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Introduction to Machine Learning



What is machine learning (ML)?

- Tom Mitchell established Machine Learning Department at CMU (2006).

Machine Learning, Tom Mitchell, McGraw Hill, 1997.

' F Machine Learning is the study of computer algorithms that improve automatically through
MACHING experience. Applications range from datamining programs that discover general rules in large data
sets, to information filtering systems that automatically learn users' interests.

LEARNING

This book provides a single source introduction to the field. It is written for advanced undergraduate
and graduate students, and for developers and researchers in the field. No prior background in
artificial intelligence or statistics is assumed.

- In short: algorithms adapt to data

. ,tAsll(beield of Artificial Intelligence (Al) — computers perform “intelligent
asks.

- Classical Al vs ML.: rule-driven approaches vs. data-driven approaches

"




Supervised vs Unsupervised Learning

» Supervised Learning - Training data

consist of inputs and outputs

 Classification, regression,

translation, ...

Cat

Training a Supervised Learner

ot

Dog

Unknown

y

rad

Training
S Supervised Learning
Algorithm

Making Predictions

« Unsupervised Learning —
Training data only contain inputs

* Clustering, dimensionality
reduction, segmentation, ...

Unsupervised Learning
Algorithm
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Supervised learning 8

Training / test data: datasets comprised of labeled examples: pairs
of (feature. label)

airplane E 7 > — test data

automobile E E g E Vins t

bird i\zu ﬂ ‘ , Ca

o i o -

deer ~' .

e 2 H’bﬂﬁs — superylsed function

frog ' n [ ;?girmﬂgq ("predictor”)

horse - E ES ﬂ *

=il g v

vook ol B cat
training data training test

How should test data be chosen?
Should test data be identical to training data?
Should test data be just ONE data point? No



Supervised learning setup

Key assumption: training and test data are drawn from the
same population, or data generating distribution D

They are assumed to be IID samples: independent and
identically distributed
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. Scenario 1:
classification

~

function
("classifier”)

\/
cat

\

Supervised learning setup

, cat

» Scenario 2: regression
(e.g. house price prediction)

2000 sqft, 3 bedrooms, $907K

\/

function
("regressor”)

\/

$840K

\

How to evaluate?

* Loss function ;. measures the
quality of prediction y respect to
true label y

+ Examples:
* Classification error

£(y,y) =1ify # y, and zero
otherwise

* Square loss
£(y,9) = (y — 9)? - regression

10



Supervised learning setup in one figure

test

training data S [3 -=- - = y- ~\
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%o?l design learning algorithm A, such
a

after training, its output predictor f has low
test error

___3__._’

Test error: average of £(y, f(x)) in test set
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Supervised Learning: Linear Regression

12



Linear Regression

Regression Learn a function that
predicts outputs from inputs,

y = f(x)

Outputs y are real-valued

OUTPUT: house price

Linear Regression As the name
suggests, uses a linear function:

S e B T y— w4 b
INPUT: square footage




Linear Regression

Where is linear regression useful?

Altaba Inc. Stock Price Prediction
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Climate Models
Massie and Rose (1997)

Used anywhere a linear relationship is assumed between

continuous inputs / outputs




Line Equation

Recall the equation for a line has a
slope and an intercept,

y=w-x+0b
[/
Slope Intercept

 Intercept (b) indicates where line crosses y-
axis

» Slope controls angle of line
» Positive slope (w) = Line goes up left-to-right

* Negative slope - Line goes down left-to-right



Math Interlude: inner product

Two vectors:

Fo(2.-3) = |3

y=(5,1) yzm

How to compute = -y ?

