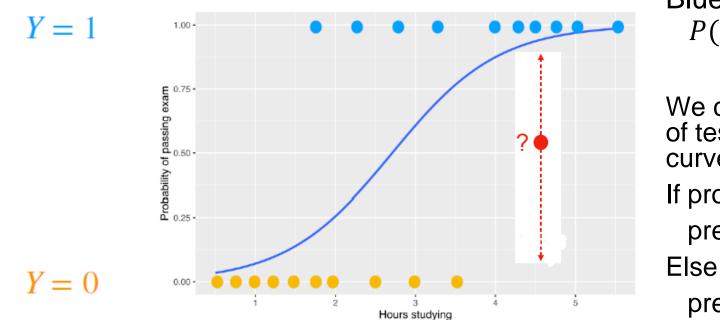
0 1 2 3 4 5 Hours studied

 Can we train a model so that given a new data point, we can predict whether that student passes or fails?

- Nearest neighbor: a geometric approach for this problem
- We will now approach this question using an alternative probabilistic view..







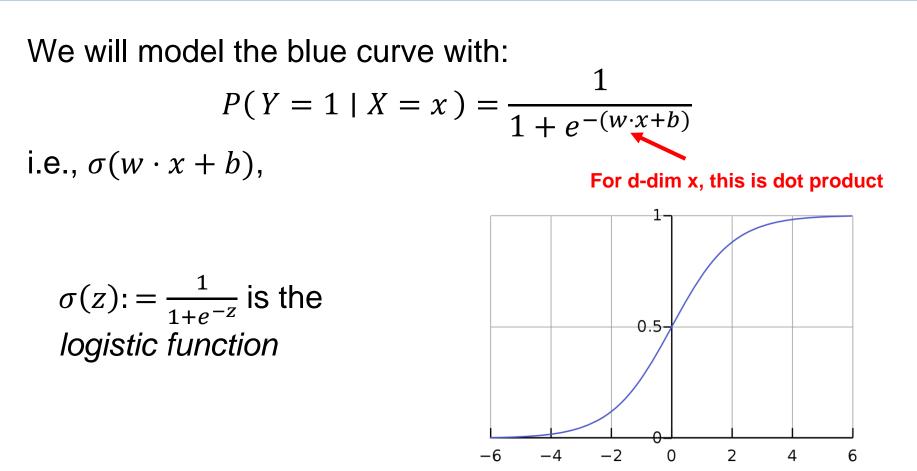
Blue curve plots: P(Y = 1 | X = x)

We can predict the class of test point using blue curve:

If prob < 0.5predict fail

predict pass

How to model the blue curve P(Y = 1 | X = x)?

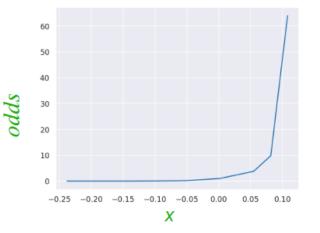


Where does the logistic function come from?

- Linear regression $w \cdot x + b$ is good at predicting unbounded outputs
- A good unbounded function to predict?

odd =
$$\frac{P(Y=1|x)}{P(Y=-1|x)} = \frac{p}{1-p}$$

• Still not ideal: odd bounded from below

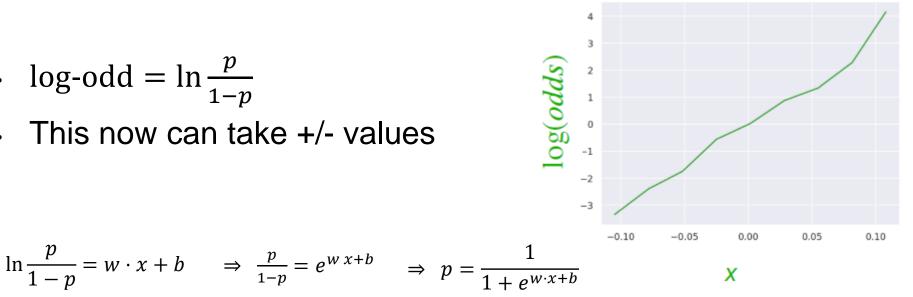


Where does the logistic function come from?

Linear regression $w \cdot x + b$ is good at predicting unbounded • outputs

•
$$\log$$
-odd = $\ln \frac{p}{1-p}$

This now can take +/- values •



Example Suppose we fit logistic regression model with b = 0.15 and w = 0.575. What is the model's predicted probability that a student who have studied for x = 2 hours passes?

