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Abstract
We study active learning with labels from mul-
tiple sources. Specifically, we consider the case
where in addition to the usual labeling oracle, we
are given a weak labeler. The weak labeler pro-
vides cheap labels which may be occassionally
wrong, and our goal is to exploit it to reduce the
number of queries made to the labeling oracle.

In this paper, we provide a learning theoreti-
cal formalization of this problem, and an active
learning algorithm for our formalization. We
provide an analysis of the number of high quality
labels requested by our algorithm, and character-
ize when this algorithm can provide significant
savings over using the high quality labels alone.

1. Introduction
Human interaction has the potential to make machine learn-
ing significantly easier by providing feedback to learning
systems at all stages of learning. Feedback that can be
provided is often complex in nature, and involves multiple
users and different kinds of interaction from heterogeneous
sources. While the theory of basic active learning, where
labels are obtained interactively from a single source, has
been well-developed, the effect of multiple annotators and
different kinds of interaction is not as well understood, par-
ticularly in a formal theoretical setting.

In this paper, we take a step in this direction by considering
a learning theoretic formalization of active learning when
labels are obtained from heterogeneous sources. Specifi-
cally, we consider the case where in addition to the usual
unlabeled data and a labeling oracle O, we have an extra
weak labeler W . The labeling oracle O is an expert on the
problem domain and provides high quality but expensive
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labels. The weak labeler W is cheap, but may provide in-
correct labels on some inputs. In particular, querying the
labeling oracle and the weak labeler at an x give labels from
distributions PO(y|x) and PW (y|x) respectively. Our goal is
to learn a classifier in a hypothesis class whose error with
respect to the data labelled by the oracle O is low, while ex-
ploiting the weak labeler to reduce the number of queries
made to O.

This setting models situations where high quality labels are
expensive while low quality annotations may be readily ob-
tained. For example, a physician’s time may be valuable,
where as lower quality labels may be obtained from medi-
cal residents. A key property of our formalization is that we
allow the weak labeler to be correct in some regions of the
input space and biased in others. This makes our formal-
ization more realistic - medical residents do not diagnose
every case incorrectly with some probability; rather, they
can diagnose the easy cases or common cases, but make
mistakes on rare cases or a certain type of cases.

We next provide an active learning algorithm that exploits
the weak labeler. A natural approach is to learn a difference
classifier to predict where the weak labeler differs from the
labeling oracle, and then use a standard active learning al-
gorithm which queries the weak labeler when this differ-
ence classifier predicts agreement. Our first observation is
that this approach is statistically inconsistent, as false nega-
tive errors (that predict no difference when there is indeed a
difference) lead to biased annotation. We address this prob-
lem by learning instead a cost-sensitive difference classifier
that ensures that false negative errors rarely happen. Our
second key observation is that as existing active learning
algorithms usually query labels only in a localized region
of space, it is sufficient to train the difference classifier re-
stricted to this region and still maintain consistency. This
leads to significant label savings as we can afford higher
error (and thus require less labels) within this localized re-
gion. Combining these two ideas gives us an algorithm.

We analyze the label requirement of our algorithm, and
characterize the conditions under which it provides label
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savings over simply using the labeling oracle. Our analy-
sis shows that as expected we can achieve asymptotic label
savings if the weak labeler agrees with the labeling oracle
for a constant fraction of the examples close to the decision
boundary. Moreover, when the target classification task is
agnostic, the number of labels required to learn the differ-
ence classifier is of a lower order than the number of la-
bels required for active learning; thus in realistic situations,
learning the difference classifier adds a very small overhead
to the total label requirement.

Related Work. There has been a fair amount of empirical
work on active learning from multiple labelers (Donmez &
Carbonell, 2008; Yan et al., 2011; 2012) to name a few;
however theoretical formalization has been rare. (Urner
et al., 2012) was the first to consider learning from weak
teachers in a theoretical setting. In their model, the weak
labeler is more likely to provide incorrect labels in het-
erogenous regions of space where similar examples have
different labels. Their formalization is orthogonal to ours
– while theirs is more natural in a non-parametric setting,
ours is simpler and more natural for fitting classifiers in
a hypothesis class. Our setting can also model situations
where the weak labeler does not necessarily make mistakes
close to the decision boundary – for example, when the data
is clustered, and the weak labeler consistently labels one
cluster incorrectly.

In a NIPS 2014 Workshop paper, (Malago et al., 2014) have
also considered learning from strong and weak labelers;
unlike ours, their work is in the online selective sampling
setting, and applies only to linear classifiers and robust re-
gression. In contrast, our strategy is completely general and
applies to any classification problem.