Multiply corresponding entries and add:

T-y=1(2,-3)-(5,1)=(2)) +(=3)(1) =7

B "
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Linear Regression

[ Image: Murphy, K (2@12)]

For D-dimensional input vector = € R” the
plane equation,

y=wlz+0b

Sometimes we simplify this by including the
Intercept into the weight vector,

(o) [ o)
) T

S
]
8
]




Learning linear regression models

Which line is a better predictor, blue or green?

house price Y*

square footage

green



Learning Linear Regression Models

There are at least two ways to think about fitting regression:
Intuitive Find a plane/line that is close to data

Functional Find a line that minimizes the square loss



Fitting Linear Regression

® Actual response, y;

B Predicted response, f(x;) = by + by X

| —— Estimated regression line, f(x) =bo + by x
= = Residual, y;— f(x;)

Intuition Find a line that is as
close as possible to every
training data point

The distance from each point
to the line is the residual

/

Label Prediction

y —wlx

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/



https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/

Fitting linear regression

Each point i induces a separate residual value y; — w - x;

We'd like to find w such that all y; —w - xl are small

We can convert this to an optimization problem: find w that

minimizes N
2
S G- w0

i=1

This is called the least squares solution



Math Interlude: optimization problems

The above Is often written as: find

argmin,, _pa Z(yi — W x;)?

w: Optimization =1
variable T

Objective function

= 8 B B 8

Example Find argmin, ax? + bx + ¢ (a > 0)
b

X =—=—
2a

These are called unconstrained optimization problems



Math Interlude: optimization problems

Example Suppose we have 2 data points (x=1, y=0) and (x=-1,

y=1), find the least squares solution w

Solution the objective function of least squares is

(y1 —w xl)z + (y, —w x2)2 | )
which is Ll
w2+ (1+w)=2w?2+2w+1 \
. . . . ~ b 1
the minimizerisw = —— = — -
2a 2 -2 0

Why cannot the line fit perfectly?
Here, we only consider y = w x without intercept




Announcements 3/31

HWS5 was out last Thursday (due 4/8)
We will have quiz 8 this Wednesday (4/2)

Participation bonuses are now fractional and unlimited in
any one lecture



Recap 3/31

Linear regression

Given training data (x;, y;),i = 1, ..., n, find a linear predictor w such that
w - x can predict future unseen y’s

Ordinary least squares: find w that
minimizes average training loss
(aka mean square error, MSE)

OUTPUT: house price

2Y (y; —w - x;)?
n <Lt L INPUT: square footage



In-class exercise: training and test loss

We have the following training

1 2

data
3 6

We fit a linear regression model y = w - x that minimizes
mean square error. What is this model w?

What is the average loss of model w on training and test

data?

4 7

5 10



In-class exercise: training and test loss

Solution

W = argmin,, (1w — 2)% + (3w — 6)? 1 2
Minimizer: w = —23 =2 10w? — 40w + 40 3 6
a
raing loss ot .
L2 =2)2+(6 .6)2) =0 ' ? 2
2 - 3 6 6

size of training set

~((8—="7)2+(10 — 10)2) = 0.5 4 7 8
size of test set 5 10 10

Usually, a trained model has smaller training loss than test loss



Math Interlude: optimization problems

Unconstrained optimization problem: find
argmin,, pa f(w)

. Solutions can oftentimes be found in one of two ways:
1. Closed form solutions

2. Open-source or commercial optimization libraries (e.g. cvxpy,
scipy.optimize.minimize)



Linear Regression in Scikit-Learn

: : For Evaluation
Load your libraries,

import matplotlib.pyplot as plt .
import numpy as np

from sklearn import datasets, linear_model
from sklearn.metrics import mean squared error, r2 score

Load data,

# load the diabetes dataset

diabetes X, diabetes y = datasets.load diabetes(return X y=True) Samples total 442

Dimensionality 10

i Ee o Trr mmar Features real, -2<x<.2
diabetes X = diabetes X[:, np.newaxis, 2] Targets integer 25 - 346
Traln / Test Spllt diabetes X train = diabetes X[:-20] diabetes y train = diabetes y[:-20]

diabetes X test = diabetes X[-20:] diabetes y test = diabetes y[-20:]



Linear Regression in Scikit-Learn

.Eeafm

Coefficients: [998.57768%14]

