

CSC380: Principles of Data Science

Midterm review

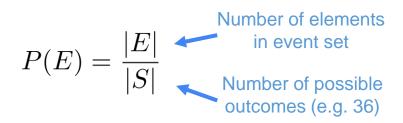
Chicheng Zhang

Probability

Classical probability model

Special case

Assume each outcome is equally likely, and sample space is <u>finite</u>, then the probability of event is:





This is called classical probability model

Example: dice roll

- Suppose we roll two fair dice. $A = \{First die shows up 1\}, B = \{two dices \}$ ٠ summing up to 5}
- Find P(A), P(B), P(A and B) ٠
- All 36 outcomes equally likely ٠
- $P(A) = \frac{6}{36}$
- $P(B) = \frac{4}{36}$ $P(A, B) = \frac{1}{36}$

 $A = \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6)\}$ $B = \{(1,4), (2,3), (3,2), (4,1)\}$ $A \cap B = \{(1,4)\}$

Another attempt

- Suppose we roll two fair dice. $B = \{two dices summing up to 5\}$. Find P(B).
- Two dices can sum to any number in 2, .., 12
- Define the sample space to be {two dices summing up to 2, ..., two dices summing up to 12}
- All outcomes are equally likely, so $P(B) = \frac{1}{11}$
- What's wrong with this solution?
 - With the outcomes defined this way, It is incorrect that all outcomes are equally likely!

Rules of probability

• To recap and summarize:

Rules of Probability

- 1. Non-negativity: All probabilities are between 0 and 1 (inclusive)
- **2.** Unity of the sample space: *P*(*S*) = 1
- **3.** Complement Rule: $P(E^C) = 1 P(E)$
- 4. Probability of Unions:
 - (a) In general, $P(E \cup F) = P(E) + P(F) P(E \cap F)$
 - (b) If E and F are disjoint, then $P(E \cup F) = P(E) + P(F)$

Example: dice roll

- Suppose we roll two fair dice. A = {First die shows up 1}, B = {two dices summing up to 5}. Find P(A or B).
- Two ways to solve this question:
 - 1. Find the event $A \cup B$
 - 2. Use inclusion-exclusion rule

$$P(A \cup B) = P(A) + P(B) - P(A, B) = \frac{9}{36} = \frac{1}{4}$$

- Equivalence between operations of sets and operations of propositions
 - And $\leftrightarrow \cap$, Or $\leftrightarrow \cup$, Not $\leftrightarrow C$
 - Set operation identities apply (e.g. De Morgan's Law)

Independence of events

Independence of two events

```
Independence (version 2)
If A and B are independent events, then
P(A \cap B) = P(A)P(B)
```

Fact: if *A*, *B* are independent, then:

- A^C and B are independent
- A and B^{C} are independent
- A^C and B^C are independent

 $P(A^C, B) = P(A^C) P(B)$

Independence of events

- Independence of multiple events
- Events $A_1, ..., A_n$ are independent if for any subsets $A_{i_1}, ..., A_{i_j}$, $P\left(A_{i_1}, ..., A_{i_j}\right) = P(A_{i_1}) \cdot ... \cdot P(A_{i_j})$

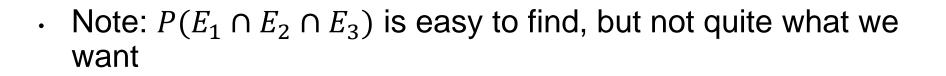
Important consequence:

$$P(A_1,\ldots,A_n)=P(A_1)\cdot\ldots\cdot P(A_n)$$

Example: lightbulbs

 Suppose we have three lightbulbs, each is on with probability 0.4, independently. What is the probability that at least one lightbulb is on?

- E_1 : light 1 is on; same for E_2 , E_3
- We are asked to find $P(E_1 \cup E_2 \cup E_3)$



Example: lightbulbs

- Suppose we have three lightbulbs, each is on with probability 0.4, independently. What is the probability that at least one lightbulb is on?
- We can use De Morgan's Law:
- $P((E_1 \cup E_2 \cup E_3)^C) = P(E_1^C \cap E_2^C \cap E_3^C)$

$$= P(E_1^C)P(E_2^C)P(E_3^C)$$

$$= 0.6^3$$

Thus, $P(E_1 \cup E_2 \cup E_3) = 1 - 0.6^3$

Repeated independent trials

- Suppose we have three lightbulbs, each is on with probability 0.4, independently. What is the probability that exactly 2 lightbulbs are on?
- $\cdot 0.4^2 0.6^1?$
- $\binom{3}{2}$ 0.4²0.6¹

- Why? Three outcomes: (on, on, off), (on, off, on), (off, on, on)
- This is also the basis of binomial distributions (Galton board)

Example: basketball

- Imagine a basketball player who takes three-point shots. Suppose they successfully make a three-pointer with a probability of 30% (p = 0.3), and each shot is independent of the others.
- What is the probability that exactly 10 shots are taken to make 5 successful three-pointers?

