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Supervised learning setup in one figure
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Goal: design learning algorithm A, such that:

after training, its output predictor f has low test
error

t---8---7

Test error: average of £(y, f(x)) in test set



Classification
The labels are categorical

Loss function £: measures the quality of
prediction y respect to true label y

t(y,9) =1y #9)
I: indicator of predicate; 1 if true; O if false
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Nearest Neighbor Classification



Example: Course Recommendation

Rating | Easy? AI? Sys? Thy? Morning? y . .
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Features



Example: Course Recommendation
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Nearest neighbor classification

Given a new course, would like to predict its label (+/-)

ldea: Find its most similar course in the training set, and use
that course’s label to predict

L
A




Measuring nearest neighbors

Oftentimes convenient to work with feature x € R

Distances in R%: notation x(f): x = (x(1), ..., x(d))
(popular) Euclidean distance d,(x, x') = \/Z?zl(x(f) - x’(f))2
Manhattan distance d; (x, x") = X%_,|x(f) — x' ()| /
If we shift a feature, would the distance change? | )

44444@.

What about scaling a feature?

How to extract features as real values?
Boolean features: {Y, N} -> {0,1}
Categorical features: {Red, Blue, Green, Black}
Convertto {1, 2, 3, 4}?
Better one-hot encoding: (1,0,0,0), .., (0,0,0,1) (IsRed?/isGreen?/isBlue?/IsBlack?)




Robustify Nearest Neighbor Classification 11
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Problem: predicting using 1 nearest
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? data
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— — — How to mitigate this”
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k-nearest neighbors (k-NN): main concept

Training set: S = { (x1,y1 ), -+, (X, Ym )}

Key insight: given test example x, its label should L.
resemble the labels of nearby points ’

Function e
iInput: x

Ty

find the k nearest points to x from S; call their indices

output:
(classification) the majority vote of {y;:i € N(x)}
(regression) the average of {y;:i € N(x)}



/ decision boundary




Issue 1: scaling 14

Features having different scales can be problematic.

Ex: ski vs. snowboard classification
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One solution: feature standardization



Make sure features are scaled fairly

Features having different scale can be problematic
[Definition] Standardization

2
For each feature f, compute =% i (l), \/ nis (l)—uf)
o () g

Then, transform the data by Vf € {1, ...,d},Vi € {1, ..., m}, Xp -
f

Be sure to keep the “standardize” function and apply it to the test points.
Save {(1,07)}%=1

For test point x*, apply x; « T v




Issue 2: irrelevant features

here’s a case in which there
is one relevant feature x; and a 1-

NN rule classifies each instance

correctly
Test exlample
00000 0 0 0 &

X1

« Mitigation: feature selection

consider the effect of an
irrelevant feature x, on distances and

nearest neighbors

Test example

X2

X1
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Issue 3: choosing k

Q: If we set k = m, then what classification rule does it look
like?

Predict majority label everywhere

Underfitting

Q: If we set k = 1, what would be the training error (assume
there is no repeated train data point)?

0

Overfitting



k can be viewed as a

model complexity
measure

Issue 3: choosing k

Smaller k resultsina .

more complex model
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Issue 3: choosing k

o , A i :
We'd like to choose appropriate k to underfitting { overfitting
balance model bias and complexity high bias . high variance

We can choose k in the same way
we chose A in ridge regression

“Default” approach: cross
validation

Prediction error

best model

+_training error

Model complexity



Scikit-learn nearest neighbors

class sklearn.neighhors.NEEFEStNEighbDPS(*, n_neighbors=5, radius=1.0,
algorithm="auto', Lleaf_size=30, metric='minkowski', p=2, metric_params=None,

n_jobs:None) [source]

Unsupervised learner for implementing neighbor searches.