Train (fit) and predict,

# Create linear regression object
regr = linear model.linearRegression()

# Train the model using the training sets

regr.fit(diabetes X train, diabetes y train) Intercept: 152.88335421448167
Scale sensitive, a bit hard
# Make predictions using the testing set to interpret Mean squared error: 4861.83

diabetes y pred = regr.predict(diabetes X test)
More interpretable Coefficient of determination (R™2): 8.23

Linear Regression on Diabetes Dataset

Plot regression line with the test set, —

300 { = Predicted

# Plot outputs 250
plt.scatter(diabetes X test, diabetes y test, color="hlack")

[~

=]

o
L

plt.plot(diabetes X test, diabetes y pred, color="blue", linewidth=3)

=

v

o
L

Disease Progression

plt.xticks(())
plt.yticks(())

100 1

plt.show()

T T T T T T
—0.10 —0.05 0.00 0.05 0.10 0.15
Feature Value



Coefficient of Determination R?

Variance unexplained by

|M Regres‘5|/on model Residual Sum-of-Squares

N T 2
R2 — 1 RS5 1 2 im1 (Y —w” ay)
/SS zizl(yi — U)
Total variance /
In dataset Variance using avg. prediction

1
Where: ¥ = Zy IS the average output



Coefficient of Determination R?

Variance unexplained by
RQ — 1 RSS Regression model

@ P,
N

Variance using avg. prediction

Maximum value R?=1.0 means model
explains all variation in the data

N

R2=0 means model is as good as
predicting average response

Quarterly change in GDP  (A%)

PR B T

R?<0 means model is worse than C 10 05 00 05 10 15 20
pred|ct|ng average Output (rare) Quarterly change in the unemployment rate (A%)



Overfitting and underfitting

34



Challenge in machine learning: generalization 35

Why not learn the most complex predictor that can work flawlessly for the training
data and be done with it? (i.e., predicts every training data point correctly)

Problem: may not generalize to unseen data —
called overfitting the training data.

In other words, memorization is not generalization

Mitigation: Fit the training set but don’t "over-
do” it -- regularization.

. may be sensitive to noise in training data
black: more robust and can generalize better



Overfitting and Underfitting

Overfitting Right Fit Underfitting

Classification

Low bias Decent bias High bias
High complexity ,Decent complexity, Low complexity

Regression . P

|deal: select a model that trades off bias & complexity, i.e.,
- sophisticated enough to capture meaningful patterns for accurate predictions,
- yet not so intricate that it overfits the data. Low complexity Low bias



Model selection

L A s s
Examples of model complexity: underfitting i overfitting

high bias high variance

* The number of features used for
prediction (more features =>
more complex)

* The weight of the predictors
used for prediction
(higher weight => more complex)

Prediction error

best model

. _training error

Model selection: choosing model

with “just right” complexity for data
Model complexity



Regularization in regression

38
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Outliers in Linear Regression

0.5

1.0

Outlier “pulls” regression
line away from inlier
data, which results in
overfitting

Need a way to ignore or
to down-weight impact
of outlier

https://www.jmp.com/en us/statistics-knowledge-portal/what-is-multiple-regression/mir-residual-analysis-and-outliers.html



https://www.jmp.com/en_us/statistics-knowledge-portal/what-is-multiple-regression/mlr-residual-analysis-and-outliers.html

Dealing with Outliers

Too many outliers can indicate many things: heavy-tailed data,
corrupted data, bad data collection, ...

A few ways to handle outliers...

This lecture: penalize extreme weights to avoid overfitting (Regularization)



Regularization

Regularization helps avoid overfitting to training data...

