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ABSTRACT OF THE DISSERTATION

Active Learning and Confidence-rated Prediction

by

Chicheng Zhang

Doctor of Philosophy in Computer Science

University of California, San Diego, 2017

Professor Kamalika Chaudhuri, Chair

This thesis studies active learning and confidence-rated prediction, and the interplay

between these two notions.

Active learning is a machine learning paradigm that allows a learner to perform label

queries over the examples interactively. The goal of active learning is to get an accurate classifier

using only a few label queries. In this thesis, we take a step further in the study of active learning,

with a focus on active learning with complex queries. Specifically:

• We study the problem of active learning with weak and strong labelers. We present a

statistically consistent algorithm that has a lower cost complexity compared to learning

with the strong labeler alone, under certain conditions.

• We consider active learning with a novel type of queries, namely search queries. We show

that in the setting of model selection, using the search queries can substantially reduce the
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labeling effort of active learning.

Confidence-rated prediction considers the learning setting where the learned classifier

is allowed to abstain, i.e. to predict “I Don’t know”. In this setting, abstaining rather than

making a thoughtless classification decision may sometimes be preferable. In this thesis, we

study confidence-rated prediction in batch and online settings, and advance the state of the art

results. Specifically:

• In the batch setting, we propose a linear program based algorithm that has some optimality

properties, and has superior performance over previous approaches.

• In the online setting, we propose an algorithm that achieves minimax optimal tradeoffs

between its performance measures, and establish a novel combinatorial measure called

Extended Littlestone’s Dimension that characterizes this tradeoff.

Furthermore, we propose confidence-based active learning, establishing a connection be-

tween active learning and confidence-rated prediction. We show that our confidence-based active

learning algorithm achieves statistical consistency, works for general hypothesis classes and data

distributions, and has a lower label complexity compared to the state of the art active learning

algorithms.
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Chapter 1

Introduction

1.1 Active Learning

Active learning is a machine learning paradigm that allows a learner to perform label

queries over the examples interactively. Its goal is to get an accurate classifier using only a few

label queries. This is in sharp contrast with the passive learning paradigm, in which the learner

directly draws labeled examples at random from the data distribution.

Active learning is motivated by the large volume of unlabeled data available and expen-

sive labeling effort. Take the task of part-of-speech tagging as an example. In this setting, the

unlabeled examples are sentences from corpora, and the labels are part-of-speech tags for each

word. For instance, the sentence “I see a car” has labels (Pronoun, Verb, Determiner, Noun).

Obtaining labels of sentences requires substantial human effort, as a labeling expert needs to read

and understand the sentences before tagging. By using active learning, our hope is to reduce the

label requirement by utilizing the power of interactive label queries. A typical active learning

algorithm alternates between two steps: first, it makes label queries on some unlabeled examples

based on the current model; second, it updates the current model based on the newly acquired

labeled examples.

The past few decades have witnessed many exciting progress in both theory and practice

of active learning. For example, Tong and Koller [TK01] considers actively learning a linear

classifier for text classification. The support vector machine based learning algorithm selects the

next example to perform label query based on its distance to the current linear separator. It is

1



2

empirically shown in [TK01] that, in various tasks, given the same label budget, the error rate of

the classifier learned by the proposed active learning algorithm is substantially lower than that

trained by passive learning.

In this thesis, we consider active learning in the PAC model [VC71, Val84, KSS94]

(where PAC stands for Probably Approximately Correct). Specifically, the learning algorithm is

given abilities to draw random unlabeled examples from the underlying distribution, and has the

freedom to perform interactive label queries to the unlabeled examples drawn. Its goal is to get

a classifier with a target error rate, with a target success probability, using as few label queries

as possible.

To see why active learning helps reduce the label requirement, let us consider the fol-

lowing simple but illustrative example. Suppose the unlabeled distribution is uniform over the

[0,1] interval, and there is an unknown threshold t∗ ∈ (0,1) such that the examples on its right

(resp. left) is labeled +1 (resp. −1). How many examples are needed for passive learning to get a

classifier with target error rate ǫ? Intuitively, if no examples are in the interval [t∗−2ǫ, t∗ +2ǫ]1,

we cannot hope to make an accurate guess about t∗ (by accurate here we mean within precision

ǫ). It can be shown by a similar but rigorous argument that the sample size needed for passive

learning is at least Ω
(

1
ǫ

)

.

On the other hand, consider the following binary search style active learning algorithm.

First, we randomly draw n = O
(

1
ǫ

)

unlabeled examples, making sure that there is an example

in (t∗− ǫ
2 , t∗) and another example in (t∗, t∗ + ǫ

2 ) with high probability. Next, we query the label

of the example furthest to the left and the one furthest to the right. If they are the same, stop.

If their labels are different, it must be the case where the leftmost label is −1 and the rightmost

label is +1. Then we query the label of the median; the key observation is that once the label of

the median is revealed, we can substantially reduce our search space for the threshold t∗. If the

label is positive then we perform our search within the left half, since we know that the threshold

cannot line on the right of the median point. Symmetrically, if the label is negative we perform

our search within the right half. By performing the search recursively, eventually we find two

neighboring points in the dataset with opposite labels. We now return the midpoint between

these two points as the learned threshold. It can be shown that the error rate of the output

threshold classifier is at most ǫ. Since we are performing binary search, only O (logn) = O
(

ln 1
ǫ

)

1For simplicity, let us assume t∗ ∈ [2ǫ,1 − 2ǫ].
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t

t̂

Figure 1.1: Upper: there is an unknown threshold t that separates positive class (red) and
negative class (blue). Lower: active learning (binary search) makes O(ln 1

ǫ ) label queries, while

passive learning needs Ω( 1
ǫ ) labeled examples.

t∗ t̂

Figure 1.2: If the data does not agree with some threshold classifier, using algorithms in
realizable case (such as binary search) may converge to locally optimal thresholds such as t̂,
which has higher error than globally optimal threshold t∗.

labels are queried. Therefore, active learning provides an exponentially label saving compared to

passive learning. See Figure 1.1 for a pictorial illustration.

Although the above binary search example demonstrates the power of active learning,

challenges still remain in the design of active learning algorithms. First, it is unclear how to

generalize the above example to learn more complex classifiers, such as linear classifiers, decision

trees, etc. Second, in the noisy setting (also known as nonrealizable or agnostic setting), binary

search style algorithms may converge to suboptimal classifiers. Consider an example inspired

by [DH08] (See Figure 1.2 for an illustration). Same as the example in the last paragraph, we

would like to learn a threshold classifier under the uniform distribution. However, this time the

learning problem is not realizable - no threshold classifier perfectly separates the data. Different

from the previous example, there is a large cluster of positive examples on the left. This makes

the globally optimal threshold t∗ lie on the left of the cluster. In this setting, a binary search

style algorithm may behave exactly the same as in the previous paragraph, failing to realize that

the existence of the large positive cluster. Thus, even with the label budget going to infinity,

the error of learned threshold will converge to a locally optimal error value2. This issue, namely

statistical inconsistency, is a key issue we would like to avoid in this thesis. We would like

our active learning algorithm to be statistically consistent, that is, the learned classifier should

converge to the globally optimal one with high probability.

2Furthermore, the learned threshold converges to a locally optimal threshold t̂.
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In addition to feedback from a single labeler, in practice, there are a variety of complex

feedback from human that an active learning algorithm can utilize: for instance, giving hints

on relevant features [PD17, RMJ06], providing examples from given classes [CTGC05, AP10],

returning “I Don’t know” for examples that are ambiguous [YCJ16, HLV+16], etc. Moreover,

there can be multiple labelers available at the same time with different expertise [DC08]. It

is therefore of interest utilizing these types of feedback in a principled way, and understand

under what circumstances active learning algorithms can benefit from them. In the first part of

this thesis (Chapters 4 and 5), we answer these questions by considering two types of complex

feedback: active learning from weak and strong labelers and active learning with a search oracle.

1.1.1 Our Contributions

Active Learning from Weak and Strong Labelers. In Chapter 4, we study the

problem of active learning with weak and strong labelers. In addition to having a labeling oracle

(strong labeler) which provides expensive but correct responses, we are also given a weak labeler

that provides cheap but sometimes wrong label responses. For instance, in medical diagnosis, the

oracle can be thought of as a specialist, while the weak labeler can be thought of as a medical

resident. In this setting, the goal is to learn a classifier with low error, with as small total cost

as possible. We provide an algorithm that works in this setting. Our algorithm has a lower cost

complexity than that of active learning using the oracle alone, under certain conditions on the

similarity between the oracle and the weak labeler.

Active Learning with a Search Oracle. In Chapter 5, we consider active learning

with the help of a new type of oracle - Search oracle. It is motivated by a key challenge in

active learning, namely the rare class problem. Consider the example in Figure 1.3. Suppose we

would like to learn an interval classifier under uniform distribution over [0,1], where the negative

examples (blue) lie in an unknown interval [a∗, b∗]. We assume that ρ, the length of this interval

is Ω(ǫ). Therefore, to learn an accurate classifier, it is necessary to locate the negative class,

in particular identifying at least one negative example. However, finding a negative example is

difficult - no algorithm can find a negative example faster than random search. Therefore, the

number of label requests is at least Ω
(

1
ρ

)

. In the setting where ρ = Θ(ǫ), the label complexity

is Ω
(

1
ǫ

)

, which is no better than the sample complexity of passive learning. The rare class

problem gets more severe when there are small disjuncts structures over the examples, that is,
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a∗ b∗

O(ǫ)

b̂â

Figure 1.3: Upper: suppose the negative class lies in an interval of mass ρ = Θ(ǫ), active
learning is unable to achieve label savings compared to passive learning. Lower: if we are given
a negative example to begin with, then binary search can be applied to achieve exponential
savings on the label complexity.

some classes are spread out into small disjoint “islands”. As a concrete example, the negative

examples lie in a union of k intervals, each of which is a subset of [0,1]. Thus, in order to learn

an classifier with target error, the learning algorithm needs to identify all the islands, the task

in which active learning does not help.

Nevertheless, these problems can be remedied by “seed” examples. For instance, in the

interval learning problem, if we are given a negative example in [a∗, b∗] to begin with, then we

can again perform binary search on both sides of the interval to find an approximate boundary,

reducing the label complexity to O
(

log 1
ǫ

)

. How can we get such seed examples? This motivates

our Search oracle.

Formally, the Search oracle receives a set of classifiers V as input, and returns a coun-

terexample of V . That is, an example on which all classifiers in V disagree with the Bayes

classifier h∗. For example, to ask for a example on which h∗ predicts −1 (a negative example in

the realizable case), we let V be a set that contains only one classifier h that always output +1.

We show that the Search oracle is useful in the setting of model selection, where we would like

to pick a classifier with appropriate complexity to fit the data. By using the additional Search

oracle, the number of label requests can be substantially reduced compared to active learning

algorithms using label queries alone [Han09].

1.2 Confidence-rated Prediction

In many applications of machine learning, misclassification may be costly, but the learn-

ing algorithm has the option to occasionally say “I don’t know”, i.e. to abstain from prediction. It

is therefore essential to develop good algorithms that can trade off misclassification for abstention.
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In the second part of this thesis (Chapters 6 and 7), we study the problem of confidence-rated

prediction, that is, classification with an abstention option.

For instance, in an online credit card fraud detection system, classifying a new transaction

as fraudulent can result in asset loss of customers; however the system has the option to predict

“I Don’t Know” and pass the transaction onto a human expert. Another example is a medical

diagnosis system. When the system is in doubt about a patient’s symptom, it has the option to

say “I Don’t Know” to ask for more examination on the patient, or ask a physician for assistance.

Moreover, confidence-rated prediction can be used in stagewise prediction problems [TS13, MP17].

In this setting, the prediction process is broken into multiple stages. At each stage, the algorithm

has two options: making a prediction, or go to the next stage to gather more information about

the example at the expense of incurring some cost. The goal of the algorithm is predict accurately

with a low cost. Hence it needs to tradeoff between total costs and prediction accuracy. Here,

one can train an confidence-rated predictor for each stage, and use them to decide between the

two options available.

The performance of a confidence-rated predictor is measured by two metrics – the mistake,

or the error, the fraction of examples on which it outputs a wrong label, and the abstention,

or the fraction of examples on which it abstains. Low error and low abstention are desirable.

However, the error of a confidence-rated predictor typically grows with decreasing abstention,

and thus there is a tradeoff between the two. The goal of confidence-rated prediction is to

develop predictors that have good mistake-abstention tradeoffs.

1.2.1 Our Contributions

In this thesis, we advance the state of the art results by establishing improved algorithms

for confidence rated prediction in both batch and online settings.

Improved Confidence-rated Predction in the Batch Setting. In Chapter 6, we

study confidence-rated prediction in the batch setting. We focus on the transductive setting,

in which a set of unlabeled examples is given to the algorithm in the prediction stage, and

the algorithm is asked to output labels or abstentions on all the examples at the same time.

We provide a novel confidence-rated prediction algorithm with error-abstention tradeoffs. Our

algorithm is fully general, in the sense that it applies to any hypothesis class and any data

distribution. We show that our algorithm is optimal in the realizable case, in the sense that
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any other algorithm that has the same error guarantee will necessarily have the same or higher

abstention rate. We provide extensions to the non-realizable case and show empirical evidence

that it has a better error-abstention tradeoff over previous approaches.

Optimal Confidence-rated Predction in the Online Setting. In Chapter 7, we

consider the problem of online confidence-rated prediction. At time t, the learner is given an

example xt, and is asked to output either the correct label for xt or abstain from prediction.