Finally, there has been a large body of theoretical work on
active learning (Balcan et al., 2009; Dasgupta, 2005; Das-
gupta et al., 2007; Hanneke, 2007; Zhang & Chaudhuri,
2014; Balcan & Long, 2013; Beygelzimer et al., 2010). Our
algorithm builds on disagreement-based active learning.

2. Preliminaries
The Model. We begin with our framework for actively
learning from weak and strong labelers. In the standard
active learning setting, we are given unlabelled data drawn
from a distribution U over an input space X , a label space
Y = {0,1}, a hypothesis class H , and a labeling oracle O
to which we can make interactive queries.

In our setting, we additionally have access to a labeling or-
acle W which we can query interactively. We call W the
weak labeling oracle. Querying W is significantly cheaper
than querying O; however, querying W generates a label
drawn from a conditional distribution PW (y|x) which is not

the same as the conditional distribution PO(y|x) of the ora-
cle O. For simplicity we also assume that oracle O provides
deterministic labels – for any x, PO(y|x) is either 0 or 1.

Let D be the data distribution over labelled examples such
that: PrD(x,y) = PrU (x)PrO(y|x). Our goal is to learn a
classifier h in the hypothesis class H such that with prob-
ability ≥ 1−δ over the samples, we have:

Pr
D
(h(x) 6= y)≤ min

h∗∈H
Pr
D
(h∗(x) 6= y)+ ε

while making as few (interactive) queries to O as possible.

Some remarks on the model are in order. First, observe
that W may disagree with the oracle O anywhere in the in-
put space; this is unlike previous frameworks (Song et al.,
2015) where labels assigned by the weak labeler are cor-
rupted by random classification noise with a higher vari-
ance than the labeling oracle. Second, observe that to keep
our model simple, we also do not assume that the mistakes
made by the weak labeler are close to the decision bound-
ary; however, we will see later that our algorithm will fo-
cus on mistakes made by W close to the decision boundary.
Finally, we allow the oracle O to be non-realizable with
respect to the target hypothesis class H .

Background on Active Learning Algorithms. The stan-
dard active learning setting is very similar to ours, the only
difference being that we have access to the weak oracle W .

There has been a long line of work on active learning (Bal-
can et al., 2009; Cohn et al., 1994; Dasgupta, 2005; Han-
neke, 2007; Balcan & Long, 2013; Dasgupta et al., 2007;
Beygelzimer et al., 2010; Zhang & Chaudhuri, 2014). The
algorithms presented in this paper are based on a style
of algorithms called disagreement-based active learning
(DBAL). The main idea behind DBAL is as follows. Based
on the examples seen so far, the algorithm maintains acan-
didate set Vt of classifiers in H that is guaranteed with high
probability to contain h∗, the classifier in H with the low-
est error. Given a randomly drawn unlabeled example xt ,
if all classifiers in Vt agree on its label, then this label is
inferred. Otherwise, xt is said to be in the disagreement re-
gion of Vt , and the algorithm queries O for its label. Vt is
updated accordingly, and algorithm continues.

Later works (Dasgupta et al., 2007; Beygelzimer et al.,
2010) have observed that it is possible to determine if an
xt is in the disagreement region of Vt without explicitly
maintaining Vt . Instead, a labelled dataset St is maintained;
the labels of the examples in St may be obtained by ei-
ther querying the oracle or direct inference. To determine
whether an xt lies in the disagreement region, we perform
two constrained ERM procedures; we constrain the classi-
fier to output the label of xt as 1 and −1 respectively, and
then minimize the empirical risk over St . If the two classi-
fiers obtained have similar training errors, then xt lies in the
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disagreement region of Vt ; otherwise its label can be safely
inferred.

More Definitions and Notation. The error of a classi-
fier h under a labelled data distribution Q is defined as:
errQ(h) = Pr(x,y)∼Q(h(x) 6= y); we use the notation êrr(h,S)
to denote its empirical error on a labelled data set S. We use
the notation h∗ to denote the classifier with the lowest error
under D, where D is the target labelled data distribution.

Our active learning algorithm will implicitly maintain a
(1− δ )-confidence set for h∗ throughout the algorithm.
Given a set S of labelled examples, a set of classifiers
V (S) ⊆ H is said to be a (1− δ )-confidence set for h∗

with respect to S if h∗ ∈ V with probability ≥ 1− δ over
the choice of S.