Model = argmin, . Loss(Model, Data) + X - Regularizer(Model)

/™

TR Regularization Regularization Penalty
%1 . Strength

95

Y o4

93 -

Red model is without regularization

Green model is with regularization

92 - *




Regularized Least Squares

A couple reqgularizers are so common they have specific names

L2 Regularized Linear Regression
« Ridge Regression

L1 Regularized Linear Regression
* LASSO -- “Least Absolute Shrinkage and Selection Operator”



Regularized Least Squares

Ordinary least-squares estimatiorJ\V (no regularizer),
wOLS = arg mui)n Z(y@ — ’wTﬁUz')2
1=1

Quadratic Penalty

= argmin E —wh )+ S llwl wlf? = > w
=1

L2-regularized Least-Squares (Ridge)

L1-regularized Least-Squares (LASSQ) Absolute value (L1) Penalty

d
_argmmg —whz;)? + Aw| |W|:zlwf|
=1



Scikit-Learn : L2 Regularized Regression

sklearn.linear_model.Ridge

class sklearn.linear_model.Ridge(alpha=1.0, *, fit_intercept=True, normalize="deprecated’, copy_X=True, max_iter=None, to(=0.001,
solver="auto', positive=False, random_state=None) 1 [source]

alpha : {float, ndarray of shape (n_targets,)}, default=1.0
Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and
reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to 1 /
(2¢) in other linear models such as LogisticRegression or LinearsVc. If an array is passed, penalties are
assumed to be specific to the targets. Hence they must correspond in number.

Alpha is what we have been calling A



Scikit-Learn: L2 Regularized Regression

Define and fit OLS and L2 regression,

ols=linear model.LinearRegression/()
ols.fit (X train, y train)
ridge=linear model.Ridge (alpha=0.1)
ridge.fit (X train, y train)

Plot results,

fig, ax = plt.subplots()

ax.scatter(X train, y train, s=50, c="black", marker="o")
ax.plot (X test, ols.predict (X test), color="red", label="OLS")
ax.plot (X test, ridge.predicttx_test}, color="blue", label="1L2")

plt.legend()
plt.show()

L2 (Ridge) reduces impact of any single data point
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Prediction error

A

Choosing Regularization Strength

We need to tune regularization Strength to get the best performance...

A 2
= argmm E —wl'z;)? §Hw\|
underfitting overfitting

high bias i high variance

High A => learned w has small weights
Increases bias & decreases complexity

. best model

. training error

Model selection: How should we

: roperly tune A?
Model complexity properly

Regularization strength 4



Naive idea: using training loss to choose regularization

How to choose a good A7

First, we need set of candidate A’s
e.g., geometric grid A = {0.1, 0.2, 0.4, .., 1000}

Is the following a good approach?

For each A € A:
Train ridge estimator w; with regularization A

Return: w; with the smallest training loss

No — this likely always chooses the smallest 4
which is prone to overfitting

Prediction error

\ ) i
underfitting i overfitting
high bias : high variance

: ot
H 5\ G“
)

. best model

: {raining error

A 4

Model complexity

Regularization strength A4



Model Selection approach 1: hold-out validation set

How to choose a good A € A?

Partition data into Train-Validation-Test sets

/T N\

Fit Each Model Evaluate / Select Assess Model
Model

* Ideally, Test set is kept in a “vault” and only peek at it once final predictor is selected
« Small dataset: 50% Training, 25% Validation, 25% Test (rule of thumb by statisticians)
* For large data (say a few thousands), 80-10-10 is usually fine.




Model Selection approach 1: hold-out validation set

Key idea: use validation performance as a
proxy of test performance

For each A € A:

« Train ridge estimator w; with training set nder. { o

with regularization A
 measure performance e; of w; on

Return wy, 4:the A with the best e, value

Regularization strength 4



Model Selection for Linear Regression

A couple of common metrics for model selection...

Residual Sum-of-squared Errors The total squared residual
error on the held-out validation set,
N

‘ 1
Lower the better RSS = Z(yz — ngj?;)2 ,,:l.,hﬂ.-%s’H‘foLT“fﬁ ftfrlI

1=1

Coefficient of Determination Also called R-squared or R2.
Higher the better

Model selection metrics are known as “‘goodness of fit” measures



Model Selection approach 2: cross-validation

Main idea: improve data efficiency by splitting the training / validation
data in multiple ways

K-fold Cross Validation: Partition training
data into K “chunks” and for each run
select one chunk to be validation data

| | | | | run 1
| | | | | run 2

For each run, fit to training data (K-1
I I I I | run3 chunks) and measure performance on
| | | | | run 4 validation set. Average model

performance across all runs.