Then the true label of the instance yt is revealed, and the process goes on iteratively. We provide

a minimax analysis on the mistake-abstention tradeoff in the realizable case, where there is some

classifier in a hypothesis class that agrees with all the examples shown. Our key contribution is to

define a combinatorial measure of hypothesis classes named Extended Littlestone’s Dimension,

which characterizes the optimal tradeoff between mistakes and abstentions in this setting. It

naturally exploits the underlying structures of hypothesis classes. Using this notion, we develop

a minimax algorithm, namely the extended standard optimal algorithm, that achieves the optimal

tradeoff in the realizable case. Our algorithm significantly improve over previous works [LLWS11,

SZB10]. Moreover, we provide upper bounds in non-realizable settings, which does not appear

in prior work.

1.3 Interplays between Active Learning and Confidence-

rated Prediction

Intuitively, active learning and confidence-rated prediction are connected in the following

sense. If an active learning algorithm decides not to query for the label of an example x, it may

be certain about its label. Thus, if we (hypothetically) ask it to make confidence-rated prediction

on x, then it is unlikely that it will abstain on x. This heuristic motivates a wide range of active

learning algorithms, for instance [LG94, LS06]. However, the heuristic lacks a rigorous theoretical

analysis in the literature, with the only exception being [EYW12]. [EYW12] proposes a reduction

from realizable active learning to perfect confidence-rated prediction (with zero error guarantees).

This naturally motivates the following question: is it possible to build a stronger reduction from

active learning to confidence-rated prediction? Possible directions include establishing reductions

that works beyond realizable settings, and relaxing the zero-error requirement on confidence-rated

prediction in the reduction, etc.
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1.3.1 Our Contributions

In Chapter 8, we propose confidence-based active learning, answering the above question.

Taking a step beyond [EYW12], we show that active learning can be further reduced to imperfect

confidence-rated prediction, even in the agnostic setting. Specifically, we show that given any

confidence-rated predictor with guaranteed error, we can plug it into our confidence-based active

learning framework, getting an algorithm that achieves statistical consistency. Furthermore, if we

plug in our novel confidence-rated predictor in Chapter 6, we get a new active learning algorithm

that works for general hypothesis classes and data distributions, achieves statistical consistency,

and has the state of the art label complexities in various settings. Specifically, its label complexity

bound is sharper than known disagreement-based approaches [Han14].



Chapter 2

Related Work

In this chapter, we give a literature review over works related to this thesis. We focus on

three fields: active learning, confidence-rated prediction and the connection between these two

notions.

2.1 Active Learning

Active Learning with Label Queries. According to [Das11], the two main threads

of research on active learning with label queries are exploitation of cluster structure [DH08,

UWBD13, KUBD15], and efficient search in hypothesis spaces. In this thesis, we focus on the

latter: we are given a hypothesis class H, and the goal is to find an h ∈H that achieves a target

excess generalization error, while minimizing the number of label queries. Three main approaches

have been studied in this setting: generalized binary search, disagreement-based active learning

and margin-based active learning. We review each line of approach respectively.

1. The first and most natural approach is generalized binary search [FSST97, Das04, Das05,

Now11, GK11, YCJ16, CHK17, TD17], which was analyzed in the realizable case by [Das05]

and in various limited noise settings by [Kää06, Now11, NJC13, YCJ16]. It generalizes the

one-dimensional binary search example in Chapter 1 and roughly follows the following

process. We keep a set of candidate classifiers V that contains the optimal classifier h∗.

Now, for the next example to query, we find the one that best “bisects” the candidate

set, where the measure of the candidate set can be described using Bayesian posterior

9
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probability, volume, cardinality, etc. Finding such queries has the benefit that, whichever

the revealed label is, the measure of the updated candidate set is guaranteed to be reduced

by a large factor. While this approach has the advantage of low label complexity, it is in

general statistically inconsistent in the case where there is unknown noise [DH08].

2. The second approach, disagreement-based active learning (DBAL), achieves statistical con-

sistency even with unknown noise. Its main idea is as follows. Same as generalized bi-

nary search, based on the examples seen so far, the algorithm maintains a candidate set

Vt of classifiers in hypothesis class H that is guaranteed with high probability to con-

tain h∗. Given a randomly drawn unlabeled example xt, if all classifiers in Vt agree

on its label, then its label is inferred; observe that with high probability, this inferred

label is h∗(xt). Otherwise, xt is said to be in the disagreement region of Vt, and the

algorithm queries for its label. Vt is updated based on xt and its label based on gen-

eralization error bounds in statistical learning theory [VC71], and the algorithm contin-

ues. Note that by using these sample-based statistics, disagreement-based active learn-

ing manages to tolerate unknown noise in general data distributions. [CAL94] provides

the first disagreement-based algorithm for the realizable case. [BBL09] provides an ag-

nostic disagreement-based algorithm, which is analyzed in [Han07] using a generic notion

named disagreement coefficient. [Fri09, Wan11] provide examples showing non-trivial dis-

agreement coefficient bounds for various learning problems. We remark that the notion

of disagreement coefficient is also known as Alexander’s capacity function [Ale87] in the

empirical process literature, and is used by [RR11] to establish lower bounds for active

learning. [Han09, Kol10, HY12] give algorithms that are adaptive to the Tsybakov noise

conditions [MT04, Tsy04]. [DHM07, BDL09, BHLZ10, BHK+11, ABDL13, HAH+15] have

observed that it is possible to determine if an unlabeled example xt is in the disagreement

region of Vt without explicitly maintaining Vt. This observation has led to practical im-

plementations. Instead, a labeled dataset St is maintained; the labels of the examples in

St are obtained by either querying the oracle or direct inference. To determine whether

an xt lies in the disagreement region of Vt, two constrained empirical risk minimization

(ERM) procedures are performed; empirical risk is minimized over St while constraining

the classifier to output the label of xt as 1 and −1 respectively. If these two classifiers

have similar training errors, then xt lies in the disagreement region of Vt; otherwise the
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algorithm infers a label for xt that agrees with the label assigned by h∗. Chapter 4 of this

thesis will use this idea to maintain implicit candidate sets.

3. The third line of work, margin-based active learning [BBZ07, BL13, ABL14, ABHU15,

ABHZ16], achieves a better label complexity than disagreement-based approaches for ac-

tive learning linear classifiers under the uniform distribution and log-concave distributions.

Its main idea is as follows. The algorithm keeps a linear classifier over time, and proceeds in

epochs. At each epoch, it samples a few examples from a “low margin” region, that is, the

region in which the examples’ projection along the current linear classifier are small. Then,

based on the newly acquired examples, it retrains its learned linear classifier. When the al-

gorithm terminates, it outputs its learned linear classifier. In [ABL14, ABHU15, ABHZ16],

computational efficiency issues in noisy settings are also addressed by combining the above

algorithmic framework with several novel procedures, such as hinge loss minimization, poly-

nomial regression, soft outlier removal, etc. As can be seen, a major limitation of margin-

based active learning is that they apply only to a restricted setting of hypothesis classes

and data distributions, and it is not apparent how to apply it generally.

Our confidence-based active learning algorithm in Chapter 8 combines the advantages

of both disagreement-based active learning and margin-based active learning - on one hand, it

works for general hypothesis classes and unknown data distributions; on the other hand, it has

a lower label complexiy compared to disagreement-based approaches. For more references on

the theory and practice of active learning, we refer the reader to the excellent surveys by [Set10,

Das11, Han14].

Active Learning with Complex Label Queries. There has been a considerable

amount of empirical work on active learning where multiple annotators can provide labels for the

unlabeled examples. One line of work assumes a generative model for each annotator’s labels.

The learning algorithm learns the parameters of the individual labelers, and uses them to decide

which labeler to query for each example. [YRFD11, YRF+12, FZL+12] consider separate logistic

regression models for each annotator, while [LMW14, LMW15] assume that each annotator’s

labels are corrupted with a different amount of random classification noise. A second line of

work [DC08, IPSW14] that includes Pro-Active Learning, assumes that each labeler is an expert

over an unknown subset of categories, and uses data to measure the class-wise expertise in order to

optimally place label queries. In general, it is not known under what conditions these algorithms
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are statistically consistent, particularly when the modeling assumptions do not strictly hold, and

under what conditions they provide label savings over regular active learning. [UBS12], the

first theoretical work to consider this problem, consider a model where the weak labeler is more

likely to provide incorrect labels in heterogeneous regions of space where similar examples have

different labels. Their formalization is orthogonal to ours in Chapter 4 – while theirs is more

natural in a non-parametric setting, ours is more natural for fitting classifiers in a hypothesis

class. [MCR14] have also considered learning from strong and weak labelers; unlike ours, their

work is in the online selective sampling setting, and applies only to linear classifiers and robust

regression. [DGS12] study learning from multiple teachers in the online selective sampling setting

in a model where different labelers have different regions of expertise. [YCJ16, HLV+16] study

settings where the labeling oracle is allowed to refrain from returning a binary label, i.e. to

answer “I don’t know”. Adaptive algorithms that utilize both label and abstention feedback are

designed to identify the target classifier.

Active Learning with General Queries. [Ang87, Ang04] study upper and lower

bounds of exact learning (where the goal is to identify the underlying classifier h∗ from a finite

hypothesis class H) with a wide range of queries, such as membership query, equivalence query,

subset query, superset queries, etc. Specifically, the membership query model is similar to PAC

active learning, but instead allowing an algorithm to synthesize an unlabeled example to query for

its label. It has also been analyzed in the context of generalized binary search, see [CN07, Now11,

YCJ16, CHK17]. The equivalence query model studies the setting where the learning algorithm

is allowed to present to the oracle a classifier and ask for its counterexamples. In this setting,

[Lit87] establishes an equivalence between the mistake bound model in online classification and

equivalence query model. This immediately implies that the Littlestone’s Dimension characterizes

the minimax optimal query complexity in this model. The partial equivalence query model

[MT89] generalizes the equivalence query model by allowing the learning algorithm to present a

binary classifier defined only on a subset of the instance domain X and ask for its counterexamples

on that subset. [Han06] considers a general setting of exact learning, where the algorithm is

allowed to choose from a collection of queries of varying costs. The work of [Han06] reduces the

problem to a minimax game and provides a greedy algorithm that achieves a cost complexity

that is at most a factor of log |H| worse than optimal cost complexity, where H is the hypothesis

class. [BH12] considers a new type of query, namely class-conditional query (CCQ), motivated
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by computer vision applications [CTGC05]. When making a CCQ, the algorithm presents to the

oracle a set of unlabeled examples U and a class label c, and ask the oracle to return a example

from U in class c. In Chapter 5 of this thesis, motivated by practical applications [AP10, SCL+14],

we study a new type of queries named Search. Search can be viewed as a special case of partial

equivalence queries, and can be simulated by CCQ.

Most of these works study active learning by interacting with a single oracle only, with

the exception of [Han06, XZM+17, KLMZ17]. [Han06] considers an example where the learning

algorithm is allowed to combine label queries with CCQ, and shows that its algorithm can get

a low cost complexity in this setting. [XZM+17, KLMZ17] study combining label queries with

pairwise ranking queries for PAC learning in noiseless and noisy settings. In Chapter 5, we

consider the setting where we have both Search and Label oracles available, where Search

may have a higher cost compared to Label. We propose algorithms that use Search to assist

Label, getting improved Label complexity over Label-only active learning algorithms [Han09].

2.2 Confidence-rated Prediction

While confidence-rated prediction has been empirically studied since the pioneering work

of Chow [Cho70], there has been relatively little work that provides guarantees while making

minimal generative assumptions. Theoretical work in this area falls roughly into two settings –

batch and online.

Confidence-rated Prediction in the Batch Setting. In the batch setting, early

theoretical work due to [FMS04] proposes an algorithm that outputs the label predicted by a

weighted majority of classifiers, and abstains when agreement among this weighted majority is

below a threshold. When the training set size n is large enough, their algorithm achieves error

2ǫ∗ +O(1/n1/2−c) and abstention 5ǫ∗ +O(
√

ln |H|/n1/2−c) where ǫ is the minimum error of any

hypothesis in the classH, and c is a constant. In contrast, our goal in Chapter 6 is to provide error

guarantees of the form ǫ∗ +η for any η, and minimize abstention under these guarantees. A second

line of work [HW06, BW08, YW10] considers confidence-rated prediction by thresholding a real

valued function that belongs to a fixed function class. They show consistency when the prediction

function and the associated abstention threshold is learned from data by an ERM procedure.

[KKM12, KT14] study a related problem called reliable learning, and gives a predictor that

achieves low error at the expense of abstentions. The abstention region in [KKM12] is defined as
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the disagreement region of two classifiers, one being positive reliable and the other being negative

reliable, using the notations of [KKM12]. In contrast, our abstention regions in Chapter 6 can be

more general. [Bal16] considers the problem in transductive setting, where the goal is to make

aggregated predictions with abstention based on an ensemble of classifiers, where error upper

bounds on individual classifiers are known. [CDM16b, CDM16a] considers the setting where the

abstention costs are example-dependent, and proposes a convex loss minimization framework to

tackle this problem.

A recent learning-theoretic treatment of confidence-rated prediction in the batch setting

has been proposed by El-Yaniv and Wiener [EYW10, EYW11]. [EYW10] addresses the realizable

case and provides a predictor which abstains on examples which lie in the disagreement region

of the version space; this predictor achieves zero error, and its abstention rate is equal to the

probability mass of the disagreement region. [EYW11] shows how to extend this algorithm to

the non-realizable case so as to get zero error with respect to the best hypothesis in the class.