Given two classifiers h1 and h2 the disagreement between
h1 and h2 under an unlabelled data distribution U , denoted
by ρU (h1,h2), is Prx∼U (h1(x) 6= h2(x)). Observe that the
disagreements under U form a pseudometric over H . We
use BU (h,r) to denote a ball of radius r centered around
h in this metric. The disagreement region of a set V of
classifiers, denoted by DIS(V ), is the set of all examples
x ∈X such that there exist two classifiers h1 and h2 in V
for which h1(x) 6= h2(x).

3. Algorithm
Our algorithm is based on three key ideas, which we outline
next.

A natural approach to our problem is to learn a difference
classifier hd f in a hypothesis class H d f that predicts when
W differs from O. This hd f is then used in conjunction
with a standard active learning algorithm; on a label query,
if hd f predicts a difference, then we query O, otherwise we
query W . Our first key observation is that this procedure is
statistically inconsistent if the region of difference between
O and W is not realizable in H d f . The reason is that false
negative errors, that is, errors where the difference classifier
incorrectly predicts agreement between W and O, are more
pernicious than false positives, as they lead to biased anno-
tation. We address this by instead learning a cost-sensitive
difference classifier. Because we use cost-sensitive learn-
ing, we can impose a constraint that the false negative er-
ror of the difference classifier is very low, and then mini-
mize the number of predicted positives (or disagreements
between W and O) subject to this constraint. This ensures
that the annotated data used by the active learning algo-
rithm for the target classification task has diminishing bias,
thus ensuring consistency.

The DBAL that builds the target classifier only makes label
queries in the disagreement region DIS(V ) of V , the current
(1−δ )-confidence set for h∗. Our second key contribution

is to exploit this fact to train the difference classifier re-
stricted to DIS(V ). This procedure trivially maintains con-
sistency. Additionally it provides label savings because we
only need to train the difference classifier restricted to this
region to an excess error of O(ε/φ), where ε is the target
error and φ is the probability mass of DIS(V ). If we trained
the difference classifier over the entire space, we would in-
stead require an excess error of O(ε), which would require
more labeled examples.

A problem with this approach however is that as V is be-
ing constantly updated by Agnostic CAL, the disagreement
region DIS(V ) is also constantly changing. Our third key
contribution is to address this by deriving a novel epoch-
based version of Agnostic CAL. We select the epochs such
that after epoch k, the excess error of the target classifier is
εk ≈ 1/2k. At the end of each epoch, V is updated, and a
fresh difference classifier restricted to the disagreement re-
gion of the updated V is trained. An additional issue is how
to determine the number of labeled examples to obtain in
each epoch; if errD(h∗) = ν , then achieving an excess error
of ε requires Õ(dν/ε2) labeled examples, where d is the
VC dimension of the hypothesis class H . However, as ν

is unknown in advance, we cannot determine this number.
We resolve this by using a doubling procedure that adap-
tively determines the number of labeled examples required
to reach the target error at each epoch.

Main Algorithm. Our main algorithm combines these
three key ideas together, and is described in Algorithm 1.
Like certain versions of CAL, our algorithm implicitly
maintains the (1− δ )-confidence set by maintaining a la-
beled dataset Sk. In each epoch, the algorithm proceeds in
three steps – (a) identify the current disagreement region
and infer the labels that can be inferred (b) train a cost-
sensitive difference classifier restricted to the disagreement
region and (c) adaptively does active learning to update
Sk, using the difference classifier to determine whether the
weak or strong oracle should be queried. At the end of the
last epoch, the algorithm returns a classifier in H for the
target classification task.

Note that the procedure LEARN used by these algorithms
is a constrainted empirical risk minimizer (ERM), of the
form used by (Dasgupta et al., 2007; Beygelzimer et al.,
2010). Given a hypothesis class H, a labelled dataset S and
a set of constraining labelled examples C, LEARNH(C,S)
returns a classifier in H that minimizes the empirical er-
ror on S subject to the constraint that h(xi) = yi for each
(xi,yi) ∈C.
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Algorithm 1 Active Learning Algorithm from Weak and
Strong Labelers

1: Input: Unlabelled Distribution U , Target Error ε , La-
beling oracle O, Weak oracle W , hypothesis class H ,
hypothesis class for difference classifier H d f .

2: Output: Classifier ĥ in H .
3: Initialize: Initial error ε0 = 1/2. Total number of

epochs k0 = dlog 1
ε
e.