K =5, 10 are typical good choices

Source: Bishop, C. PRML



Cross-validation: formal description

For each A € A:
Fork € {1,..., K}
Train ridge estimator f with S \ fold,
measure performance ey, of f on fold,

1
Compute average performance: E; = — X1 €k

Choose 1 := best 1 according to E,
Train f using S with hyperparameter A

What is the largest possible value of K?
K = |S]| -- this is called leave-one-out cross validation (LOOCV)

fold,,

Training set S




“Shrinkage™ Feature Selection

Regularization down-weight features that are not useful for prediction...

Quadratic penalty A||wl|?* down-weights
(shrinks) features that are not useful for
prediction

Term LS  Ridge
Intercept 2.465 2.452
lcavol  0.680 0.420
lweight 0.263 0.238
age —0.141 —0.046

l1bph  0.210 0.162
sui, 0,300, o 0.227
Ilcp —0.288  0.000 '—> L2 regularization learns zero-weight

gleason —0.021 " 0.040 for log capsular penetration (Icp)
pge4b 0.267 0.133

Example Prostate Cancer Dataset predicts
prostate-specific cancer antigen with features:
age, log-prostate weight (lweight), log-benign
prostate hyperplasia (Ibph), Gleason score
(gleason), seminal vesical invasion (svi), etc.

[ Source: Hastie et al. (2001) ]



Feature Weight Profiles

L1 penalty more likely learns coefficients that are zero, thus induces sparsity
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sklearn.linear model.Lasso

class sklearn.linear_model.Lasso(alpha=1.0, *, fit_intercept=True, normalize="deprecated', precompute=False, copy X=True,
max_iter=1000, tol=0.0001, warm_start=False, positive=False, random_state=None, selection="cyclic) 1 [source]

Parameters: alpha : float, default=1.0
Constant that multiplies the L1 term. Defaults to 1.0. alpha = @ is equivalent to an ordinary least square,
solved by the LinearRegression object. For numerical reasons, using alpha = @ with the Lasso object is not
advised. Given this, you should use the LinearRegression object.

fit_intercept : bool, default=True
Whether to calculate the intercept for this model. If set to False, no intercept will be used in calculations (i.e.
data is expected to be centered).

precompute : ‘auto’, bool or array-like of shape (n_features, n_features), precompute
Whether to use a precomputed Gram matrix to speed up calculations. The Gram matrix can also be passed as
argument. For sparse input this option is always False to preserve sparsity.

copy_X : bool, default=True
If True, X will be copied; else, it may be overwritten.



Specialized methods for cross-validation...

sklearn.linear model.LassoCV

class sklearn.linear_model.LassoCV(* eps=0.001, n_alphas=100, alphas=None, fit_intercept=True, normalize="deprecated’,

precompute="auto', max_iter=1000, tol=0.0001, copy_X=True, cv=None, verbose=False, n_jobs=None, positive=False,

random_state=None, selection="cyclic") [source]

Computes solution using coordinate descent

sklearn.linear _model.LassolarsCV

class sklearn.linear_model.LassolarsCV(*, fit_intercept=True, verbose=False, max_iter=500, normalize="'deprecated',
precompute="auto’, cv=None, max_n_alphas=1000, n_jobs=None, eps=2.220446049250313e-16, copy_X=True, positive=False) 1

[source]

Uses least angle regression (LARS) to compute solution path

Their results are similar; LassoCV may be more stable



L1 Regression Cross-Validation

Perform L1 Least Squares (LASSO) 20-fold cross-validation,

model = LassoCV(cv=20).fit(X, y) or

model = lLassolarsCV(cv=20, normalize=False).fit(X, y)

Mean square error on each fold: coordinate descent (train time: 0.38s)