Motivated by [DHM07, BHLZ10], they provide a confidence-rated predictor for the non-realizable

case that works for any abstention rate. Their predictor does not offer error guarantees (other

than for zero error), but has superior empirical performance compared with using the distance

from the decision boundary in SVM [GWBV02, Muk03]. In contrast, we give an algorithm in

Chapter 6 that gives error-abstention tradeoffs for a range of error guarantees η ≥ 0, and show

its optimality in the realizable case.

Confidence-rated Prediction in the Online Setting. The first formal framework

for online learning with abstentions is the Knows What It Knows (KWIK) model [LLWS11].

[LLWS11] formalizes versions of this model for both classification and regression settings, and

provides a classification algorithm that achieves no mistakes and |H|− 1 abstentions when the

sequences provided are realizable for a finite hypothesis class H. [SS11] provides algorithms

for online regression that apply even when the realizability assumption is relaxed. In [SZB10],

the KWIK model is relaxed in the classification setting by allowing the learner to make ≤ k

mistakes. Their work presents an algorithm that, given a finite hypothesis class H, can make

at most k mistakes with at most (k + 1)|H| 1
k+1 abstentions. [DZ13] extends [SZB10] by provid-

ing efficient algorithms for the class of disjunctions. Our work in Chapter 7 provides minimax

mistake-abstention tradeoffs that improves over these works in the realizable setting, and more-

over addresses the more challenging nonrealizable setting. Finally, another important line of work
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for online classification with abstentions is conformal prediction [SV08], which, given a confor-

mity measure R and an error probability measure δ, shows a strategy for constructing confidence

sets in an online manner that contain the correct label with probability 1− δ. Our framework

differs from this line of work in that the conformity measure for us is not specified.

There is a large volume of literature on online classification when no abstentions are

allowed. The mistake bound model, initially proposed by [Lit87], considers online binary classifi-

cation in the realizable case. [Lit87] also introduces the standard optimal algorithm and optimal

mistake bound (aka Littlestone’s dimension Ldim(H)). There has been much literature on devel-

oping algorithms for specific hypothesis classes in the mistake bound model; see [SSBD14, CBL06]

for examples. [BPS09] considers online classification (with no abstentions) in the agnostic case;

they show that if the hypothesis class H has finite Littlestone’s dimension, then it is possi-

ble to design an online prediction algorithm that makes l + Õ(
√

Ldim(H)T + Ldim(H)) mis-

takes over T rounds, where l is the minimum error of any hypotheses in H. In follow-up work,

[RST10, RSS12, RST15b, RST15a] have developed a rich theory of online learning, and defined

complexity measures such as sequential Rademacher complexity, and sequential covering number

that characterize the complexity of online learning. However, this theory does not apply to online

learning with abstentions.

2.3 Interplay between Active Learning and Confidence-

rated Prediction

The confidence-rated prediction algorithm of [EYW10] can be seen as a reminiscent of

the classical active learning algorithm of [CAL94], which queries labels of examples that only lie

in the disagreement region of the version space, and the notion of zero error with respect to best

hypothesis in H in [EYW11] is similar to those used by [DHM07, Han07].

A formal connection between disagreement-based active learning in realizable case and

perfect confidence-rated prediction (with a zero error guarantee) was established by [EYW12].

Specifically, they show that if the perfect confidence-rated predictor has a abstention rate of

O(polylog(m)
m ), then disagreement-based active learning algorithms [Han14] will have a label com-

plexity of O(polylog(1
ǫ )). Subsequent work [WHEY15] show that the converse is also true via a

sample compression argument, thus proving these two conditions are equivalent. [GEY17] further
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show a similar equivalence in the non-realizable case.

An imperfect confidence-rated predictor is implicitly proposed in the literature on margin-

based active learning [BBZ07, BL13]. Specifically, the confidence-rated predictor abstains on an

example if its projection on the current linear classifier is small, i.e. it has a small “margin”. The

algorithm achieves a lower label complexity compared to disagreement-based algorithms in the

case when the underlying distribution over x is uniform or log-concave. However, it does not

apply to general hypothesis classes and data distributions. Nevertheless, it provides evidence that

a deeper connection between active learning and confidence-rated prediction might be possible

via imperfect confidence-rated predictions. Indeed we establish such a connection in Chapter 8.



Chapter 3

Preliminaries

In this chapter, we introduce some definitions that will be used throughout the thesis.

3.1 Basic Notations

Define the indicator function 1(·) as follows: 1(A) = 1 if predicate A is true, 1(A) = 0 if A

is false. We call function f(·) = Õ(g(·)) if f(·) = O(g(·) lng(·)). For a set A, define A∗ := ∪∞
k=0Ak

as the set of sequences whose elements are from A.

3.2 PAC Learning

The PAC learning model [VC71, Val84, KSS94] is a standard model in statistical learning

theory. In this model, examples belong to an instance space X , and their labels lie in a label

space Y = {−1,1}; labeled examples are drawn from an underlying data distribution D on X ×Y.

We use DX or U to denote the unlabeled distribution, that is, the marginal distribution of D on

X . We use DY |X to denote the conditional distribution on Y |X = x induced by D. A classifier,

or hypothesis h is a mapping from X to Y. A hypothesis class (or hypothesis space) H is a set

of classifiers.

Given a hypothesis class H of VC dimension d, the error of any h ∈H with respect to a

distribution Π over X ×Y is defined as errΠ(h) = P(x,y)∼Π[h(x) 6= y]. We will also use err(h,Π)

to denote errΠ(h), and if Π = D, we will simply write err(h). We define the optimal classifier in

17



18

H with respect to Π as h∗(Π) = argminh∈H errΠ(h), and optimal error as ν∗(Π) = errΠ(h∗(Π)).

We will also use h∗ to denote h∗(D), and use ν∗ to denote ν∗(D). When ν∗ = 0, we are said to

be in the realizable case; in the more general agnostic case, we make no assumptions on the data

distribution D, and thus ν∗ can be positive. For a set of examples S, we abuse notation and use

S to also denote the uniform distribution over its elements. We say that classifier h is consistent

with dataset S if for every example (x,y) in S, h(x) is equal to y. We define probability over

Π as PΠ[·] := P(x,y)∼Π[·], and expectation over Π as EΠ[·] := E(x,y)∼Π[·]. The excess error of

classifier h in H is defined as the difference between its error and the optimal error in H, that is

err(h)− ν∗.

The goal of PAC learning is to develop a learning algorithm A, such that it receives

learning parameters ǫ,δ ∈ (0,1) as input, draws examples from D, and returns a classifier h in H

with excess error ǫ with probability 1− δ. As discussed in Chapter 1, this basic model without

label queries is called PAC passive learning. A key quantity of interest in PAC passive learning

is the sample complexity, that is, how many examples are needed to achieve the PAC learning

goal. This is made precise in the following definition.

Definition 3.1 (Sample Complexity in PAC Passive Learning). A PAC passive learning algo-

rithm A is said to (ǫ,δ)-learn a hypothesis class H with sample complexity n(ǫ,δ), if it draws

n(ǫ,δ) random examples iid from D, and outputs a classifier ĥ ∈H such that with probability at

least 1− δ, errD(ĥ)≤ ν∗(D) + ǫ.

3.3 Active Learning

In Chapters 4, 5, and 8, we study (variants of) active learning in the PAC setting. In

this setting, the learner does not draw labeled examples directly from D. Instead, it has access

to examples through two oracles – an example oracle EX which returns an unlabeled example

x ∈ X drawn from DX and a labeling oracle Label which returns the label y of an input x ∈ X

drawn from DY |X . Based on the interaction between the two oracles, the algorithm returns its

learned classifier as output.

Similar to the goal of PAC passive learning, the goal of PAC active learning is to develop

a learning algorithm A, such that it receives learning parameters ǫ,δ ∈ (0,1) as input, query the

oracles EX and Label, and returns a classifier h in H with excess error ǫ with probability 1− δ.
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A key quantity of interest in active learning is label complexity, that is, how many label

queries are needed to learn a classifier with excess error ǫ with probability 1− δ. This is made

precise in the following definition. Note that in active learning, we usually do not optimize for

the number of unlabeled examples drawn. However, as we will see in subsequent chapters, the

number of unlabeled examples is usually no worse than the sample complexity of passive learning.

Definition 3.2 (Label Complexity in PAC Active Learning). A PAC active learning algorithm

A is said to (ǫ,δ)-learn a hypothesis class H with label complexity m(ǫ,δ), if it draws a set of

unlabeled examples iid from DX through oracle EX, performs m(ǫ,δ) queries to oracle Label,

and outputs a classifier ĥ ∈H such that with probability at least 1− δ, errD(ĥ)≤ ν∗(D) + ǫ.

In the sample complexity and label complexity bounds of PAC passive and active learning,

we use the following convention: the Õ notation sometimes hides ln 1
δ factors.

Previous approaches to agnostic active learning have frequently used the notion of dis-

agreements [Han14]. The disagreement between two hypotheses h1 and h2 with respect to a data

distribution Π is the fraction of examples according to Π to which h1 and h2 assign different

labels; formally, ρΠ(h1,h2) = PΠ[h1(x) 6= h2(x)]. Observe that a data distribution Π induces a

pseudo-metric ρΠ on the elements of H; this is called the disagreement metric. For any r and

any h ∈ H, define BΠ(h,r) to be the disagreement ball of radius r around h with respect to the

data distribution Π. Formally, BΠ(h,r) = {h′ ∈H : ρΠ(h,h′) ≤ r}. We will also use ρ to denote

ρD, and use B to denote BD.

Define the region of disagreement of a set of hypotheses V as Dis(V ) := {x ∈X : ∃h,h′ ∈

V s.t. h(x) 6= h′(x)}. We denote the disagreement region of a disagreement ball of radius r

centered around h∗ by ∆(r) := Dis(B(h∗,r)). A key quantity, namely disagreement coefficient

has been defined by [Han09] to analyze disagreement-based active learning algorithms. We define

it formally here.

Definition 3.3 (Disagreement Coefficient). The disagreement coefficient of V at scale r is

θV (r) := sup
h∈V,r′≥r

PDX
[Dis(B(h,r′))]

r′
.

Intuitively, this measures the rate of shrinkage of the disagreement region with the radius

of the ball B(h,r) for any h in V . If V =H is the whole hypothesis class, we use θ(r) to denote
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θV (r).

For minor technical reasons, we assume the hypothesis space is “dense”, that is, for all

r > 0, suph∈B(h∗,r) ρ(h,h∗) = r. We will call this the “denseness assumption”.

In the active learning algorithms in Chapters 4, 5, and 8, we will maintain a candidate set

of classifiers, either explicitly or implicitly. In the realizable case, we use version spaces [Mit82]

as candidate sets.

Definition 3.4 (Version Space). The version space with respect to a set S of labeled examples

is the set of all h ∈H such that h(x) = y for all (x,y) ∈ S.

In the nonrealizable case, the version space can be empty due to the non-separability of

the data. Instead, we use a probabilistic notion, namely (1−α)-confidence set as the candidate

set of classifiers.

Definition 3.5 (Confidence Set). Given a set S of n labeled examples, let C(S)⊆H be a function

of S; C(S) is said to be a (1− α)-confidence set for the true risk minimizer if for all data

distributions ∆ over X ×Y,

PS∼∆n [h∗(∆) ∈ C(S)]≥ 1−α,

Recall that h∗(∆) = argminh∈H err∆(h).

3.4 Confidence-rated Prediction in the Batch Setting

In Chapter 6, we study confidence-rated prediction in the batch setting. Formally, a

confidence-rated predictor is a function P :X →{−1,+1,⊥} which takes an input from a domain

X , and either outputs a label in {−1,1} or ⊥ to indicate “I don’t know”. Our goal is to develop

algorithms, which, given a labeled training dataset drawn from an underlying distribution D,

builds a confidence-rated predictor based on the training data.

The performance of a confidence-rated predictor is measured by two metrics – its error

and its abstention. Usually there is tradeoff between these two metrics - if we are allowed more

errors, then the abstention rate can be reduced.

Definition 3.6 (Error of a Confidence-rated Predictor). The error of a confidence-rated predictor

P with respect to the true labels, denoted by errD(P ) is the fraction of examples from D on which
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P predicts 1 when the true label is −1 and vice versa. Formally,

errD(P ) = PD[P (x) =−y].

Definition 3.7 (Abstention of a Confidence-rated Predictor). The abstention absD(P ) of a

confidence-rated predictor P is the fraction of examples from the underlying data distribution D

on which P abstains (that is, it predicts ⊥). Formally,

absD(P ) = PD[P (x) =⊥].

3.5 Confidence-rated Prediction in the Online Setting

In Chapter 7, we consider the setup of online learning, where examples arrive sequentially

and may be adversarial. We focus on a specialized setting, i.e. online confidence-rated prediction.

In this setting, the interaction between the learner and the adversary can be described as follows.

For rounds t = 1,2, . . . ,n:

1. The adversary presents an instance xt from instance space X .

2. The learner makes a prediction ŷt in {−1,+1,⊥}.

3. The adversary reveals the true label yt in {−1,+1}.

Specifically, we focus on the deterministic prediction setting, where the learner is only

allowed to output ŷt deterministically. We remark that a natural randomized prediction model

can also be considered, although it will not be covered in this thesis.

Note that if ŷt is only allowed to be chosen from {−1,+1}, then the setting comes down

to online classification, in which the mistake bound model is proposed [Lit87]. In the mistake

bound model, the performance of the learner is measured by
∑n

t=1 I(ŷt =−yt), its total number

of mistakes.