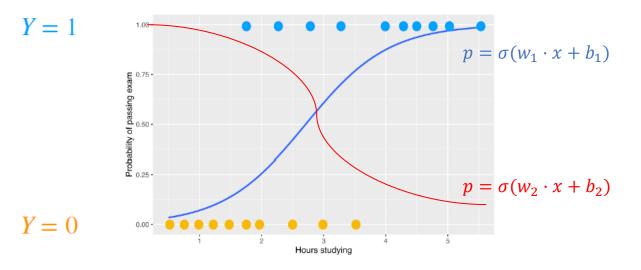
$$P(Y = 1 | X = x) = \frac{1}{1 + e^{-z}}$$
, where $z = w \cdot x + b = 1$

Thus, the predicted pass prob = $\frac{1}{1+e^{-1}} = 0.73$

Fitting a logistic regression model

• Recall: loss for linear regression was MSE $\frac{1}{n}\sum_{i}(y_i - w \cdot x_i)^2$

- How about logistic regression?
 - y_i 's are in 0, 1

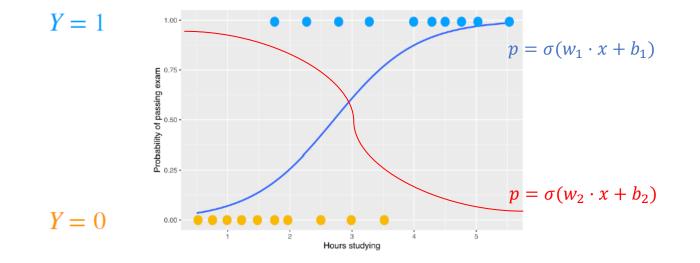


Which logistic regression model fits data better, red or blue?

Fitting a logistic regression model

We'd like to choose *w* and *b* such that:

- $w \cdot x + b$, or p, is large for x whose label is more likely to be 1
- $w \cdot x + b$, or p, is small for x whose label is more likely to be 0



Fitting a logistic regression model

• We find w and b to minimize:

$$\sum_{i} \left(y_i \ln \frac{1}{p_i} + (1 - y_i) \ln \frac{1}{1 - p_i} \right), \text{ Cross-entropy (CE) loss}$$

where $p_i = P(Y = 1 \mid x_i) = \frac{1}{1 + e^{W \cdot x_i + b}}$

- What is the loss when:
 - $y_i = 1$ and $p_i \approx 1$?
 - $y_i = 1$ and $p_i \approx 0$?
 - $y_i = 0$ and $p_i \approx 1$?
 - $y_i = 0$ and $p_i \approx 0$?

 ≈ 0 Large

Large

 ≈ 0

Minimizing CE loss incentivizes the model's predictive probability to align with labels

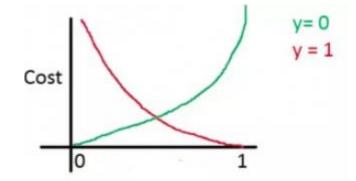
Cross entropy loss

• CE loss:

$$\ell(y,p) = y \ln \frac{1}{p} + (1-y) \ln \frac{1}{1-p}$$

alternative form

$$= \begin{cases} \ln\frac{1}{p}, \ y = 1\\ \ln\frac{1}{1-p}, \ y = 0 \end{cases}$$



Minimizing CE loss incentivizes the model's predictive probability to align with labels

sklearn.linear_model.LogisticRegression

class sklearn.linear_model.LogisticRegression(penalty='l2', *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None) 1 [source]

penalty : {'l1', 'l2', 'elasticnet', 'none'}, default='l2'

Specify the norm of the penalty:

- 'none': no penalty is added;
- '12': add a L2 penalty term and it is the default choice;
- '11': add a L1 penalty term;
- 'elasticnet': both L1 and L2 penalty terms are added.

tol : float, default=1e-4

Tolerance for stopping criteria.

C : float, default=1.0

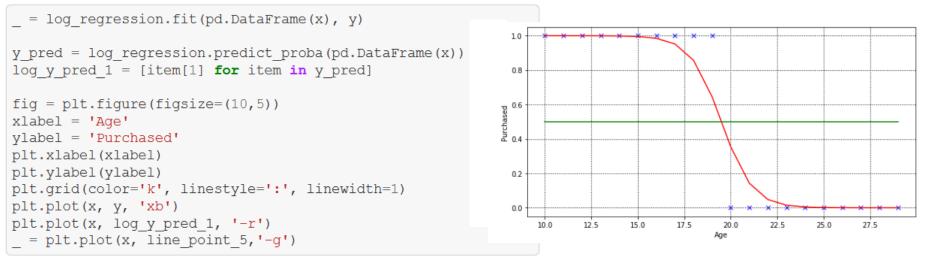
 $C = 1/\lambda$

Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization.

Similar to linear regression, oftentimes good to add regularization to combat overfitting

Scikit-Learn Logistic Regression

log_regression = sklearn.linear_model.LogisticRegression()



Function predict_proba(X) returns prediction of class assignment probabilities for each class. It returns n by C matrix if n data points were provided as argument.