3800
- I
Plot solution path for range of alphas, K- |
1 1
}
pit.figure() 20 validation error curves (dashed) s
ymin, ymax = 2300, 3800 5 i
plt.semilogx(model.alphas + EPSILON, model.mse path , ":™) o ] e :
I [
plt.plot( ; F 3000 ﬁ:
model.alphas_ + EPSILON, mean curve (solid) |
model.mse path .mean(axis=-1), Bl [P E
wyp_n B gl 1 1 S
k 3 2600 1  ceeeeseeernrrziziro . :
label="Average across the folds", oea,
- Average across the folds
linewidth=2, 24001 --- alpha: CV estimate
) 10'-2 10'-1 1(')0
plt.axvline( a
model.alpha_ + EPSILON, linestyle="--", color="k", label="alpha: CV estimate”
) R

— alpha_ value chosen by cross validation



Quiz 8

Let’s fit a linear regression model y = w - x on the following
training data:

#bedrooms (x) House price / 100K (y)

1 2
2 4

Draw the training data points in an x-y plane

Write down the mean square error as a function of w
Find w that minimizes the mean square error

Draw the liney =w - x



Quiz 8

Draw the training data points in an x-y plane

Write down the mean square error as a function
of w

1
E((\Az-1—2)2+(w-2—4)2)
2.5w? — 10w + 20

Find w that minimizes the mean square error
b

A:——:Z
W 2a

Interpretation: every additional bedroom will increase the house price by 200K

Draw the liney =w - x




Announcements 4/2

Review Grades for Quiz 7

@ Regrade Requests Open @ Grades Not Published
Quiz 7 graded .
0 o 0 o .
0.0 04 0z 03 04 05 06 07 08 09 .0

MMMMMM m Median Maximum Mean Std Dev@

0.8 0.9 1.0 0.87 0.07

Note:
- normal distribution with mean 50 and stddev 0.5 is denoted as N (50, 0.5%) — note
the square

N(50,0.5%)

« There is no such thing as -- we can talk about the distribution of 110 when

X ~ N(50,0.5%) though

We are working on answering questions on Piazza..

Midterm grades will be capped at 100



Prediction error

A

Choosing Regularization Strength

We need to tune regularization Strength to get the best performance...

A 2
= argmm E —wl'z;)? §Hw\|
underfitting overfitting

high bias i high variance

High A => learned w has small weights
Increases bias & decreases complexity

. best model

. training error

Model selection: How should we

: roperly tune A?
Model complexity properly

Regularization strength 4



L1 Regression Cross-Validation

Perform L1 Least Squares (LASSO) 20-fold cross-validation,

model = LassoCV(cv=20).fit(X, y) or

model = lLassolarsCV(cv=20, normalize=False).fit(X, y)

Mean square error on each fold: coordinate descent (train time: 0.38s)

3800
- I
Plot solution path for range of alphas, K- |
1 1
}
pit.figure() 20 validation error curves (dashed) s
ymin, ymax = 2300, 3800 5 i
plt.semilogx(model.alphas + EPSILON, model.mse path , ":™) o ] e :
I [
plt.plot( ; F 3000 ﬁ:
model.alphas_ + EPSILON, mean curve (solid) |
model.mse path .mean(axis=-1), Bl [P E
wyp_n B gl 1 1 S
k 3 2600 1  ceeeeseeernrrziziro . :
label="Average across the folds", oea,
- Average across the folds
linewidth=2, 24001 --- alpha: CV estimate
) 10'-2 10'-1 1(')0
plt.axvline( a
model.alpha_ + EPSILON, linestyle="--", color="k", label="alpha: CV estimate”
) R

— alpha_ value chosen by cross validation






Feature selection

Use only a few features to make predictions

Benefits of using only a few features:
Model selection — trades off between bias and complexity

Interpretability — makes the model trustworthy by e.g. doctors
and policy makers

E.g. cardiovascular disease risk
= 0 x physical activity + 3.5 x smoking + 2.8 x cholesterol + ...



Rate of Prostate Cancer

RATE OF NEW PROSTATE CANCERS BY AGE GROUP
UNITED STATES, 2019
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Example: Prostate Cancer Dataset 66

Best LASSO model learns to ignore several features (age, Icp, gleason, pgg45).