In contrast to mistake bound model, in the setting of online confidence-rated prediction,

the performance of the learner is measured by two quantities: first, its total number of mistakes
∑n

t=11(ŷt =−yt) and second, its total number of abstentions
∑n

t=11(ŷt =⊥). We remark these

two performance metrics are similar to those in the batch setting, except for that we are counting

their absolute numbers instead of their fractions. The goal of the learner is to minimize its total
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mistakes and its total abstentions simultaneously. Similar to the batch setting, usually there is

a tradeoff between these two measures - if the learning algorithm is allowed more mistakes, the

number of abstentions can be reduced and vice versa.

For deterministic learners, it is always suboptimal for the adversary to present an example

on which the learner predicts correctly, as this will only impose additional constraints on examples

shown in the future without changing the number of mistakes and abstentions made. A round t

is called nontrivial if the learner makes a mistake or abstains on that round.

We consider the k-SZB model, named after its authors [SZB10]. As we will see, it is an

interpolation between the mistake bound model [Lit87] and the KWIK (Know What It Knows)

model [LLWS11], and is defined as follows.

Definition 3.8 (The k-SZB model). An online learning algorithm A achieves a (k,m)-SZB

bound with respect to a set of sequences S ⊆ (X ×{−1,+1})∗, if and only if for any adversary

that presents sequences S = ((x1,y1), . . . ,(xn,yn)) in S, A’s prediction ŷ1, . . ., ŷn ∈ {−1,+1,⊥}

satisfies
n
∑

t=1

1(ŷt =−yt)≤ k,

n
∑

t=1

(1(ŷt =−yt) +1(ŷt =⊥))≤m.

In other words, the algorithm guarantees that the number of mistakes is at most k,

and number of nontrivial rounds (where the algorithm makes a mistake or abstains) is at most

d. When k = 0, this is exactly the KWIK model [LLWS11]. When the learner not allowed to

abstain, the number of mistakes is the same as the number of nontrivial rounds. In this case, the

model comes down to the mistake bound model [Lit87].



Chapter 4

Active Learning from Weak and

Strong Labelers

4.1 Introduction

In this chapter, we study the problem of active learning from weak and strong labelers.

Specifically, in addition to unlabeled data and the usual labeling oracle O in standard active

learning 1, we have an extra weak labeler W . The labeling oracle is a gold standard – an expert

on the problem domain – and it provides high quality but expensive labels. The weak labeler

is cheap, but may provide incorrect labels on some inputs. An example is learning to classify

medical images where either expensive labels may be obtained from a physician (oracle), or

cheaper but occasionally incorrect labels may be obtained from a medical resident (weak labeler).

Our goal is to learn a classifier in a hypothesis class whose error with respect to the data labeled

by the oracle is low, while exploiting the weak labeler to reduce the number of queries made to

this oracle. Observe that in our model the weak labeler can be incorrect anywhere, and does

not necessarily provide uniformly noisy labels everywhere, as was assumed by some previous

works [CKW05, SCS15].

A plausible approach in this framework is to learn a difference classifier to predict where

the weak labeler differs from the oracle, and then use a standard active learning algorithm

1We use O as Label in this chapter for notational brevity.

23
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which queries the weak labeler when this difference classifier predicts agreement. Our first key

observation is that this approach is statistically inconsistent; false negative errors (that predict

no difference when O and W differ) lead to biased annotations for the target classification task.

We address this problem by learning instead a cost-sensitive difference classifier that ensures that

false negative errors rarely occur. Our second key observation is that as existing active learning

algorithms usually query labels in localized regions of space, it is sufficient to train the difference

classifier restricted to this region and still maintain consistency. This process leads to significant

label savings. Combining these two ideas, we get an algorithm that is provably statistically

consistent and that works under the assumption that there is a good difference classifier with

low false negative error.

We analyze the label complexity of our algorithm as measured by the number of label

requests to the labeling oracle. In general we cannot expect any statistically consistent algorithm

to provide label savings under all circumstances, and indeed our worst case asymptotic label

complexity is the same as that of active learning using the oracle alone. Our analysis characterizes

when we can achieve label savings, and we show that this happens for example if the weak labeler

agrees with the labeling oracle for some fraction of the examples close to the decision boundary.

Moreover, when the target classification task is agnostic, the number of labels required to learn

the difference classifier is of a lower order than the number of labels required for active learning;

thus in realistic cases, learning the difference classifier adds only a small overhead to the total

label requirement, and overall we get label savings over using the oracle alone.

4.2 Preliminaries

The Model. We begin with a general framework for actively learning from weak and

strong labelers. Recall the notations in Chapter 3, in standard active learning, we are given

unlabeled data drawn from a distribution U over an input space X , a label space Y = {−1,1}, a

hypothesis class H, and a labeling oracle O to which we can make interactive queries.

In our setting, we additionally have access to a weak labeling oracle W which we can

query interactively. Querying W is significantly cheaper than querying O; however, querying W

generates a label yW drawn from a conditional distribution PW [yW |x] which is not the same as

the conditional distribution PO[yO|x] of O. We use the notationD to denote the joint distribution
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over examples and labels from O and W :

PD[x,yO ,yW ] = PU [x]PO[yO|x]PW [yW |x]

Recall from Chapter 3 that D is the data distribution over labeled examples such that:

PD[x,y] = PU [x]PO [y|x]. Our goal is to learn a classifier h in the hypothesis class H such that

with probability ≥ 1− δ over the sample, we have: err(h) ≤ err(h∗) + ǫ, while making as few

(interactive) queries to O as possible.

Observe that in this model W may disagree with the oracle O anywhere in the input

space; this is unlike previous frameworks [CKW05, SCS15] where labels assigned by the weak

labeler are corrupted by random classification noise with a higher variance than the labeling

oracle. We believe this feature makes our model more realistic.

Second, unlike [UBS12], mistakes made by the weak labeler do not have to be close to

the decision boundary. This keeps the model general and simple, and allows greater flexibility to

weak labelers. Our analysis shows that if W is largely incorrect close to the decision boundary,

then our algorithm will automatically make more queries to O in its later stages.

Finally note that O is allowed to be non-realizable with respect to the target hypothesis

class H.

4.3 Algorithm

Our main algorithm is a standard single-annotator DBAL algorithm with a major mod-

ification: when the DBAL algorithm makes a label query, we use an extra sub-routine to decide

whether this query should be made to the oracle or the weak labeler, and make it accordingly.

How do we make this decision? We try to predict if weak labeler differs from the oracle on this

example; if so, query the oracle, otherwise, query the weak labeler.

Key Idea 1: Cost Sensitive Difference Classifier. How do we predict if the weak

labeler differs from the oracle? A plausible approach is to learn a difference classifier hdf in a

hypothesis class Hdf to determine if there is a difference. Our first key observation is when the

region where O and W differ cannot be perfectly modeled by Hdf , the resulting active learning

algorithm is statistically inconsistent. Any false negative errors (that is, incorrectly predicting

no difference) made by difference classifier leads to biased annotation for the target classification
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task, which in turn leads to inconsistency. We address this problem by instead learning a cost-

sensitive difference classifier and we assume that a classifier with low false negative error exists

in Hdf . While training, we constrain the false negative error of the difference classifier to be low,

and minimize the number of predicted positives (or disagreements between W and O) subject to

this constraint. This ensures that the annotated data used by the active learning algorithm has

diminishing bias, thus ensuring consistency.

Key Idea 2: Localized Difference Classifier Training. Unfortunately, even with

cost-sensitive training, directly learning a difference classifier accurately is expensive. If d′ is the

VC-dimension of the difference hypothesis class Hdf , to learn a target classifier to excess error ǫ,

we need a difference classifier with false negative error O(ǫ), which, from standard generalization

theory, requires Õ(d′/ǫ) labels [BB05, Sim14]! Our second key observation is that we can save on

labels by training the difference classifier in a localized manner – because the DBAL algorithm

that builds the target classifier only makes label queries in the disagreement region of the current

confidence set for h∗. Therefore we train the difference classifier only on this region and still

maintain consistency. Additionally this provides label savings because while training the target

classifier to excess error ǫ, we need to train a difference classifier with only Õ(d′φk/ǫ) labels where

φk is the probability mass of this disagreement region. The localized training process leads to an

additional technical challenge: as the confidence set for h∗ is updated, its disagreement region

changes. We address this through an epoch-based DBAL algorithm, where the confidence set is

updated and a fresh difference classifier is trained in each epoch.

Main Algorithm. Our main algorithm (Algorithm 4.1) combines these two key ideas,

and like [DHM07, BDL09, BHLZ10, BHK+11, ABDL13, HAH+15], implicitly maintains the

(1− δ)-confidence set for h∗ by through a labeled dataset Ŝk. In epoch k, the target excess error

is ǫk ≈ 1
2k , and the goal of Algorithm 4.1 is to generate a labeled dataset Ŝk that implicitly

represents a (1− δk)-confidence set on h∗. Additionally, Ŝk has the property that the empirical

risk minimizer over it has excess error ≤ ǫk.

A naive way to generate such an Ŝk is by drawing Õ(d/ǫ2
k) labeled examples, where d

is the VC dimension of H. Our goal, however, is to generate Ŝk using a much smaller number

of label queries, which is accomplished by Algorithm 4.4. This is done in two ways. First, like

standard DBAL, we infer the label of any x that lies outside the disagreement region of the

current confidence set for h∗. Algorithm 4.3 identifies whether an x lies in this region. Second,
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for any x in the disagreement region, we determine whether O and W agree on x using a difference

classifier; if there is agreement, we query W , else we query O. The difference classifier used to

determine agreement is retrained in the beginning of each epoch by Algorithm 4.2, which ensures

that the annotation has low bias.

The algorithms use a constrained ERM procedure Cons-Learn. Given a hypothesis

class H , a labeled dataset S and a set of constraining examples C, Cons-LearnH(C,S) returns

a classifier in H that minimizes the empirical error on S subject to h(xi) = yi for each (xi,yi) ∈C.

Identifying the Disagreement Region. Algorithm 4.3 identifies if an unlabeled

example x lies in the disagreement region of the current (1− δ)-confidence set for h∗; recall that

this confidence set is implicitly maintained through Ŝk. The identification is based on two ERM

queries. Let ĥ be the empirical risk minimizer on the current labeled dataset Ŝk−1, and ĥ′ be the

empirical risk minimizer on Ŝk−1 under the constraint that ĥ′(x) =−ĥ(x). If the training errors

of ĥ and ĥ′ are very different, then, all classifiers with training error close to that of ĥ assign the

same label to x, and x lies outside the current disagreement region.

Training the Difference Classifier. Algorithm 4.2 trains a difference classifier on a

random set of examples which lies in the disagreement region of the current confidence set for h∗.

The training process is cost-sensitive, and is similar to [KKM12, KT14, BB05, Sim14]. A hard

bound is imposed on the false-negative error, which translates to a bound on the annotation bias

for the target task. The number of positives (i.e., the number of examples where W and O differ)

is minimized subject to this constraint; this amounts to (approximately) minimizing the fraction

of queries made to O.

The number of labeled examples used in training is large enough to ensure false negative

error O(ǫk/φk) over the disagreement region of the current confidence set; here φk is the prob-

ability mass of this disagreement region under U . This ensures that the overall annotation bias

introduced by this procedure in the target task is at most O(ǫk). As φk is small and typically

diminishes with k, this requires less labels than training the difference classifier globally which

would have required Õ(d′/ǫk) queries to O.

Adaptive Active Learning using the Difference Classifier. Finally, Algorithm 4.4

is our main active learning procedure, which generates a labeled dataset Ŝk that is implicitly

2Note that if in Algorithm 4.5, the upper confidence bound of Px∼U (In-Disagr-Region(T̂ , 3ǫ
2

,x) = 1) is lower

than ǫ/64, then we can halt Algorithm 4.2 and return an arbitrary hdf in Hdf . Using this hdf will still guarantee
the correctness of Algorithm 4.1.
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Algorithm 4.1 Active Learning Algorithm from Weak and Strong Labelers

1: Input: Unlabeled distribution U , target excess error ǫ, confidence δ, labeling oracle O, weak
oracle W , hypothesis class H, hypothesis class for difference classifier Hdf .

2: Output: Classifier ĥ in H.
3: Initialize: initial error ǫ0 = 1, confidence δ0 = δ/4. Total number of epochs k0 = ⌈log 1

ǫ ⌉.
4: Initial number of examples n0 = O( 1

ǫ2
0
(d ln 1

ǫ2
0

+ ln 1
δ0

)).

5: Draw a fresh sample and query O for its labels Ŝ0 = {(x1,y1), . . . ,(xn0 ,yn0)}. Let σ0 =
σ(n0,δ0).

6: for k = 1,2, . . . ,k0 do
7: Set target excess error ǫk = 2−k, confidence δk = δ/4(k + 1)2.
8: # Train Difference Classifier
9: ĥdf

k ← Call Algorithm 4.2 with inputs unlabeled distribution U , oracles W and O, target

excess error ǫk, confidence δk/2, previously labeled dataset Ŝk−1.
10: # Adaptive Active Learning using Difference Classifier
11: σk, Ŝk ← Call Algorithm 4.4 with inputs unlabeled distribution U , oracles W and O,

difference classifier ĥdf
k , target excess error ǫk, confidence δk/2, previously labeled dataset

Ŝk−1.
12: end for
13: return ĥ←Cons-LearnH(∅, Ŝk0

).

used to maintain a tighter (1− δ)-confidence set for h∗. Specifically, Algorithm 4.4 generates a

Ŝk such that the set Vk defined as:

Vk = {h : err(h,Ŝk)− min
ĥk∈H

err(ĥk, Ŝk)≤ 3ǫk/4}

has the property that:

{h : errD(h)− errD(h∗)≤ ǫk/2} ⊆ Vk ⊆ {h : errD(h)− errD(h∗)≤ ǫk}

This is achieved by labeling, through inference or query, a large enough sample of un-

labeled data drawn from U . Labels are obtained from three sources - direct inference (if x lies

outside the disagreement region as identified by Algorithm 4.3), querying O (if the difference

classifier predicts a difference), and querying W . How large should the sample be to reach the

target excess error? If errD(h∗) = ν, then achieving an excess error of ǫ requires Õ(dν/ǫ2
k) sam-

ples, where d is the VC dimension of the hypothesis class. As ν is unknown in advance, we use

a doubling procedure in lines 4-14 to iteratively determine the sample size.
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Algorithm 4.2 Training Algorithm for Difference Classifier

1: Input: Unlabeled distribution U , oracles W and O, target error ε, hypothesis class Hdf ,
confidence δ, previous labeled dataset T̂ .

