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Probability
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Classical probability model

Assume each outcome is equally likely, and sample space is 
finite, then the probability of event is:

Number of elements

in event set

Number of possible

outcomes (e.g. 36)

This is called classical probability model

Special case
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Example: dice roll

• Suppose we roll two fair dice. A = {First die shows up 1}, B = {two dices 
summing up to 5}

• Find P(A), P(B), P(A and B)

• All 36 outcomes equally likely 

• 𝑃 𝐴 =
6

36

• 𝑃 𝐵 =
4

36

• 𝑃 𝐴, 𝐵 =
1

36

𝐴 = { 1,1 , 1,2 , 1,3 , 1,4 , 1,5 , (1,6)}

𝐵 = { 1,4 , 2,3 , 3,2 , 4,1 }

𝐴 ∩ 𝐵 = { 1,4 }



Another attempt

• Suppose we roll two fair dice. B = {two dices summing up to 5}. Find P(B).

• Two dices can sum to any number in 2, .., 12

• Define the sample space to be 

{two dices summing up to 2, …, two dices summing up to 12}

• All outcomes are equally likely, so P(B) = 
1

11

• What’s wrong with this solution?
• With the outcomes defined this way, It is incorrect that all outcomes are equally likely!



Rules of probability 

• To recap and summarize: 



Example: dice roll

• Suppose we roll two fair dice. A = {First die shows up 1}, B = {two dices 
summing up to 5}. Find P(A or B).

• Two ways to solve this question:

1. Find the event 𝐴 ∪ 𝐵

2. Use inclusion-exclusion rule

𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴, 𝐵 =
9

36
=
1
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• Equivalence between operations of sets and operations of propositions

• And ∩, Or ∪, Not 𝐶

• Set operation identities apply (e.g. De Morgan’s Law)



Independence of events

• Independence of two events

Fact: if 𝐴, 𝐵 are independent, then: 

• 𝐴𝐶 and 𝐵 are independent

• 𝐴 and 𝐵𝐶 are independent

• 𝐴𝐶 and 𝐵𝐶 are independent

𝑃 𝐴𝐶 , 𝐵 = 𝑃 𝐴𝐶 𝑃(𝐵)



Independence of events

• Independence of multiple events

• Events 𝐴1, … , 𝐴𝑛 are independent if for any subsets 𝐴𝑖1 , … , 𝐴𝑖𝑗, 

𝑃 𝐴𝑖1 , … , 𝐴𝑖𝑗 = 𝑃 𝐴𝑖1 ⋅ … ⋅ 𝑃(𝐴𝑖𝑗)

Important consequence: 
𝑃 𝐴1, . . , 𝐴𝑛 = 𝑃 𝐴1 ⋅ … ⋅ 𝑃(𝐴𝑛)



Example: lightbulbs

• Suppose we have three lightbulbs, each is on with 
probability 0.4, independently. What is the probability that at 
least one lightbulb is on?

• 𝐸1: light 1 is on; same for 𝐸2, 𝐸3
• We are asked to find 𝑃(𝐸1 ∪ 𝐸2 ∪ 𝐸3)

• Note: 𝑃(𝐸1 ∩ 𝐸2 ∩ 𝐸3) is easy to find, but not quite what we 
want



Example: lightbulbs

• Suppose we have three lightbulbs, each is on with probability 0.4, 
independently. What is the probability that at least one lightbulb is 
on?

• We can use De Morgan’s Law: 

• 𝑃 (𝐸1∪ 𝐸2 ∪ 𝐸3
𝐶
) = 𝑃(𝐸1

𝐶 ∩ 𝐸2
𝐶 ∩ 𝐸3

𝐶)

= 𝑃 𝐸1
𝐶 𝑃 𝐸2

𝐶 𝑃(𝐸3
𝐶)

= 0.63

Thus, 𝑃 𝐸1 ∪ 𝐸2 ∪ 𝐸3 = 1 − 0.63



Repeated independent trials

• Suppose we have three lightbulbs, each is on with probability 
0.4, independently. What is the probability that exactly 2 
lightbulbs are on?