Term LS Ridge Lasso
Intercept 2.465  2.452  2.468
lcavol 0.680 0.420 0.533 Task: predict logarithm of prostate specific

llwelgh_t L _02{‘{3_ _ [1_2‘38_ . Q lbg antigen (PSA).

" Tbph _0'2-[6 - f] Tt":')_ 0002 Wit | v not & sianfieant oredictor of
. y ait...Is age really not a significant predictor o
_.svi 0305 _0.227 .OQU.J‘I prostate cancer? What's going on here?
- lecp —0.288  0.000 .
!gleason —0.021  0.040 I

Age is highly correlated with other factors and
thus not significant in the presence of those
factors



Best-Subset Selection

The optimal strategy for p features looks at models over all possible
combinations of features,

For k in 1,..,p:
subset = Compute all subset of k-features (p-choose-k)

For kfeat 1n subset:
model = Train model on kfeat features
score = Evaluate model using cross-validation

Choose the model with best cross-validation score
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Best-Subset Selection

000

age Log prostrate weight Log cancer volume

Models with 1 variable: Models with 2 variables: Models with 3 variables:

Model 1 || X Modeld || X; JIL %2 ..”

Model 2

Model 3




Feature Selection: Prostate Cancer Dataset

Best subset works well

reasonably good test error, low standard deviation, and only based on two features!

Term LS - Best Subset * Ridge Lasso
Intercept 2.465 | 2,477 | 2452 2.468
lcavol 0.630 | 0.740 | 0.420  0.533
lweight  0.263 - 0.316 - 0.238 0.169
age —0.141 | 1 —0.046
1bph 0.210 | | 0.162  0.002
svi  0.305 " 0.227  0.094
lcp  —0.288 | | 0.000
gleason —0.021 - 0.040
pggas  0.267 | I 0.133
Test Error  0.521 0.492 . 0.492 0.479
Std Error  0.179 . 0.143 , 0.165 0.164

[ Source: Hastie et al. (2001) ]
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Best-Subset Selection : Prostate Cancer Dataset

Time complexity

» Data have 8 features, there are 8-choose-k subsets for each
k=1,...,8 for a total of 255 models

» Using 10-fold cross-val requires 10 x 255 = 2,550 training
runs!

* In general, 0O(2P) time complexity

70



Start with a model with no variables
Null Model

L L)

Add the most significant variable

Keep adding the most significant variable until reaching
the stopping rule or running out of variables

Model with 2 variables

00 | |




Forward Sequential Selection

An efficient method that adds the most predictive feature one-by-one

featSel = empty
featUnsel = All features
For iter in 1,..,p:
For kfeat in featUnsel:
thisFeat = featSel + kfeat
model = Train model on thisFeat features
score = Evaluate model using cross-validation
featSel = featSel + bestscoring feature
featUnsel = featUnsel - best scoring feature
Choose the model with best cross-validation score

72



Start with a model that contains all the variables

Full Model

Keep removing the least significant variable until
reaching the stopping rule or running out of variables

Mode with 3 variables



Backward Sequential Selection

Backwards approach starts with all features and removes one-by-one

featSel = All features
For iter in 1,..,p:
For kfeat in featSel:
thisFeat = featSel - kfeat

model = Train model on thisFeat features
score = Evaluate model using cross-validation

featSel = featSel - worst scoring feature

Choose the model with best cross-validation score
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MSE(w(k))
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Comparing Feature Selection Methods

Sequential selection is greedy, but often performs well...

® Dest Subset
Forward Stepwise
Backward Stepwise
Forward Stagewise

.,
®

LN ]

b .........:litol..l..

o —

I I T I I T
10 15 20 25 30

Subset Size k

Example Feature selection on data
with p=30 features with pairwise
correlations (0.85). True feature
weights are all zero except for 10
features, with weights drawn from
N(0,6.25).

Seqguential selection with p features
takes O(p”) time, compared to
exponential time for best subset

Seqguential feature selection available in Scikit-Learn under:
feature selection.SequentialFeatureSelector
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