2: Output: Difference classifier ĥdf .
3: Let p̂ be an estimate of Px∼U (In-Disagr-Region(T̂ , 3ǫ

2 ,x) = 1), obtained by calling Algo-
rithm 4.5(deferred to the Section) with failure probability δ/3. 2

4: Let U ′ = ∅, i = 1, and

m =
64 ·1024p̂

ε
(d′ ln

512 ·1024p̂

ε
+ ln

72

δ
) (4.1)

5: repeat
6: Draw an example xi from U .
7: if In-Disagr-Region(T̂ , 3ǫ

2 ,xi) = 1 then # xi is in the disagreement region
8: query both W and O for labels to get yi,W and yi,O.
9: end if

10: U ′ = U ′∪{(xi,yi,O,yi,W )}
11: i = i + 1
12: until |U ′|= m

13: Learn a classifier ĥdf ∈Hdf based on the following empirical risk minimizer:

ĥdf = argmin
hdf ∈Hdf

m
∑

i=1

1(hdf (xi) = +1), s.t.
m
∑

i=1

1(hdf (xi) =−1∧yi,O 6= yi,W )≤mε/256p̂ (4.2)

14: return ĥdf .

4.4 Performance Guarantees

We now examine the performance of our algorithm, which is measured by the number

of label queries made to the oracle O. Additionally we require our algorithm to be statistically

consistent, which means that the true error of the output classifier should converge to the true

error of the best classifier in H on the data distribution D.

Since our framework is very general, we cannot expect any statistically consistent algo-

rithm to achieve label savings over using O alone under all circumstances. For example, if labels

provided by W are completely unrelated to O, no algorithm will achieve both consistency and

label savings. We next provide an assumption under which Algorithm 4.1 works and yields label

savings.

Assumption. The following assumption states that difference hypothesis class contains

a good cost-sensitive predictor of when O and W differ in the disagreement region of B(h∗,r); a

predictor is good if it has low false-negative error and predicts a positive label with low frequency.

If there is no such predictor, then we cannot expect an algorithm similar to ours to achieve label

savings.
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Algorithm 4.3 In-Disagr-Region(Ŝ,τ,x): Test if x is in the disagreement region of current
confidence set

1: Input: labeled dataset Ŝ, rejection threshold τ , unlabeled example x.
2: Output: 1 if x in the disagreement region of current confidence set, 0 otherwise.
3: Train ĥ←Cons-LearnH({∅, Ŝ}).
4: Train ĥ′

x←Cons-LearnH({(x,−ĥ(x))}, Ŝ}).
5: if err(ĥ′

x, Ŝ)− err(ĥ, Ŝ) > τ then # x is in the agreement region
6: return 0
7: else # x is in the disagreement region
8: return 1
9: end if

Algorithm 4.4 Adaptive Active Learning using Difference Classifier

1: Input: Unlabeled data distribution U , oracles W and O, difference classifier hdf , target excess
error ǫ, confidence δ, previous labeled dataset T̂ .

2: Output: Parameter σ, labeled dataset Ŝ.
3: Let ĥ = Cons-LearnH(∅, T̂ ).
4: for t = 1,2, . . . , do

5: Let δt = δ/t(t + 1). Define: σ(2t,δt) = 8
2t (2d ln 2e2t

d + ln 24
δt ).

6: Draw 2t examples from U to form St,U .
7: for each x ∈ St,U do
8: if In-Disagr-Region(T̂ , 3ǫ

2 ,x) = 0 then # x is in the agreement region

9: Add (x, ĥ(x)) to Ŝt.
10: else # x is in the disagreement region
11: If hdf (x) = +1, query O for the label y of x, otherwise query W . Add (x,y) to Ŝt.
12: end if
13: end for
14: Train ĥt←Cons-LearnH(∅, Ŝt).

15: if σ(2t,δt) +

√

σ(2t,δt)err(ĥt, Ŝt)≤ ǫ/512 then
16: t0← t, break
17: end if
18: end for
19: return σ← σ(2t0 ,δt0), Ŝ← Ŝt0 .

Assumption 4.1. Let D be the joint distribution: PD[x,yO,yW ] = PU [x]PW [yW |x]PO[yO|x].

For any r,η > 0, there exists an hdf
η,r ∈Hdf with the following properties:

PD[hdf
η,r(x) =−1,x ∈Dis(B(h∗,r)),yO 6= yW ]≤ η (4.3)

PD[hdf
η,r(x) = 1,x ∈Dis(B(h∗,r))] ≤ α(r,η) (4.4)

Note that (4.3), which states there is a hdf ∈ Hdf with low false-negative error, is min-

imally restrictive, and is trivially satisfied if Hdf includes the constant classifier that always

predicts 1. Theorem shows that (4.3) is sufficient to ensure statistical consistency.
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(4.4) in addition states that the number of positives predicted by the classifier hdf
η,r is

upper bounded by α(r,η). Note α(r,η)≤ PU (Dis(B(h∗,r))) always; performance gain is obtained

when α(r,η) is lower, which happens when the difference classifier predicts agreement on a sig-

nificant portion of Dis(B(h∗,r)).

Statistical Consistency. Provided Assumption 4.1 holds, we next show that Algo-

rithm 4.1 is statistically consistent. Establishing consistency is non-trivial for our algorithm as

the output classifier is trained on labels from both O and W .

Theorem 4.1 (Statistical Consistency). Let h∗ be the classifier that minimizes the error with

respect to D. If Assumption 4.1 holds, then with probability ≥ 1− δ, the classifier ĥ output by

Algorithm 4.1 satisfies: errD(ĥ)≤ errD(h∗) + ǫ.

Label Complexity. The label complexity of standard DBAL is measured in terms

of the disagreement coefficient (See Definition 3.3). It was shown by [DHM07] that the label

complexity of DBAL for target excess generalization error ǫ is Õ(dθ(2ν + ǫ)(1+ ν2

ǫ2 )). In contrast,

the label complexity of our algorithm can be stated in Theorem 4.2. Here we use the Õ notation

for convenience; we have the same dependence on log1/ǫ and log1/δ as the bounds for DBAL.

Theorem 4.2 (Label Complexity). Let d be the VC dimension of H and let d′ be the VC

dimension of Hdf . If Assumption 4.1 holds, and if the error of the best classifier in H on D is ν,

then with probability ≥ 1− δ, the following hold:

1. The number of label queries made by Algorithm 4.1 to the oracle O in epoch k at most:

mk = Õ

(

d(2ν + ǫk−1)(α(2ν + ǫk−1,
ǫk−1
1024 ) + ǫk−1)

ǫ2
k

+
d′
P[Dis(BU (h∗,2ν + ǫk−1))]

ǫk

)

(4.5)

2. The total number of label queries made by Algorithm 4.1 to the oracle O is at most:

Õ



sup
r≥ǫ

α(2ν + r, r
1024 ) + r

2ν + r
·d
(

ν2

ǫ2
+ 1

)

+ θ(2ν + ǫ)d′

(

ν

ǫ
+ 1

)



 (4.6)

4.4.1 Discussion

The first terms in (4.5) and (4.6) represent the labels needed to learn the target classifier,

and second terms represent the overhead in learning the difference classifier.
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In the realistic agnostic case (where ν > 0), as ǫ→ 0, the second terms are of lower order

compared to the label complexity of DBAL. Thus even if d′ is somewhat larger than d, fitting the

difference classifier does not incur an asymptotically high overhead in the more realistic agnostic

case. In the realizable case, when d′ ≈ d, the second terms are of the same order as the first;

therefore we should use a simpler difference hypothesis class Hdf in this case. We believe that

the lower order overhead term comes from the fact that there exists a classifier in Hdf whose

false negative error is very low.

Comparing Theorem 4.2 with the corresponding results for DBAL, we observe that in-

stead of θ(2ν +ǫ), we have the term supr≥ǫ
α(2ν+r,r/1024)

2ν+r . Since supr≥ǫ
α(2ν+r,r/1024)

2ν+r ≤ θ(2ν +ǫ),

the worst case asymptotic label complexity is the same as that of standard DBAL. This label

complexity may be considerably better however if supr≥ǫ
α(2ν+r,r/1024)

2ν+r is less than the disagree-

ment coefficient. As we expect, this will happen when the region of difference between W and O

restricted to the disagreement regions is relatively small, and this region is well-modeled by the

difference hypothesis class Hdf .

An interesting case is when the weak labeler differs from O close to the decision boundary

and agrees with O away from this boundary. In this case, any consistent algorithm should switch

to querying O close to the decision boundary. Indeed in earlier epochs, α is low, and our

algorithm obtains a good difference classifier and achieves label savings. In later epochs, α is

high, the difference classifiers always predict a difference and the label complexity of the later

epochs of our algorithm is the same order as DBAL. In practice, if we suspect that we are in this

case, we can switch to plain active learning once ǫk is small enough.

Case Study: Linear Classfication under Uniform Distribution. We provide a

simple example where our algorithm provides a better asymptotic label complexity than DBAL.

Let H be the class of homogeneous linear separators on the d-dimensional unit ball and let

Hdf = {h∆h′ : h,h′ ∈H}. Furthermore, let U be the uniform distribution over the unit ball.

Suppose that O is a deterministic labeler such that errD(h∗) = ν > 0. Moreover, suppose

that W is such that there exists a difference classifier h̄df with false negative error 0 for which

PU [h̄df (x) = 1] ≤ g. Additionally, we assume that g = o(
√

dν); observe that this is not a strict

assumption on Hdf , as ν could be as much as a constant. Figure 4.1 shows an example in d = 2

that satisfies these assumptions. In this case, as ǫ→ 0, Theorem 4.2 gives the following label

complexity bound.
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+−
w∗

P({x : hw∗(x) 6= yO}) = ν

+−

W

{x : P(yO 6= yW |x) > 0}

P({x : h̄df (x) = 1}) = g = o(
√

dν)

Figure 4.1: Linear classification over unit ball with d = 2. Left: Decision boundary of labeler
O and h∗ = hw∗ . The region where O differs from h∗ is shaded, and has probability ν. Middle:
Decision boundary of weak labeler W . Right: h̄df , W and O. Note that {x : P(yO 6= yW |x) >
0} ⊆ {x : h̄df (x) = 1}.

Corollary 4.1. With probability ≥ 1− δ, the number of label queries made to oracle O by Algo-

rithm 4.1 is Õ
(

dmax( g
ν ,1)(ν2

ǫ2 + 1) + d3/2
(

1 + ν
ǫ

)

)

.

As g = o(
√

dν), this improves over the label complexity of DBAL, which is Õ(d3/2(1 +

ν2

ǫ2 )).

4.5 Additional Notations

In this section, we define several datasets and distributions that will be used in the

analysis. Without loss of generality, assume the examples drawn throughout Algorithm 4.1 have

distinct feature values x, since this happens with probability 1 under mild assumptions.

Algorithm 4.1 uses a mixture of three kinds of labeled data to learn a target classifier

– labels obtained from querying O, labels inferred by the algorithm, and labels obtained from

querying W . To analyze the effect of these three kinds of labeled data, we need to introduce

some notation.

Recall that we define the joint distribution D over examples and labels both from O and

W as follows:

PD[x,yO ,yW ] = PU [x]PO[yO|x]PW [yW |x]

where given an example x, the labels generated by O and W are conditionally independent.

A dataset Ŝ with empirical error minimizer ĥ and a rejection threshold τ define a implicit
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candidate set for h∗ as follows:

V (Ŝ,τ) = {h : err(h,Ŝ)− err(ĥ, Ŝ)≤ τ}

At the beginning of epoch k, we have Ŝk−1. ĥk−1 is defined as the empirical error minimizer

of Ŝk−1. The disagreement region of the implicit candidate set at epoch k, Rk−1 is defined as

Rk−1 := Dis(V (Ŝk−1,3ǫk/2)). Algorithm 4.3 In-Disagr-Region(Ŝk−1,3ǫk/2,x) provides a test

deciding if an unlabeled example x is in Rk−1 in epoch k. (See Lemma 4.6.)

Define Ak to be the distribution D conditioned on the set {(x,yO,yW ) : x ∈ Rk−1}. At

epoch k, Algorithm 4.2 has inputs distribution U , oracles W and O, target false negative error

ǫ = ǫk/128, hypothesis classHdf , confidence δ = δk/2, previous labeled dataset Ŝk−1, and outputs

a difference classifier ĥdf
k . By the setting of m in Equation (4.1), Algorithm 4.2 first computes p̂k

using unlabeled examples drawn from U , which is an estimator of PD(x ∈Rk−1). Then it draws

a subsample of size

mk,1 =
64 ·1024p̂k

ǫk
(d ln

512 ·1024p̂k

ǫk
+ ln

144

δk
) (4.7)

iid from Ak. We call the resulting dataset A′
k.