• 0.420.61?

•
3
2
0.420.61

• Why? Three outcomes: (on, on, off), (on, off, on), (off, on, on)

• This is also the basis of binomial distributions (Galton board)



Example: basketball

• Imagine a basketball player who takes three-point shots. 
Suppose they successfully make a three-pointer with a 
probability of 30% (p = 0.3), and each shot is independent of 
the others.

• What is the probability that exactly 10 shots are taken to 
make 5 successful three-pointers?

Possible shot history: 

SSSSFFFFFS

SSSSSFFFFF?

Last trial must be a ‘S’         



Example: basketball

The probability we are looking for is

𝑃 4 successes in first 9 shots and success in 10𝑡ℎ shot

= 𝑃 4 successes in first 9 shots × 𝑃(success in 10𝑡ℎ shot)

= 9
4
𝑝4 1 − 𝑝 5 × 𝑝

Side note: the number of shots until exact 5 successes is known to 
follow from a negative binomial distribution with parameter 
(r=5,p=0.3) 

• generalizes geometric distributions



Conditional probability; probabilistic reasoning
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Conditional Probability

• Consider the ways 𝐵 can occur in the context of 𝐴 (i.e., 𝐴 ∩
𝐵), out of all the ways 𝐴 can occur: 

𝑃 𝐵 𝐴 =
𝑃(𝐴∩𝐵)

𝑃(𝐴)

• This allows us to do probabilistic reasoning: 
• Compare 𝑃 𝐵 𝐴 with 𝑃(𝐵)

• Suppose I am tested positive. Does this information increase my 
likelihood of getting COVID?

𝐴

𝐵

𝐴 ∩ 𝐵



Freshmen JuniorsSophomores Seniors

CS Maj

Basic probability facts for probabilistic reasoning

Law of Total Probability Suppose 
𝐵1, … , 𝐵𝑛 form a partition of the 
sample space 𝑆. Then,  
𝑃 𝐴 = 𝑃 𝐴, 𝐵1 +⋯+ 𝑃(𝐴, 𝐵𝑛)

Bayes rule

𝑃 𝐴 𝐵 =
𝑃 𝐴 ⋅ 𝑃 𝐵 𝐴

𝑃(𝐵)

Prior probability Support of evidence

Posterior probability



Conditional Probability

• Useful tools to reason about conditional probability: 

1. Two-way tables

Law of total probability: summing over rows / columns



Conditional Probability

2. Probability trees

Law of total probability: summing over relevant branches

Conditional probability: weight of a branch relative to all relevant branches

0.18

0.72

0.08

0.02



Example: two boxes

• Select a box randomly and select a ball from it randomly. 
Probability that the selected ball is red?

• 𝐵1: Box 1 selected; 𝐵2: Box 2 selected; 𝐴: a red ball selected

• 𝑃 𝐴 = σ𝑖=1
2 𝑃 𝐵𝑖 𝑃 𝐴 𝐵𝑖 =

1

2
×

60

100
+

1

2
×

10

30
=

7
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Example: two boxes

• Select a box randomly and select a ball from it randomly. We 
are told it is red. Probability that box 1 was selected?

• 𝑃 𝐵1 ∣ 𝐴 =
𝑃(𝐴,𝐵1)

𝑃(𝐴)

=
𝑃 𝐵1 𝑃(𝐴∣𝐵1)

σ𝑖 𝑃 𝐵𝑖 𝑃(𝐴∣𝐵𝑖)
=

1

2
×

60

100
1

2
×

60

100
+
1

2
×
10

30

=
9

14



Independence revisited

• Is disjointness equivalent to independence?
• No, they are kind of opposite!