Possible shot history:

SSSSFFFFFS SSSSSFFFFF?

Last trial must be a 'S'

Example: basketball

The probability we are looking for is

P(4 successes in first 9 shots and success in 10th shot)= $P(4 \text{ successes in first 9 shots}) \times P(\text{success in 10th shot})$ = $\binom{9}{4}p^4(1-p)^5 \times p$

Side note: the number of shots until exact 5 successes is known to follow from a *negative binomial distribution with parameter* (r=5,p=0.3)

• generalizes geometric distributions

Conditional probability; probabilistic reasoning

Conditional Probability

• Consider the ways *B* can occur in the context of *A* (i.e., $A \cap B$), out of all the ways *A* can occur:

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)}$$

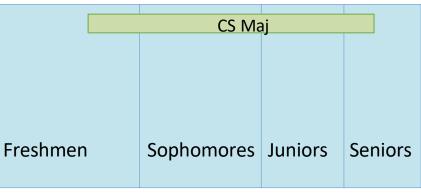
$$A \cap B$$
 A

R

- This allows us to do probabilistic reasoning:
 - Compare P(B | A) with P(B)
 - Suppose I am tested positive. Does this information increase my likelihood of getting COVID?

Basic probability facts for probabilistic reasoning

Law of Total Probability Suppose $B_1, ..., B_n$ form a partition of the sample space S. Then, $P(A) = P(A, B_1) + \dots + P(A, B_n)$





Conditional Probability

• Useful tools to reason about conditional probability:

1. Two-way tables

		Antigen B		
		Absent	Present	Marginal
Antigen A	Absent	0.44	0.10	0.54
	Present	0.42	0.04	0.46
	Marginal	0.86	0.14	1.00

Table: Probability Estimates for U.S. Blood Types

Law of total probability: summing over rows / columns

Conditional Probability

2. Probability trees 0.18 Buzz (B) P(B|H) = 0.2Honest (H) P(H) = 0.9 P(B'|H) = 0.80.72 Pass (B') P(B|H') = 0.8Buzz (B) 0.08 P(H') = 0.1Dishonest (H' P(B'|H') = 0.2Pass (B') 0.02

Law of total probability: summing over relevant branches Conditional probability: weight of a branch relative to all relevant branches

Example: two boxes

 Select a box randomly and select a ball from it randomly. Probability that the selected ball is red?

• B_1 : Box 1 selected; B_2 : Box 2 selected; A: a red ball selected

•
$$P(A) = \sum_{i=1}^{2} P(B_i) P(A \mid B_i) = \frac{1}{2} \times \frac{60}{100} + \frac{1}{2} \times \frac{10}{30} = \frac{7}{15}$$

Example: two boxes

Select a box randomly and select a ball from it randomly. We are told it is red. Probability that box 1 was selected?

•
$$P(B_1 | A) = \frac{P(A, B_1)}{P(A)}$$

= $\frac{P(B_1)P(A|B_1)}{\sum_i P(B_i)P(A|B_i)} = \frac{\frac{1}{2} \times \frac{60}{100}}{\frac{1}{2} \times \frac{60}{100} + \frac{1}{2} \times \frac{10}{30}} = \frac{9}{14}$

Independence revisited

Independent Events

We say that event *A* is **independent** of event *B* if conditioning on *B* does not change the probability of *A*, that is if

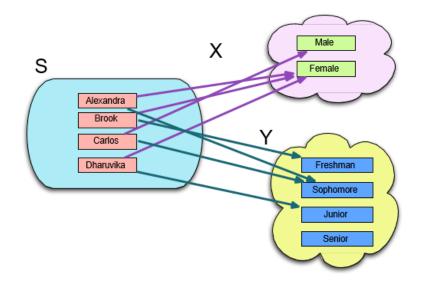
 $P(A \mid B) = P(A)$

- Is disjointness equivalent to independence?
 - No, they are kind of opposite!