4: Draw n0 = Õ(d/ε2
0 ) examples and query O for their

labels, forming S0.
5: for k = 1,2, . . . ,k0 do
6: Set Target error εk = εk−1/2.
7: Set nk = Õ(d/ε2

k ). Draw nk unlabelled examples to
form Tk.

8: # Identify Disagreement Region and Infer Labels
9: Ak ← subset of Tk that lies in the disagreement re-

gion. Ck ← rest of Tk, along with their inferred la-
bels.

10: # Train Difference Classifier
11: ĥd f

k ← Train difference classifier on input data
Ak, oracles W and O, target false negative error
εk/2PTk(Ak).

12: # Active Learning using Difference Classifier

13: Adaptively draw mk ≈ Õ(
PTk (Ak)dν

ε2
k

) examples ran-

domly from Ak. For each example x, if ĥd f
k (x) = 1,

then query O for its label; else query W . Add these
labeled examples to Sk.

14: end for
15: return ĥ← LEARNH ( /0,Sk0).

4. Performance Guarantees
We now provide analytical guarantees on the performance
of Algorithm 1. Our guarantees are based on the following
simple assumption on the difference classifier.
Assumption 1. For any r,η > 0, there exists an fη ,r ∈
H d f with the following properties:

Pr( fη ,r(x) =−1∧ x ∈ DIS(BU (h∗,r))∧ yO 6= yW )≤ η(1)
Pr( fη ,r(x) = 1∧ x ∈ DIS(BU (h∗,r)))≤ α(r,η) (2)

(1) states that there exists an fη ,r in H d f with low false
negative error in the disagreement region of BU (h∗,r); this
assumption is trivially satisfied if O is a deterministic la-
beler and if H d f includes the constant classifier that al-
ways predicts 1. (2) in addition states that the number of
positives predicted by this classifier is not very high. We
note α(r,η) ≤ Pr(DIS(BU (h∗,r))) always; we will obtain
a performance gain when α(r,η) is significantly less.

We next show that Algorithm 1 is statistically consistent
– namely, that it achieves its target excess error with high
probability.

Theorem 1 (Consistency). Let h∗ be the classifier that min-
imizes the error with respect to D. If Assumption 1 holds,
then with probability ≥ 1−δ , the classifier ĥ output by Al-
gorithm 1 satisfies: errD(ĥ)≤ errD(h∗)+ ε .

The label complexity of standard DBAL algorithms are
measured in terms of the disagreement coefficient. The dis-
agreement coefficient θ(r) at scale r is defined as: θ(r) =
supr′≥r

PrU (DIS(BU (h∗,r′))
r′ ; intuitively, this measures the rate

of shrinkage of the disagreement region with the radius of
the ball BU (h∗,r).

Theorem 2 (Label Complexity). Let d be the VC dimen-
sion of H and let d′ be the VC dimension of H d f . If
Assumption 1 holds, and if the error of the best classifier
in H on D is at most ν , then with probability ≥ 1−δ , the
following hold:

1. The number of label queries made by Algorithm 1 to
the oracle O in epoch k at most:

mk = Õ
(d(2ν + εk−1)α(2ν + εk−1,εk−1/64)

ε2
k

+
d′Pr(DIS(BU (h∗,2ν + εk−1)))

εk

)
(3)

2. The total number of label queries made by Algorithm 1
to the oracle O is at most:

Õ
(

sup
r≥ε

α(2ν + r,r/64)
2ν + r

·d
(

ν2

ε2 +1
)

+θ(2ν + ε)d′
(

ν

ε
+1
))

(4)

Some remarks on Theorem 2 are in order. The first terms
in (3) and (4) represent the number of labels required for
learning the target classifier, and second terms represent
the overhead incurred to learn the difference classifier. We
observe that provided d ≈ d′, the second term is a lower
order term in the more realistic agnostic case (when ν > 0)
and is of the same order when the target classifier is real-
izable; thus fitting the difference classifier does not incur
a high overhead. We believe that this is because the cost-
sensitive learning problem is realizable and we train the
difference classifier in increasingly smaller regions of the
instance space.

Second, since supr≥ε

α(2ν+r,r/64)
2ν+r ≤ θ(2ν + ε), the worst

case asymptotic label complexity is the same as that of
standard disagreement-based active learning. This la-
bel complexity may be considerably better however if
supr≥ε

α(2ν+r,r/64)
2ν+r is significantly less than the disagree-

ment coefficient. As we expect, this will happen when the
region of difference between W and O restricted to the dis-
agreement regions is small, and this region is well-modeled
by the difference hypothesis class H d f .
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