At epoch k, Algorithm 4.4 performs adaptive subsampling to refine the implicit (1− δ)-

confidence set. For each round t, it subsamples U to get an unlabeled dataset St,U
k of size 2t.

Define the corresponding (hypothetical) dataset with labels queried from both W and O as St
k.

St
k, the (hypothetical) dataset with labels queried from O, is defined as:

St
k = {(x,yO)|(x,yO,yW ) ∈ St

k}

In addition to obtaining labels from O, the algorithm obtains labels in two other ways. First,

if an x ∈ X \Rk−1, then its label is safely inferred and with high probability, this inferred label

ĥk−1(x) is equal to h∗(x). Second, if an x lies in Rk−1 but if the difference classifier ĥdf
k predicts

agreement between O and W , then its label is obtained by querying W . The actual dataset Ŝt
k
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generated by Algorithm 4.4 is defined as:

Ŝt
k = {(x, ĥk−1(x))|(x,yO ,yW ) ∈ St

k,x /∈Rk−1}

∪{(x,yO)|(x,yO,yW ) ∈ St
k,x ∈Rk−1, ĥdf

k (x) = +1}

∪{(x,yW )|(x,yO ,yW ) ∈ St
k,x ∈Rk−1, ĥdf

k (x) =−1}

We use D̂k to denote the labeled data distribution as follows:

PD̂k
[x,y] = PU [x]PQ̂k

[y|x]

PQ̂k
[y|x] =































1(ĥk−1(x) = y), x /∈Rk−1

PO[y|x], x ∈Rk−1, ĥdf
k (x) = +1

PW [y|x], x ∈Rk−1, ĥdf
k (x) = −1

Therefore, Ŝt
k can be seen as a sample of size 2t drawn iid from D̂k.

Observe that ĥt
k is obtained by training an ERM classifier over Ŝt

k, and δt
k = δk/2t(t+1).

Suppose Algorithm 4.4 stops at iteration t0(k), then the final dataset returned is Ŝk =

Ŝ
t0(k)
k , with a total number of mk,2 label requests to O. We define Sk = S

t0(k)
k , Sk = St0(k)

k and

σk = σ(2t0(k),δ
t0(k)
k ).

For k = 0, we define the notation Ŝk differently. Ŝ0 is the dataset drawn iid at random

from D, with labels queried entirely to O. For notational convenience, define S0 = Ŝ0. σ0 is

defined as σ0 = σ(n0,δ0), where σ(·, ·) is defined by Equation (A.1) and n0 is defined as:

n0 = (64 ·10242)

(

2d ln(512 ·10242) + ln
96

δ

)

Recall that ĥk = argminh∈H err(h,Ŝk) is the empirical error minimizer with respect to

the dataset Ŝk.

Note that the empirical distance ρZ(·, ·) does not depend on the labels in dataset Z,

therefore, ρŜk
(h,h′) = ρSk

(h,h′). We will use them interchangeably throughout.
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4.6 Adaptive Procedure for Estimating Probability Mass

For completeness, we describe in Algorithm 4.5 a standard doubling procedure for esti-

mating the bias of a coin within a constant factor. This procedure is used by Algorithm 4.2 to

estimate the probability mass of the disagreement region of the current confidence set based on

unlabeled examples drawn from U .

Algorithm 4.5 Adaptive Procedure for Estimating the Mean of a Bernoulli Random Variable

1: Input: failure probability δ, an oracle O which returns iid Bernoulli random variables with
unknown bias p.

2: Output: p̂, an estimate of bias p such that p̂≤ p≤ 2p̂ with probability ≥ 1− δ.
3: for i = 1,2, . . . do
4: Call the oracle O 2i times to get empirical frequency p̂i.

5: if

√

4ln 4·2i
δ

2i ≤ p̂i/3 then

6: return p̂ = 2p̂i
3

7: end if
8: end for

Lemma 4.1. Suppose p > 0 and Algorithm 4.5 is run with failure probability δ. Then with

probability 1− δ, (1) the output p̂ is such that p̂≤ p≤ 2p̂. (2) The total number of calls to O is

at most O( 1
p2 ln 1

δp ).

Proof. Consider the event

E =











for all i ∈N, |p̂i−p| ≤

√

4ln 2·2i

δ

2i











By Lemma A.2 and union bound, P(E) ≥ 1− δ. On event E, we claim that if i is large enough

that

4

√

4ln 4·2i

δ

2i
≤ p (4.8)

then the condition in line 5 will be met. Indeed, this implies

√

4ln 4·2i

δ

2i
≤

p−
√

4ln 4·2i
δ

2i

3
≤ p̂i

3

Define i0 as the smallest number i such that Equation (4.8) is true. Then by algebra, 2i0 =

O( 1
p2 ln 1

δp ). Hence the number of calls to oracle O is at most 1 + 2 + . . .+ 2i0 = O( 1
p2 ln 1

δp ).
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Consider the smallest i∗ such that the condition in line 5 is met. We have that

√

4ln 4·2i∗

δ

2i∗ ≤ p̂i∗/3

By the definition of E,

|p− p̂i∗| ≤ p̂i∗/3

that is, 2p̂i∗/3≤ p≤ 4p̂i∗/3, implying p̂≤ p≤ 2p̂.

4.6.1 Events

Recall that δk = δ/(4(k + 1)2), ǫk = 2−k. Define hdf
k := hdf

2ν+ǫk−1,ǫk/512
, where the nota-

tion hdf
r,η is introduced in Assumption 4.1. In addition, define function γ(n,δ) := 4

n ln 2
δ .

We begin by defining some events that we will condition on later in the proof, and

showing that these events occur with high probability.

Define event

E1
k :=

{

PD(x ∈Rk−1)/2≤ p̂k ≤ PD(x ∈Rk−1),

and for all hdf ∈Hdf ,

|PA′

k
(hdf (x) =−1,yO 6= yW )−PAk

(hdf (x) =−1,yO 6= yW )| ≤ ǫk

1024PD(x ∈Rk−1)
+

√

min(PAk
(hdf (x) =−1,yO 6= yW ),PA′

k
(hdf (x) =−1,yO 6= yW ))

ǫk

1024PD(x ∈Rk−1)

and |PA′

k
(hdf (x) = +1)−PAk

(hdf (x) = +1)| ≤ ǫk

1024PD(x ∈Rk−1)
+

√

min(PAk
(hdf (x) = +1),PA′

k
(hdf (x) = +1))

ǫk

1024PD(x ∈Rk−1)

}

Fact 4.1. P(E1
k)≥ 1− δk/2.
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Define event

E2
k =

{

∀t ∈ N, for all h,h′ ∈H,

(err(h,St
k)− err(h′,St

k))− (errD(h)− errD(h′))≤ σ(2t,δt
k) +

√

σ(2t,δt
k)ρSt

k
(h,h′)

and err(h,Ŝt
k)− errD̂k

(h)≤ σ(2t,δt
k) +

√

σ(2t,δt
k)errD̂k

(h)

and PSt
k
(ĥdf

k (x) =−1,yO 6= yW ,x ∈Rk−1)−PD(ĥdf
k (x) =−1,yO 6= yW ,x ∈Rk−1)

≤
√

γ(2t,δt
k)PSt

k
(ĥdf

k (x) =−1,yO 6= yW ,x ∈Rk−1) + γ(2t,δt
k)

and PSt
k
(ĥdf

k (x) =−1∩x∈Rk−1)≤ 2(PD(ĥdf
k (x) =−1,x ∈Rk−1) + γ(2t,δt

k))
}

Fact 4.2. P(E2
k)≥ 1− δk/2.

We will also use the following definitions of events in our proof. Define event F0 as

F0 =
{

for all h,h′ ∈H,

(err(h,S0)− err(h′,S0))− (errD(h)− errD(h′))≤ σ(n0,δ0) +
√

σ(n0,δ0)ρS0(h,h′)
}

For k ∈ {1,2, . . . ,k0}, event Fk is defined inductively as

Fk = Fk−1 ∩ (E1
k ∩E2

k)

Fact 4.3. For k ∈ {0,1, . . . ,k0}, P(Fk)≥ 1− δ0− δ1− . . .− δk. Specifically, P(Fk0
)≥ 1− δ.

The proofs of Facts 4.1, 4.2 and 4.3 are provided in Section 4.9.

4.7 Proof Outline and Main Lemmas

The main idea of the proof is to maintain the following three invariants on the outputs of

Algorithm 4.1 in each epoch. We prove that these invariants hold simultaneously for each epoch

with high probability by induction over the epochs. Throughout, for k ≥ 1, the end of epoch k

refers to the end of execution of line 13 of Algorithm 4.1 at iteration k. The end of epoch 0 refers

to the end of execution of line 5 in Algorithm 4.1.

Invariant 4.1 states that if we replace the inferred labels and labels obtained from W in

Ŝk by those obtained from O (thus getting the dataset Sk), then the excess errors of classifiers
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in H will not decrease by much.

Invariant 4.1 (Approximate Favorable Bias). Let h be any classifier in H, and h′ be another

classifier in H with excess error on D no greater than ǫk. Then, at the end of epoch k, we have:

err(h,Sk)− err(h′,Sk)≤ err(h,Ŝk)− err(h′, Ŝk) + ǫk/16

Invariant 4.2 establishes that in epoch k, Algorithm 4.4 selects enough examples so as

to ensure that concentration of empirical errors of classifiers in H on Sk to their true errors.

Invariant 4.2 (Concentration). At the end of epoch k, Ŝk, Sk and σk are such that:

1. For any pair of classifiers h,h′ ∈H, it holds that:

(err(h,Sk)− err(h′,Sk))− (errD(h)− errD(h′))≤ σk +
√

σkρSk
(h,h′) (4.9)

2. The dataset Ŝk has the following property:

σk +

√

σk err(ĥk, Ŝk)≤ ǫk/512 (4.10)

Finally, Invariant 4.3 ensures that the difference classifier produced in epoch k has low

false negative error on the disagreement region of the (1− δ) confidence set at epoch k.

Invariant 4.3 (Difference Classifier). At epoch k, the difference classifier output by Algorithm 4.2

is such that

PD(ĥdf
k (x) =−1,yO 6= yW ,x ∈Rk−1)≤ ǫk/64 (4.11)

PD(ĥdf
k (x) = +1,x ∈Rk−1)≤ 6(α(2ν + ǫk−1, ǫk/512) + ǫk/1024) (4.12)

We will show the following property about the three invariants. Its proof is deferred to

Subsection 4.7.4.

Lemma 4.2. There is a numerical constant c0 > 0 such that the following holds. The collection

of events {Fk}k0
k=0 is such that for k ∈ {0,1, . . . ,k0}:
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(1) If k = 0, then on event Fk, at epoch k,

(1.1) Invariants 1,2 hold.

(1.2) m0, the number of label requests to O is at most c0(d + ln 1
δ ).

(2) If k ≥ 1, then on event Fk, at epoch k,

(2.1) Invariants 1,2,3 hold.

(2.2) mk, the number of label requests to O is at most

c0

((α(2ν + ǫk−1, ǫk/1024) + ǫk)(ν + ǫk)

ǫ2
k

d(ln2 1

ǫk
+ ln2 1

δk
)

+
PU(x ∈∆(2ν + ǫk−1))

ǫk
(d′ ln

1

ǫk
+ ln

1

δk
)
)

.

4.7.1 Active Label Inference and Identifying the Disagreement Region

We begin by proving some lemmas about Algorithm 4.3 which identifies if an example lies

in the disagreement region of the current confidence set. This is done by using a constrained ERM

oracle Cons-LearnH(·, ·) using ideas similar to [DHM07, BDL09, BHLZ10, BHK+11, ABDL13,

HAH+15].

Lemma 4.3. When given as input a dataset Ŝ, a threshold τ > 0, an unlabeled example x,

Algorithm 4.3 In-Disagr-Region returns 1 if and only if x lies in Dis(V (Ŝ,τ)).

Proof. (⇒) If Algorithm 4.3 returns 1, then we have found a classifier ĥ′
x such that (1) ĥx(x) =

−ĥ(x), and (2) err(ĥ′
x, Ŝ)− err(ĥ, Ŝ)≤ τ , i.e. ĥ′

x ∈ V (Ŝ,τ). Therefore, x is in Dis(V (Ŝ,τ)).

(⇐) If x is in Dis(V (Ŝ,τ)), then there exists a classifier h∈H such that (1) h(x) =−ĥ(x) and (2)

err(h,Ŝ)−err(ĥ, Ŝ)≤ τ . Hence by definition of ĥ′
x, err(ĥ′

x, Ŝ)−err(ĥ, Ŝ)≤ τ . Thus, Algorithm 4.3

returns 1.

We now provide some lemmas about the behavior of Algorithm 4.3 called at epoch k.