Random variables
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Random variables

• Random variables: variables whose values are not 
deterministic but random



Discrete RVs

• The stochastic properties of RVs 𝑋 are summarized by their 
probability distribution laws, represented by 

• Cumulative distribution function 𝐹

• Or, probability mass function 𝑓

1

4

1

2

1

4



Probability and odd (HW3)

• In gambling, odds of 4:1 means for every 1 unit you bet, you 
could win 4 unit in profit if the event occurs, while risking 1 unit in 
loss if it doesn’t  

• Suppose you believe that 𝐴 happens with probability 𝑝. Should 
you make the bet?

• You believe that your winning 𝑋 is distributed as 

• You should make the bet when E X = 𝑝 ⋅ 4 + −1 1 − 𝑝 > 0,
• i.e, 𝑝 > 0.2

𝑥 4 -1

𝑃(𝑋 = 𝑥) 𝑝 1 − 𝑝



Probability and odd (HW3)

• In 2015/2016, English Premier 
Soccer Team Leicester City won 
the championship, even though 
that they were listed with 5,000-
to-1 odds to win the league

• What is the predicted probability 
of they winning the league?



Discrete RVs

• Converting 𝑋’s CDFs to PMF and the other way around

• Given 𝑋’s PMF, find its expectation E[𝑋]

• Given 𝑋’s PMF, find 𝑓(𝑋)’s PMF

• Given 𝑋’s PMF, find E[𝑓(𝑋)]
• The expectation formula (the rule of the lazy statistician) 

• Find Var[𝑋]
• Alternative formula: Var 𝑋 = E 𝑋2 − E 𝑋 2



An example

• Suppose 𝑋 ∼ Geom
1

2

• i.e., 𝑃 𝑋 = 𝑥 =
1

2𝑥
, for integer 𝑥

• What is 𝑌 = 2𝑋’s PMF?

• What is E[𝑌]?

• σ𝑥 2
𝑥 ⋅

1

2𝑥
= σ𝑥 1 = +∞

𝑥 1 2 3 …

𝑃(𝑋 = 𝑥) 0.5 0.25 0.125

𝑦 2 4 8 …

𝑃(𝑌 = 𝑦) 0.5 0.25 0.125



An example

• E 𝑌 = +∞

• This is called the St. Petersburg’s Paradox
• journal of the Imperial Academy of Sciences in St. Petersburg in 

1738, by Daniel Bernoulli

• Even though the expected winnings is infinite, in reality, most
people would not pay a large amount to play this game

𝑦 2 4 8 …

𝑃(𝑌 = 𝑦) 0.5 0.25 0.125



Continuous RVs

• For continuous RVs 𝑋, PMF is irrelevant. Probability 
distribution laws represented by: 

• Cumulative distribution function 𝐹

• Or, probability density function 𝑓

𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑎
𝑏
𝑓(𝑥) 𝑑𝑥



Continuous RVs

• Converting 𝑋’s CDFs to PDFs and the other way around
• We may ask you to do simple integration (review examples & 

antiderivatives covered in class)
• Keep in mind the “area under curve” interpretation of integration

• Given 𝑋’s PMF, find its expectation E[𝑋]

• Given 𝑋’s CDF, find 𝑓(𝑋)’s CDF
• Recommend: go through the examples we had in class about 𝑓 𝑋 = 𝑋 + 𝑎

and 𝑓 𝑋 = 𝑎𝑋 + 𝑏

• Given 𝑋’s PMF, find E[𝑓(𝑋)]
• The expectation formula (the rule of the lazy statistician) 
• Find Var[𝑋]

• Alternative formula: Var 𝑋 = E 𝑋2 − E 𝑋 2



Relationship between RVs and their transformations

• What are the relationships between 𝑋’s PMF / PDF and 
those of 𝑎𝑋 + 𝑏?

• What’s a general expression of E[𝑎𝑋 + 𝑏] using E[𝑋]?

• What’s a general expression of Var[𝑎𝑋 + 𝑏] using Var[𝑋]?