Random variables

Random variables

 Random variables: variables whose values are not deterministic but *random*

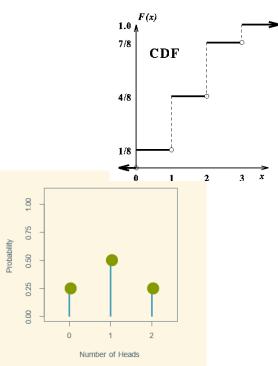


Discrete RVs

- The stochastic properties of RVs X are summarized by their probability distribution laws, represented by
 - Cumulative distribution function F

• Or, probability mass function f





Probability and odd (HW3)

- In gambling, odds of 4:1 means for every 1 unit you bet, you could win 4 unit in profit if the event occurs, while risking 1 unit in loss if it doesn't
- Suppose you believe that *A* happens with probability *p*. Should you make the bet?
- You believe that your winning *X* is distributed as

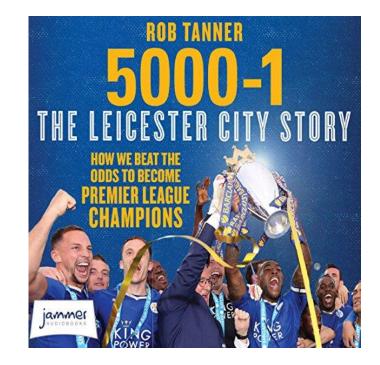
x	4	-1
P(X=x)	р	1 - p

- You should make the bet when $E[X] = p \cdot 4 + (-1)(1-p) > 0$,
 - i.e, p > 0.2

Probability and odd (HW3)

 In 2015/2016, English Premier Soccer Team Leicester City won the championship, even though that they were listed with 5,000to-1 odds to win the league

• What is the predicted probability of they winning the league?



Discrete RVs

- Converting *X*'s CDFs to PMF and the other way around
- Given X's PMF, find its expectation E[X]
- Given X's PMF, find f(X)'s PMF
- Given X's PMF, find E[f(X)]
 - The expectation formula (the rule of the lazy statistician)
 - Find Var[X]
 - Alternative formula: $Var[X] = E[X^2] (E[X])^2$

An example

- Suppose $X \sim \text{Geom}\left(\frac{1}{2}\right)$ $\begin{bmatrix} x & 1 & 2 & 3 & \dots \\ P(X=x) & 0.5 & 0.25 & 0.125 \\ & & & & & \\ \end{array}$ • i.e., $P(X=x) = \frac{1}{2^x}$, for integer x
 - What is $Y = 2^X$'s *PMF*?

У	2	4	8	
P(Y=y)	0.5	0.25	0.125	

• What is E[Y]? • $\sum_{x} 2^{x} \cdot \frac{1}{2^{x}} = \sum_{x} 1 = +\infty$

An example

• $E[Y] = +\infty$

У	2	4	8	
P(Y=y)	0.5	0.25	0.125	

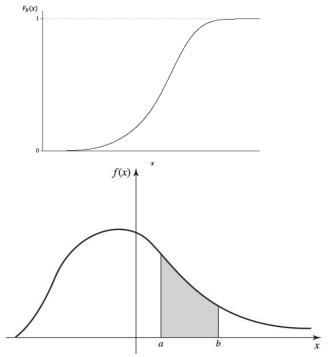
- This is called the *St. Petersburg's Paradox*
 - journal of the Imperial Academy of Sciences in St. Petersburg in 1738, by Daniel Bernoulli
 - Even though the expected winnings is infinite, in reality, most people would not pay a large amount to play this game

Continuous RVs

- For continuous RVs X, PMF is irrelevant. Probability distribution laws represented by:
 - Cumulative distribution function F

• Or, probability density function f

$$P(a \le X \le b) = \int_a^b f(x) \, dx$$



Continuous RVs

- Converting X's CDFs to PDFs and the other way around
 - We may ask you to do simple integration (review examples & antiderivatives covered in class)
 - Keep in mind the "area under curve" interpretation of integration
- Given X's PMF, find its expectation E[X]
- Given X's CDF, find f(X)'s CDF
 - Recommend: go through the examples we had in class about f(X) = X + aand f(X) = aX + b
- Given X's PMF, find E[f(X)]
 - The expectation formula (the rule of the lazy statistician)
 - Find Var[X]
 - Alternative formula: $Var[X] = E[X^2] (E[X])^2$

Relationship between RVs and their transformations

• What are the relationships between X's PMF / PDF and those of aX + b?

- What's a general expression of E[aX + b] using E[X]?
- What's a general expression of Var[aX + b] using Var[X]?