Lemma 4.4. Suppose Invariants 4.1 and 4.2 hold at the end of epoch k− 1. If h ∈ H is such

that errD(h)≤ errD(h∗) + ǫk−1/2, then

err(h,Ŝk−1)− err(ĥk−1, Ŝk−1)≤ 3ǫk−1/4
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Proof. If h ∈H has excess error at most ǫk−1/2 with respect to D, then,

err(h,Ŝk−1)− err(ĥk−1, Ŝk−1)

≤ err(h,Sk−1)− err(ĥk−1,Sk−1) + ǫk−1/16

≤ errD(h)− errD(ĥk−1) + σk−1 +
√

σk−1ρSk−1
(h, ĥk−1) + ǫk−1/16

≤ ǫk−1/2 + σk−1 +
√

σk−1ρSk−1
(h, ĥk−1) + ǫk−1/16

≤ 9ǫk−1/16 + σk−1 +

√

σk−1 err(h,Ŝk−1) +

√

σk−1 err(ĥk−1, Ŝk−1)

≤ 9ǫk−1/16 + σk−1 +

√

σk−1 err(h,Ŝk−1) +

√

σk−1(err(ĥk−1, Ŝk−1) + 9ǫk−1/16)

Where the first inequality follows from Invariant 4.1, the second inequality from Equation (4.9) of

Invariant 4.2, the third inequality from the assumption that h has excess error at most ǫk−1/2, and

the fourth inequality from the triangle inequality, the fifth inequality is by adding a nonnegative

number in the last term. Continuing,

err(h,Ŝk−1)− err(ĥk−1, Ŝk−1)

≤ 9ǫk−1/16 + 4σk−1 + 2

√

σk−1(err(ĥk−1, Ŝk−1) + 9ǫk−1/16)

≤ 9ǫk−1/16 + 4σk−1 + 2

√

σk−1 err(ĥk−1, Ŝk−1)+ 2
√

ǫk−1/512 ·9ǫk−1/16

≤ 9ǫk−1/16 + ǫk−1/32 + 2
√

ǫk−1/512 ·9ǫk−1/16

≤ 3ǫk−1/4

Where the first inequality is by simple algebra (by letting D = err(h,Ŝk−1), E = err(ĥk−1, Ŝk−1)+

9ǫk−1/16, F = σk−1 in D≤E +F +
√

DF +
√

EF ⇒D≤E +4F +2
√

EF ), the second inequality

is from
√

A + B ≤
√

A+
√

B and σk−1 ≤ ǫk−1/512 which utilizes Equation (4.10) of Invariant 4.2,

the third inequality is again by Equation (4.10) of Invariant 4.2, the fourth inequality is by

algebra.

Lemma 4.5. Suppose Invariants 4.1 and 4.2 hold at the end of epoch k−1. Then,

errD(ĥk−1)− errD(h∗)≤ ǫk−1/8
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Proof. By Lemma 4.4, we know that since h∗ has excess error 0 with respect to D,

err(h∗, Ŝk−1)− err(ĥk−1, Ŝk−1)≤ 3ǫk−1/4 (4.13)

Therefore,

errD(ĥk−1)− errD(h∗)

≤ err(ĥk−1,Sk−1)− err(h∗,Sk−1) + σk−1 +
√

σk−1ρSk−1
(ĥk−1,h∗)

≤ err(ĥk−1, Ŝk−1)− err(h∗, Ŝk−1) + σk−1 +
√

σk−1ρSk−1
(ĥk−1,h∗) + ǫk−1/16

≤ ǫk−1/16 + σk−1 +

√

σk−1(err(ĥk−1, Ŝk−1) + err(h∗, Ŝk−1))

≤ ǫk−1/16 + σk−1 +

√

σk−1(2err(ĥk−1, Ŝk−1) + 3ǫk−1/4)

≤ ǫk−1/16 + σk−1 +

√

2σk−1 err(ĥk−1, Ŝk−1) +
√

ǫk−1/512 ·3ǫk−1/4

≤ ǫk−1/8

where the first inequality is from Equation (4.9) of Invariant 4.2, the second inequality uses

Invariant 4.1, the third inequality follows from the optimality of ĥk−1 and triangle inequality, the

fourth inequality uses Equation (4.13), the fifth inequality uses the fact that
√

A + B≤
√

A+
√

B

and σk−1 ≤ ǫk−1/512, which is from Equation (4.10) of Invariant 4.2, the last inequality again

utilizes the Equation (4.10) of Invariant 4.2.

Lemma 4.6. Suppose Invariants 4.1, 4.2, and 4.3 hold in epoch k−1 conditioned on event Fk−1.

Then conditioned on event Fk−1, the implicit confidence set Vk−1 = V (Ŝk−1,3ǫk/2) is such that:

(1) If h ∈H satisfies errD(h)− errD(h∗)≤ ǫk, then h is in Vk−1.

(2) If h ∈H is in Vk−1, then errD(h)− errD(h∗)≤ ǫk−1. Hence Vk−1 ⊆ B(h∗,2ν + ǫk−1).

(3) Algorithm 4.3, In-Disagr-Region, when run on inputs dataset Ŝk−1, threshold 3ǫk/2, un-

labeled example x, returns 1 if and only if x is in Rk−1.

Proof. (1) Let h be a classifier with errD(h)−errD(h∗)≤ ǫk = ǫk−1/2. Then, by Lemma 4.4, one

has err(h,Ŝk−1)− err(ĥk−1, Ŝk−1)≤ 3ǫk−1/4 = 3ǫk/2. Hence, h is in Vk−1.
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(2) Fix any h in Vk−1, by definition of Vk−1,

err(h,Ŝk−1)− err(ĥk−1, Ŝk−1)≤ 3ǫk/2 = 3ǫk−1/4 (4.14)

Recall that from Lemma 4.5,

errD(ĥk−1)− errD(h∗)≤ ǫk−1/8

Thus for classifier h, applying Invariant 4.1 by taking h′ := ĥk−1, we get

err(h,Sk−1)− err(ĥk−1,Sk−1)≤ err(h,Ŝk−1)− err(ĥk−1, Ŝk−1) + ǫk−1/32 (4.15)

Therefore,

errD(h)− errD(ĥk−1)

≤ err(h,Sk−1)− err(ĥk−1,Sk−1) + σk−1 +
√

σk−1ρSk−1
(h, ĥk−1)

≤ err(h,Sk−1)− err(ĥk−1,Sk−1) + σk−1 +

√

σk−1(err(h,Ŝk−1) + err(ĥk−1, Ŝk−1))

≤ err(h,Ŝk−1)− err(ĥk−1, Ŝk−1) + σk−1 +

√

σk−1(err(h,Ŝk−1) + err(ĥk−1, Ŝk−1)) + ǫk−1/16

≤ 13ǫk−1/16 + σk−1 +

√

σk−1(2err(ĥk−1, Ŝk−1) + 3ǫk−1/4)

≤ 13ǫk−1/16 + σk−1 +

√

2σk−1 err(ĥk−1, Ŝk−1)+
√

ǫk−1/512 ·3ǫk−1/4

≤ 7ǫk−1/8

where the first inequality is from Equation (4.9) of Invariant 4.2, the second inequality uses

the fact that ρŜk−1
(h,h′) = ρSk−1

(h,h′) ≤ err(h,Ŝk−1) + err(h′, Ŝk−1) for h,h′ ∈ H, the third

inequality uses Equation (4.15); the fourth inequality is from Equation (4.14); the fifth inequality

is from the fact that
√

A + B ≤
√

A+
√

B and σk−1 ≤ ǫk−1/512, which is from Equation (4.10) of

Invariant 4.2, the last inequality again follows from Equation (4.10) of Invariant 4.2 and algebra.

In conjunction with the fact that errD(ĥk−1)− errD(h∗)≤ ǫk−1/8, this implies

errD(h)− errD(h∗)≤ ǫk−1

By triangle inequality, ρ(h,h∗) ≤ 2ν + ǫk−1, hence h ∈ B(h∗,2ν + ǫk−1). In summary Vk−1 ⊆
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B(h∗,2ν + ǫk−1).

(3) Follows directly from Lemma 4.3 and the fact that Rk−1 = Dis(Vk−1).

4.7.2 Training the Difference Classifier

Recall that ∆(r) = Dis(B(h∗,r)) is the disagreement region of the disagreement ball

centered around h∗ with radius r.

Lemma 4.7 (Difference Classifier Invariant). There is a numerical constant c1 > 0 such that the

following holds. Suppose that Invariants 4.1 and 4.2 hold at the end of epoch k−1 conditioned on

event Fk−1 and that Algorithm 4.2 has inputs unlabeled data distribution U , oracle O, ǫ = ǫk/128,

hypothesis class Hdf , δ = δk/2, previous labeled dataset Ŝk−1. Then conditioned on event Fk,

(1) ĥdf
k , the output of Algorithm 4.2, maintains Invariant 4.3.

(2)(Label Complexity: Part 1.) The number of label queries made to O is at most

mk,1 ≤ c1

(

PU (x ∈∆(2ν + ǫk−1))

ǫk
(d′ ln

1

ǫk
+ ln

1

δk
)
)

Proof. (1) Recall that Fk = Fk−1 ∩E1
k ∩E2

k, where E1
k , E2

k are defined in Subsection 4.6.1. Sup-

pose event Fk happens.

Proof of Equation (4.11). Recall that ĥdf
k is the optimal solution of optimization

problem (4.2). We have by feasibility and the fact that on event E3
k, 2p̂k ≥ PD(x ∈Rk−1),

PA′

k
(ĥdf

k (x) =−1,yO 6= yW )≤ ǫk

256p̂k
≤ ǫk

128PD(x ∈Rk−1)

By definition of event E2
k, this implies

PAk
(ĥdf

k (x) =−1,yO 6= yW )

≤ PA′

k
(ĥdf

k (x) =−1,yO 6= yW ) +

√

PA′

k
(ĥdf

k (x) =−1,yO 6= yW )
ǫk

1024PD(x ∈Rk−1)

+
ǫk

1024PD(x ∈Rk−1)

≤ ǫk

64PD(x ∈Rk−1)
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Indicating

PD(ĥdf
k (x) =−1,yO 6= yW ,x ∈Rk−1)≤ ǫk

64

Proof of Equation (4.12). By definition of hdf
k in Subsection 4.6.1, hdf

k is such that:

PD(hdf
k (x) = +1,x ∈∆(2ν + ǫk−1))≤ α(2ν + ǫk−1, ǫk/512)

PD(hdf
k (x) =−1,yO 6= yW ,x ∈∆(2ν + ǫk−1))≤ ǫk/512

By item (2) of Lemma 4.6, we have Rk−1 ⊆Dis(B(h∗,2ν + ǫk−1)), thus

PD(hdf
k (x) = +1,x ∈Rk−1)≤ α(2ν + ǫk−1, ǫk/512) (4.16)

PD(hdf
k (x) =−1,yO 6= yW ,x ∈Rk−1)≤ ǫk/512 (4.17)

Equation (4.17) implies that

PAk
(hdf

k (x) =−1,yO 6= yW )≤ ǫk

512PD(x ∈Rk−1)
(4.18)

Recall that A′
k is the dataset subsampled from Ak in line 3 of Algorithm 4.2. By definition of

event E1
k, we have that for hdf

k ,

PA′

k
(hdf

k (x) =−1,yO 6= yW )

≤ PAk
(hdf

k (x) =−1,yO 6= yW ) +

√

PAk
(hdf

k (x) =−1,yO 6= yW )
ǫk

1024PD(x ∈Rk−1)

+
ǫk

1024PD(x ∈Rk−1)

≤ ǫk

256PD(x ∈Rk−1)
≤ ǫk

256p̂k

where the second inequality is from Equation (4.18), and the last inequality is from the fact that
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p̂k ≤ PD(x ∈Rk−1). Hence, hdf
k is a feasible solution to the optimization problem (4.2). Thus,

PAk
(ĥdf

k (x) = +1)

≤ PA′

k
(ĥdf

k (x) = +1) +

√

PA′

k
(ĥdf

k (x) = +1)
ǫk

1024PD(x ∈Rk−1)
+

ǫk

1024PD(x ∈Rk−1)

≤ 2(PA′

k
(ĥdf

k (x) = +1) +
ǫk

1024PD(x ∈Rk−1)
)

≤ 2(PA′

k
(hdf

k (x) = +1) +
ǫk

1024PD(x ∈Rk−1)
)

≤ 2
(

(PAk
(hdf

k (x) = +1) +

√

PAk
(hdf

k (x) = +1)
ǫk

1024PD(x ∈Rk−1)
+

ǫk

1024PD(x ∈Rk−1)
)

+
ǫk

1024PD(x ∈Rk−1)

)

≤ 6(PAk
(hdf

k (x) = +1) +
ǫk

1024PD(x ∈Rk−1)
)

where the first inequality is by definition of event E1
k, the second inequality is by algebra, the

third inequality is by optimality of ĥdf
k in (4.2), PA′

k
(ĥdf

k (x) = +1)≤PA′

k
(hdf

k (x) = +1), the fourth

inequality is by definition of event E1
k, the fifth inequality is by algebra.

Therefore,

PD(ĥdf
k (x) = +1,x ∈Rk−1) ≤ 6

(

PD(hdf
k (x) = +1,x ∈Rk−1) +

ǫk

1024

)

≤ 6

(

α(2ν + ǫk−1,
ǫk

512
) +

ǫk

1024

)

where the second inequality follows from Equation (4.16). This establishes the correctness of

Invariant 4.3.

(2) The number of label requests to O follows from line 3 of Algorithm 4.2 (see Equation (4.7)).

That is, we can choose c1 large enough (independently of k), such that

mk,1 ≤ c1

(

PD(x ∈Rk−1)

ǫk
(d′ ln

1

ǫk
+ ln

1

δk
)
)

≤ c1

(

PU (x ∈∆(2ν + ǫk−1))

ǫk
(d′ ln

1

ǫk
+ ln

1

δk
)
)

where in the second step we use the fact that on event Fk, by item (2) of Lemma 4.6, Rk−1 ⊆

Dis(B(h∗,2ν + ǫk−1)), thus PD(x ∈Rk−1)≤ PD(x ∈∆(2ν + ǫk−1)) = PU (x ∈∆(2ν + ǫk−1)).
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4.7.3 Adaptive Subsampling

Lemma 4.8. There is a numerical constant c2 > 0 such that the following holds. Suppose

Invariants 4.1, 4.2, and 4.3 hold in epoch k− 1 on event Fk−1; Algorithm 4.4 receives inputs

unlabeled distribution U , classifier ĥk−1, difference classifier ĥdf = ĥdf
k , target excess error ǫ = ǫk,

confidence δ = δk/2, previous labeled dataset Ŝk−1. Then on event Fk,

(1) Ŝk, the output of Algorithm 4.4, maintains Invariants 4.1 and 4.2.