# 1. Load the Iris dataset

iris = load iris()

X = iris.data # Features

y = iris.target # Target labels (species)

# 2. 5plit the dataset into training and testing sets (88% train, 28% test)
X _train, X test, y train, y test = train test split(X, y, test size=8.2, random state=42)

# 3. Create the KNN classifier model
knn = KNeighborsClassifier({n _neighbors=3) # Use 3 nearest neighbors

# 4. Train the model on the training data
knn.fit(¥_train, y_train)



Scikit-learn nearest neighbors

# 5. Make predictions on the test set
y_pred = knn.predict(X test)

# 6. Evaluate the model using accuracy
accuracy = accuracy_score(y test, y pred)
print(f Accuracy of the KNN model: {accuracy * 18@:.2f}%")

# Optionally, display the predictions vs. actual values
print(f 'Predictions: {y pred}")
print(f Actual: {y testl}')

Accuracy of the KNN model: 168.88%
Predictions: [1 8 2 118121126866 1211262a2222288]
Actual: [1® 2118612112888 1211262622222088]
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Classification with logistic regression

Training data: number of hours studied for the course. We also
have Pass (1) or Fail (0) label for the data points.

0 ] 2 3 4 5 Hours studied



Classification with logistic regression

Can we train a model so that given a new data point, we can
predict whether that student passes or fails?

?

Nearest neighbor: a geometric approach for this problem

We will now approach this question using an alternative
probabillistic view..



Classification with logistic regression

Pass (1) ® © 0 0 oo0000 o

0 I 2 3 4 5 Hours studied

Likely fail Perhaps 50-50 Likely pass



Y =1

Probability of passing exam

Classification with logistic regression

Hours

é.luu:lying

X: feature
Y: label

Blue curve plots:
PY=1|X=x)



Classification with logistic regression

Blue curve plots:
P(Y=1|X=x)

We can predict the class
of test point using blue
curve:

If prob < 0.5
predict fail
Else
predict pass

Probability of passing exam

3
Hours studying

How to model the blue curve P(Y =1 | X = x)?



Classification with logistic regression

We will model the blue curve with:
P(Y=1|X=x)=

1
1 + e—(W-x+b)
™~

l.e., o(w-x +b),

For d-dim x, this is dot product

-

1 :
— Is the
1+e 0.5

logistic function

o(z):=




Classification with logistic regression

Where does the logistic function come from?

Linear regression w - x + b is good at predicting unbounded
outputs

A good unbounded function to predict?

P(Y=1lx) _ p
P(Y=—1lx) 1-p

odd =

odds

Still not iIdeal: odd bounded from below



Classification with logistic regression

Where does the logistic function come from?

Linear regression w - x + b is good at predicting unbounded
outputs

— 1n-P_
log-odd = In -

This now can take +/- values

log(odds)

=0.10 =0.05 0.00 0.05 0.10

=w-x+b = L —wxtb D
1-p

]
nl—p



Classification with logistic regression

Example Suppose we fit logistic regression model with b = 0.15
and w = 0.575. What is the model’'s predicted probability that a

student who have studied for x = 2 hours passes?

P(Y=1|X=x) = wherez=w-x+b =1

1+e~Z’

= 0.73

1+e-1

Thus, the predicted pass prob =



Fitting a logistic regression model

) . 1
Recall: loss for linear regression was MSE ;Zi()’i — W x;)?

How about logistic regression?
y;’'sarein0, 1

Y =1
Which logistic
regression model
fits data better,
red or blue?

Probability of passing exam




Fitting a logistic regression model

We'd like to choose w and b such that:
w-x+ b, or p, is large for x whose label is more likely to be 1

w - x + b, or p, is small for x whose label is more likely to be O

Y =1

Probability of passing exam




Fitting a logistic regression model

We find w and b to minimize:
1
%i(viln-+ (1 -y)n

! ), Cross-entropy (CE) loss

1-pi
1
wherep, =P(Y =11x;) = T
What is the loss when:
y;=1landp; = 1? ~
y; =1andp; = 0? Large
y; = 0 and p; = 17 Large Minimizing CE loss incentivizes