(C=number classes)

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28

Using Logistic Regression

Logistic Regression have two main usages

- building **predictive** classification models
- <u>understanding</u> how features relate to data classes / categories

Example South African Heart Disease (Hastie et al. 2001) Data result from Coronary Risk-Factor Study in 3 rural areas of South Africa. Data are from white men 15-64yrs. Label is presence/absence of *myocardial infraction (MI).*

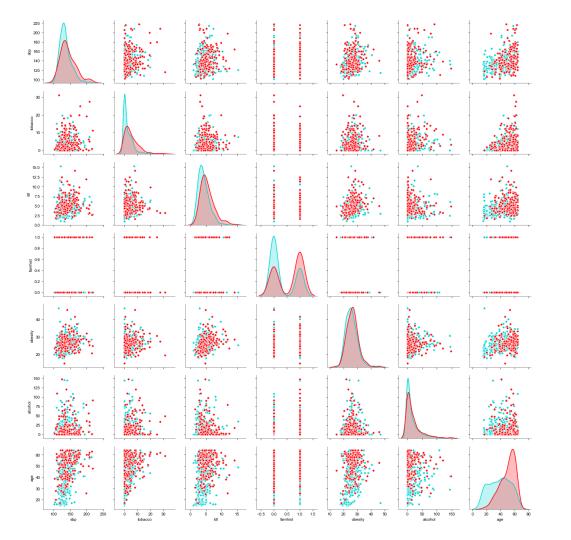
Example: African Heart Disease

	sbp	tobacco	ldl	famhist	obesity	alcohol	age	chd
0	160	12.00	5.73	1	25.30	97.20	52	1
1	144	0.01	4.41	0	28.87	2.06	63	1
2	118	0.08	3.48	1	29.14	3.81	46	0
3	170	7.50	6.41	1	31.99	24.26	58	1
4	134	13.60	3.50	1	25.99	57.34	49	1

Features

- Systolic blood pressure
- Tobacco use
- Low density lipoprotein (IdI)
- Family history (discrete)
- Obesity
- Alcohol use
- Age

Q: How predictive is each of the features to myocardial infraction?

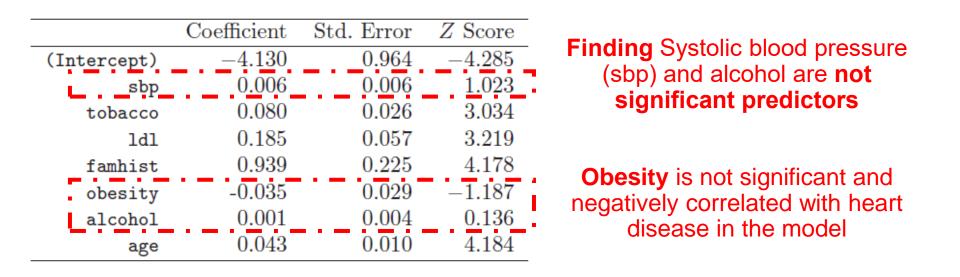


Looking at Data Each scatterplot shows pair of risk factors. Cases with MI (red) and without (cyan)

Features

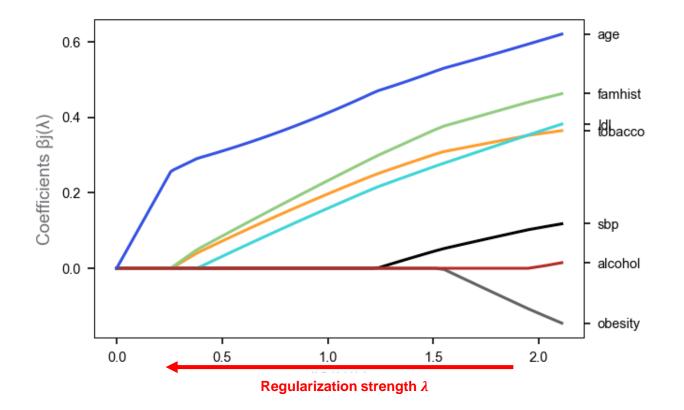
- Systolic blood pressure
- Tobacco use
- Low density lipoprotein (IdI)
- Family history (discrete)
- Obesity
- Alcohol use
- Age

[Source: Hastie et al. (2001)]



Note All correlations / significance of features are based on presence of *other features*. We must always consider that features are strongly correlated.

L1 regularized logistic regression coefficients



With some algebra, and by redefining our labels as

•
$$l_i = 1$$
 if $y_i = 1$
• $l_i = -1$ if $y_i = 0$

Our CE loss can also be written as:

$$\sum_{i} \ln(1 + e^{-l_i(wx_i+b)})$$

 $\ln(1 + e^{-z})$: aka the logistic loss