Notable discrete RVs

I expect you to be comfortable with writing down the PMFs of

• Uniform distribution over a set 

• Binomial distribution 

• Geometric distribution

Additionally: understand the meaning of library functions
• scipy.stats.binom.pmf(x, n, p), scipy.stats.binom.cdf(x, n, p)

• scipy.stats.geom.pdf(x, p), scipy.stats.geom.cdf(x, p)

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.geom.html


Uniform distribution over a set

Useful connection to ‘data’ lecture:

• Mean / variance of 𝑋 = Mean / variance of the dataset 𝑆

• PMF of 𝑋 ≈ histogram of 𝑆

More generally, consider 𝑆 = {𝑣1, 𝑣2, … , 𝑣𝑁}; 𝑋 is 
drawn from the uniform distribution of 𝑆, then

𝑃(𝑋 = 𝑘) =
1

𝑁 if 𝑘 ∈ {𝑣1, 𝑣2, … , 𝑣𝑁}

0 otherwise

Discrete Uniform PMF



Example question

• Suppose that a baseball hitter has a probability of success p 
= 0.7, What is the probability that she hits more than 6 times 
(inclusively) out of a total of 15 throws?

• You may use the following outputs:

binom.pmf(5, 15, 0.7) = 0.003

binom.cdf(5, 15, 0.7) = 0.004

binom.pmf(6, 15, 0.7) = 0.012

binom.cdf(6, 15, 0.7) = 0.015



Example question

• Suppose that a baseball hitter has a probability of success p 
= 0.7, What is the probability that she hits more than 6 times 
(inclusively) out of a total of 15 throws?

• 𝑋 ∼ Bin(𝑛 = 15, 𝑝 = 0.7)

• We’d like to find 𝑃(𝑋 ≥ 6)
• Perhaps we can express it as CDF of X?

• 𝑃 𝑋 ≥ 6 = 1 − 𝑃 𝑋 ≤ 5

= 1 − binom.cdf(5, 15, 0.7) = 0.996



Notable continuous RVs

scipy.stats.norm.cdf(x)

scipy.stats.norm.pdf(x)

• I expect you to be comfortable with:

• Writing down the PDF and CDF of continuous uniform distributions

• Writing down the PDF and CDF of normal distributions

• Have a good understanding on scaling and shifting properties of 
normal RVs

• Write 𝑃 𝑎 ≤ 𝑋 ≤ 𝑏 in terms of standard norm CDFs

• Understand the meaning of library function scipy.stats.norm.cdf(x) and 
scipy.stats.norm.pdf(x) – they are standard normal CDFs and PDFs

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#scipy.stats.norm
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.norm.html#scipy.stats.norm


Percentage Point Function (HW4)

• The percentage point function (PPF), also known as the 
quantile function 𝐹−1, is the inverse of the CDF 𝐹

• 𝐹−1(𝑝) = threshold x, such 

that 𝑃 𝑋 ≤ 𝑥 = 𝑝

• 𝐹−1
1

2
: median

• 𝐹−1
1

4
: 1-st quartile 

• Standard normal PPF: scipy.stats.norm.ppf

p=0.8

𝐹−1 𝑝 = 0.84



Percentage Point Function (HW4)

• Fun fact: to draw samples from a distribution with CDF 𝐹, 
we can do it in two steps:

• First, draw 𝑈 ∼ Uniform[0,1]

• Second, return 𝐹−1(𝑈)

• 𝑋 = 𝐹−1(𝑈) has CDF 𝐹 (Exercise)

p=0.8

𝐹−1 𝑝 = 0.84



Multivariate RVs

• Understand the meaning of joint distribution, marginal 
distribution of a pair of RVs (X, Y)

• How to obtain marginal distributions from joint?
• Marginalization

• Summation for discrete (X,Y)

• Integration for continuous (X,Y)



Best of luck!

“Exams are a tool for learning, not the purpose of education.” 
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