~ the model’s predictive probability

~

yi =0and p; = 07 to align with labels



Cross entropy loss

CE loss: .
{(y,p) =yln-+(1-y)In
p 1—-p

alternative form

(1 y=0

ln;, y=1 il

— < 1 Cost

In—,y =0

. 1P

Minimizing CE loss incentivizes
the model’s predictive probability
to align with labels
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sklearn.linear_model.LOgisticRegression

class sklearn.linear_model.LogisticRegression(penalty="(2", *, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1,
class_weight=None, random_state=None, solver="lbfgs', max_iter= 100, multi_class="auto’, verbose=0, warm_start=False,
n_jobs=None, l1_ratio=None) 1 [source]

penalty : {’l1’, '|2’, 'elasticnet’, ‘'none’}, default="12’
Specify the norm of the penalty:
Similar to linear regression, oftentimes good to

¢ [‘none®: no penalty is added; add regularization to combat overfitting
e '12':add a L2 penalty term and it is the default choice;

e '11':add a L1 penalty term;
e ‘'elasticnet’: both L1 and L2 penalty terms are added.

tol : float, default=1e-4
Tolerance for stopping criteria.

C: float, default=1.0 C=1/2
Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values
specify stronger regularization.



Scikit-Learn Logistic Regression

log_regression = sklearn.linear_model.LogisticRegression()

= log regression.fit (pd.DataFrame(x), y)

y _pred = log_regression.predict proba(pd.DataFrame (x))
log v pred 1 = [item[l] for item in y pred]

fig = plt.figure(figsize=(10,5))
xlabel = 'Age'

ylabel = 'Purchased'

plt.xlabel (xlabel)

plt.ylabel (ylabel)

plt.grid(color="k', linestyle=':', linewidth=1)
plt.plot(x, y, 'xb')
plt.plot(x, log y pred 1, '-r')

= plt.plot(x, line point 5,'-g'")

Purchased

08
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Function predict proba (X) returns prediction of class
assignment probabilities for each class. It returns n by C matrix
If N data points were provided as argument.

(C=number classes)

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28



https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28

Using Logistic Regression

Logistic Regression have two main usages
* building predictive classification models
« understanding how features relate to data classes / categories

Example South African Heart Disease (Hastie et al. 2001)

Data result from Coronary Risk-Factor Study in 3 rural areas of South Africa.
Data are from white men 15-64yrs. Label is presence/absence of myocardial
Infraction (Ml).



B W N

sbp tobacco

160 12.00
144 0.01
118 0.08
170 7.50
134 13.60

Example: African Heart Disease

IdI famhist
5.73 1
4.41 0
3.48 1
6.41 1
3.50 1

obesity
25.30
28.87
29.14
31.99
25.99

alcohol age chd

97.20
2.06
3.81
24.26
57.34

52
63
46
58
49

1
1
0

Features

Systolic blood pressure
Tobacco use

Low density lipoprotein (Idl)
Family history (discrete)
Obesity

Alcohol use

Age

Q: How predictive is each of the features to myocardial infraction?
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Example: African Heart Disease 41

Coefficient Std. Error Z Score

(Intercept) 1130 0064  _1.085 Finding Systolic blood pressure
= @006~ poo6  — 10237 (sbp)and alcohol are not
cobacea T T0080 T T 0026 T T 3004 significant predictors

1d1 0.185 0.057 3.219
. : 2‘ s 1. ri . . . -
.-f-zm—h?-“— - -8-'32?- - .g‘_Uég_ : %iéi— . Obesity is not significant and
: C’leslllti _U'U'U.il 0004 013¢ | hegatively correlated with heart
dalcono . . .

_________ P R disease in the model

Note All correlations / significance of features are based on presence of other
features. We must always consider that features are strongly correlated.



L1 reqgularized logistic regression coefficients
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Regularization strength 4

https://github.com/empathy87/The-Elements-of-Statistical-Learning-Python-Notebooks/blob/master/examples/South%20African%20Heart%20Disease.ipynb



https://github.com/empathy87/The-Elements-of-Statistical-Learning-Python-Notebooks/blob/master/examples/South%20African%20Heart%20Disease.ipynb

Classification with logistic regression

With some algebra, and by redefining our labels as
li =1 if Vi = 1

Our CE loss can also be written as:
¥ In(1 + e~ liwxith))

CE loss (logistic loss)

In(1 + e~%): aka the logistic loss

Classification score: [;(wx; + b)
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