Notable discrete RVs

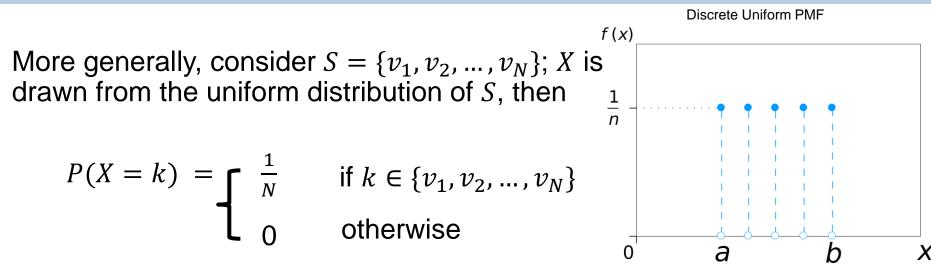
I expect you to be comfortable with writing down the PMFs of

- Uniform distribution over a set
- Binomial distribution
- Geometric distribution

Additionally: understand the meaning of library functions

- scipy.stats.binom.pmf(x, n, p), scipy.stats.binom.cdf(x, n, p)
- scipy.stats.geom.pdf(x, p), scipy.stats.geom.cdf(x, p)

Uniform distribution over a set



Useful connection to 'data' lecture:

- Mean / variance of X = Mean / variance of the dataset S
- PMF of $X \approx$ histogram of S

Example question

 Suppose that a baseball hitter has a probability of success p = 0.7, What is the probability that she hits more than 6 times (inclusively) out of a total of 15 throws?

• You may use the following outputs: binom.pmf(5, 15, 0.7) = 0.003binom.cdf(5, 15, 0.7) = 0.004binom.pmf(6, 15, 0.7) = 0.012binom.cdf(6, 15, 0.7) = 0.015

Example question

 Suppose that a baseball hitter has a probability of success p = 0.7, What is the probability that she hits more than 6 times (inclusively) out of a total of 15 throws?

- $X \sim Bin(n = 15, p = 0.7)$
- We'd like to find $P(X \ge 6)$
 - Perhaps we can express it as CDF of X?
- $P(X \ge 6) = 1 P(X \le 5)$

= 1 - binom.cdf(5, 15, 0.7) = 0.996

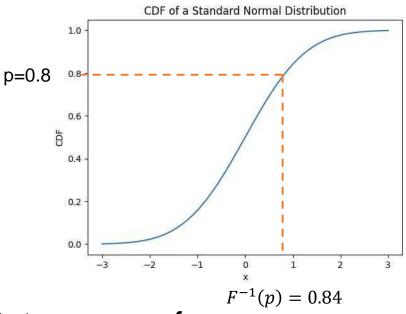
Notable continuous RVs

- I expect you to be comfortable with:
- Writing down the PDF and CDF of continuous uniform distributions
- Writing down the PDF and CDF of normal distributions
 - Have a good understanding on scaling and shifting properties of normal RVs
 - Write $P(a \le X \le b)$ in terms of standard norm CDFs
 - Understand the meaning of library function <u>scipy.stats.norm.cdf(x)</u> and <u>scipy.stats.norm.pdf(x)</u> – they are standard normal CDFs and PDFs

Percentage Point Function (HW4)

• The percentage point function (PPF), also known as the quantile function F^{-1} , is the inverse of the CDF F

•
$$F^{-1}(p)$$
 = threshold x, such
that $P(X \le x) = p$
• $F^{-1}\left(\frac{1}{2}\right)$: median
• $F^{-1}\left(\frac{1}{4}\right)$: 1-st quartile

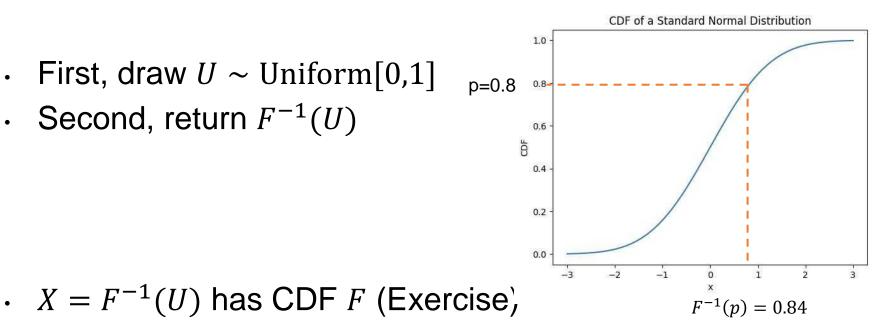


Standard normal PPF: scipy.stats.norm.ppf

Percentage Point Function (HW4)

• Fun fact: to draw samples from a distribution with CDF F, we can do it in two steps:

- First, draw $U \sim \text{Uniform}[0,1]$ ٠
- Second, return $F^{-1}(U)$ ٠



Multivariate RVs

Understand the meaning of joint distribution, marginal distribution of a pair of RVs (X, Y)

- How to obtain marginal distributions from joint?
 - Marginalization
 - Summation for discrete (X,Y)
 - Integration for continuous (X,Y)

Best of luck!

"Exams are a tool for learning, not the purpose of education."