(2) (Label Complexity: Part 2.) The number of label queries to O in Algorithm 4.4 is at most:

mk,2 ≤ c2

( (ν + ǫk)(α(2ν + ǫk−1, ǫk/512) + ǫk)

ǫ2
k

·d(ln2 1

ǫk
+ ln2 1

δk
)
)

Proof. (1) Recall that Fk = Fk−1 ∩E1
k ∩E2

k, where E1
k , E2

k are defined in Subsection 4.6.1. Sup-

pose event Fk happens.

Proof of Invariant 4.1. We consider a pair of classifiers h,h′ ∈ H, where h is an

arbitrary classifier in H and h′ has excess error at most ǫk.

At iteration t = t0(k) of Algorithm 4.4, the breaking criterion in line 14 is met, i.e.

σ(2t0(k),δ
t0(k)
k ) +

√

σ(2t0(k),δ
t0(k)
k )err(ĥt0(k), Ŝ

t0(k)
k )≤ ǫk/512 (4.19)

First we expand the definition of err(h,Sk) and err(h,Ŝk) respectively:

err(h,Sk) = PSk
(ĥdf

k (x) = +1,h(x) 6= yO,x ∈Rk−1) +

PSk
(ĥdf

k (x) =−1,h(x) 6= yO,x ∈Rk−1) +PSk
(h(x) 6= yO,x /∈Rk−1)

err(h,Ŝk) = PSk
(ĥdf

k (x) = +1,h(x) 6= yO,x ∈Rk−1) +

PSk
(ĥdf

k (x) =−1,h(x) 6= yW ,x ∈Rk−1) +PSk
(h(x) 6= h∗(x),x /∈Rk−1)

where we use the fact that by Lemma 4.6, for all examples x /∈Rk−1, ĥk−1(x) = h∗(x).

We next show that PSk
(ĥdf

k (x) = −1,h(x) 6= yO,x ∈ Rk−1) is close to PSk
(ĥdf

k (x) =

−1,h(x) 6= yW ,x ∈Rk−1).
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From Lemma 4.7, we know that conditioned on event Fk,

PD(ĥdf
k (x) =−1,yO 6= yW ,x ∈Rk−1)≤ ǫk/64

In the meantime, from Equation (4.19), γ(2t0(k),δ
t0(k)
k )≤ σ(2t0(k),δ

t0(k)
k ) ≤ ǫk/512. Recall that

Sk = St0(k)
k . Therefore, by definition of E2

k ,

PSk
(ĥdf

k (x) =−1,yO 6= yW ,x ∈Rk−1)

≤ PD(ĥdf
k (x) =−1,yO 6= yW ,x ∈Rk−1) +

√

PD(ĥdf
k (x) =−1,yO 6= yW ,x ∈Rk−1)γ(2t0(k),δ

t0(k)
k )

+γ(2t0(k),δ
t0(k)
k )

≤ PD(ĥdf
k (x) =−1,yO 6= yW ,x ∈Rk−1) +

√

PD(ĥdf
k (x) =−1,yO 6= yW ,x ∈Rk−1)ǫk/512+

ǫk

512

≤ ǫk/32

By triangle inequality, for all classifier h0 ∈H,

|PSk
(ĥdf

k (x) =−1,h0(x) 6= yO,x ∈Rk−1)−PSk
(ĥdf

k (x) =−1,h0(x) 6= yW ,x ∈Rk−1)| ≤ ǫk/32

(4.20)

Specifically for h and h′, Equation (4.20) hold:

|PSk
(ĥdf

k (x) =−1,h(x) 6= yO,x ∈Rk−1)−PSk
(ĥdf

k (x) =−1,h(x) 6= yW ,x ∈Rk−1)| ≤ ǫk/32

|PSk
(ĥdf

k (x) =−1,h′(x) 6= yO,x ∈Rk−1)−PSk
(ĥdf

k (x) =−1,h′(x) 6= yW ,x ∈Rk−1)| ≤ ǫk/32

Combining, we get:

(PSk
(ĥdf

k (x) =−1,h(x) 6= yW ,x ∈Rk−1)−PSk
(ĥdf

k (x) =−1,h′(x) 6= yW ,x ∈Rk−1)) (4.21)

− (PSk
(ĥdf

k (x) =−1,h(x) 6= yO,x ∈Rk−1)−PSk
(ĥdf

k (x) =−1,h′(x) 6= yO,x ∈Rk−1))≤ ǫk/16

We now show the labels inferred in the region X \Rk−1 is “favorable” to the classifiers whose

excess error is at most ǫk/2.

By triangle inequality,

PSk
(h(x) 6= yO,x /∈Rk−1)−PSk

(h∗(x) 6= yO,x /∈Rk−1)≤ PSk
(h(x) 6= h∗(x),x /∈Rk−1)
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By Lemma 4.6, since h′ has excess error at most ǫk, h′ agrees with h∗ on all x in X \Rk−1 on

event Fk−1, hence PSk
(h′(x) 6= h∗(x),x /∈Rk−1) = 0. This gives

PSk
(h(x) 6= yO,x /∈Rk−1)−PSk

(h′(x) 6= yO,x /∈Rk−1)

≤ PSk
(h(x) 6= h∗(x),x /∈Rk−1)−PSk

(h′(x) 6= h∗(x),x /∈Rk−1) (4.22)

Combining Equations (4.21) and (4.22), we conclude that

err(h,Sk)− err(h′,Sk)≤ err(h,Ŝk)− err(h′, Ŝk) + ǫk/16

This establishes the correctness of Invariant 4.1.

Proof of Invariant 4.2. Recall by definition of E2
k the following concentration results

hold for all t ∈ N:

(err(h,St
k)− err(h′,St

k))− (errD(h)− errD(h′))≤ σ(2t,δt
k) +

√

σ(2t,δt
k)ρSt

k
(h,h′))

In particular, for iteration t0(k) we have

(err(h,S
t0(k)
k )− err(h′,S

t0(k)
k ))− (errD(h)− errD(h′))

≤ σ(2t0(k),δ
t0(k)
k ) +

√

σ(2t0(k),δ
t0(k)
k )ρ

S
t0(k)

k

(h,h′)

Recall that Ŝk = Ŝ
t0(k)
k , ĥk = ĥ

t0(k)
k , and σk = σ(2t0(k),δ

t0(k)
k ), hence the above is equivalent to

|(err(h,Sk)− err(h′,Sk))− (errD(h)− errD(h′))| ≤ σk +
√

σkρSk
(h,h′) (4.23)

Equation (4.23) establishes the correctness of Equation (4.9) of Invariant 4.2. Equation (4.10) of

Invariant 4.2 follows from Equation (4.19).

(2) We define h̃k = argminh∈H errD̂k
(h), and define ν̃k to be errD̂k

(h̃k). To prove the bound

on the number of label requests, we first claim that if t is sufficiently large that

σ(2t,δt
k) +

√

σ(2t,δt
k)ν̃k ≤ ǫk/1536 (4.24)
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then the algorithm will satisfy the breaking criterion at line 14 of Algorithm 4.4, that is, for this

value of t,

σ(2t,δt
k) +

√

σ(2t,δt
k)err(ĥt, Ŝt

k)≤ ǫk/512 (4.25)

Indeed, by definition of E2
k, if event Fk happens,

err(h̃k, Ŝt
k)

≤ errD̂k
(h̃k) + σ(2t,δt

k) +
√

σ(2t,δt
k)errD̂k

(h̃k)

= ν̃k + σ(2t,δt
k) +

√

σ(2t,δt
k)ν̃k (4.26)

Therefore,

σ(2t,δt
k) +

√

σ(2t,δt
k)err(ĥt

k, Ŝt
k)

≤ σ(2t,δt
k) +

√

σ(2t,δt
k)err(h̃k, Ŝt

k)

≤ σ(2t,δt
k) +

√

σ(2t,δt
k)(2ν̃k + 2σ(2t,δt

k))

≤ 3σ(2t,δt
k) + 2

√

σ(2t,δt
k)ν̃k

≤ ǫk/512

where the first inequality is from the optimality of ĥt
k, the second inequality is from Equa-

tion (4.26), the third inequality is by algebra, the last inequality follows from Equation (4.24).

The claim follows.

Next, we solve for the minimum t that satisfies (4.24), which is an upper bound of t0(k). Fact A.1

implies that there is a numerical constant c3 > 0 such that

2t0(k) ≤ c3
ν̃k + ǫk

ǫ2
k

(d ln
1

ǫk
+ ln

1

δk
))

Thus, there is a numerical constant c4 > 0 such that

t0(k)≤ c4(lnd + ln
1

ǫk
+ lnln

1

δk
)

Hence, there is a numerical constant c5 > 0 (that does not depend on k) such that the following

holds. If event Fk happens, then the number of label queries made by Algorithm 4.4 to O can
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be bounded as follows:

mk,2 =

t0(k)
∑

t=1

|St,U
k ∩{x : ĥdf

k (x) = +1}∩Rk−1|

=

t0(k)
∑

t=1

2t
PSt

k
(ĥdf

k (x) = +1,x ∈Rk−1)

≤
t0(k)
∑

t=1

2t(2PD(ĥdf
k (x) = +1,x ∈Rk−1) + 2 ·4

ln 2
δt

k

2t
)

≤ 4 ·2t0(k)
PD(ĥdf

k (x) = +1,x ∈Rk−1) + 8 · t0(k) ln
2

δ
t0(k)
k

≤ c5

(

(
(ν̃k + ǫk)PD(ĥdf

k (x) = +1,x ∈Rk−1)

ǫ2
k

+ 1) ·d(ln2 1

ǫk
+ ln2 1

δk
)
)

≤ c5

(

(
(ν̃k + ǫk) ·6(α(2ν + ǫk−1, ǫk/512) + ǫk/1024)

ǫ2
k

+ 1) ·d(ln2 1

ǫk
+ ln2 1

δk
)
)

where the second equality is from the fact that |St,U
k ∩ {x : ĥdf

k (x) = −1} ∩Rk−1| = |St,U
k | ·

PSt
k
(ĥdf

k (x) =−1,x ∈ Rk−1), in conjunction with |St,U
k |= 2t; the first inequality is by definition

of E2
k, the second and third inequality is from algebra that t0(k) ln 1

δ
t0(k)

k

≤ c5d(ln2 1
ǫk

+ ln2 1
δk

)

for some constant c5 > 0, along with the choice of c2, the fourth step is from Lemma 4.7 which

states that Invariant 4.3 holds at epoch k.

What remains to be argued is an upper bound on ν̃k. Note that

ν̃k

= min
h∈H

[PD(ĥdf
k (x) =−1,h(x) 6= yW ,x ∈Rk−1)

+PD(ĥdf
k (x) = +1,h(x) 6= yO,x ∈Rk−1) +PD(h(x) 6= h∗(x),x /∈Rk−1)]

≤ PD(ĥdf
k (x) =−1,h∗(x) 6= yW ,x ∈Rk−1) +PD(ĥdf

k (x) = +1,h∗(x) 6= yO,x ∈Rk−1)

≤ PD(ĥdf
k (x) =−1,h∗(x) 6= yO,x ∈Rk−1) +PD(ĥdf

k (x) = +1,h∗(x) 6= yO,x ∈Rk−1) + ǫk/64

≤ PD(ĥdf
k (x) =−1,h∗(x) 6= yO,x ∈Rk−1) +PD(ĥdf

k (x) = +1,h∗(x) 6= yO,x ∈Rk−1)

+PD(h(x) 6= yO,x /∈Rk−1) + ǫk/64

= ν + ǫk/64
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where the first step is by definition of errD̂k
(h), the second step is by the suboptimality

of h∗, the third step is by Equation (4.20), the fourth step is by adding a positive term PD(h(x) 6=

yO,x /∈ Rk−1), the fifth step is by definition of errD(h). Therefore, we conclude that there is a

numerical constant c2 > 0, such that mk,2, the number of label requests to O in Algorithm 4.4 is

at most

c2

( (ν + ǫk)(α(2ν + ǫk−1, ǫk/512) + ǫk)

ǫ2
k

·d(ln2 1

ǫk
+ ln2 1

δk
)
)

4.7.4 Putting It Together – Statistical Consistency and Label Com-

plexity

Proof of Lemma 4.2. With foresight, pick c0 > 0 to be a large enough constant. We prove the

result by induction.

Base case. Consider k = 0. Recall that F0 is defined as

F0 =
{

for all h,h′ ∈H,

(err(h,S0)− err(h′,S0))− (errD(h)− errD(h′))≤ σ(n0,δ0) +
√

σ(n0,δ0)ρS0(h,h′)
}

Note that by definition in Subsection 4.5, Ŝ0 = S0. Therefore Invariant 4.1 trivially holds. When

F0 happens, Equation (4.9) of Invariant 4.2 holds, and n0 is such that
√

σ0 ≤ ǫ0/1024, thus,

σ0 +

√

σ0 err(ĥ0, Ŝ0)≤ ǫ0/512

which establishes the validity of Equation (4.10) of Invariant 4.2.

Meanwhile, the number of label requests to O is

n0 = 64 ·10242(d ln(512 ·10242) + ln
96

δ
))≤ c0(d + ln

1

δ
)

Inductive case. Suppose the claim holds for k′ < k. The inductive hypothesis states

that Invariants 1,2,3 hold in epoch k−1 on event Fk−1. By Lemma 4.7 and Lemma 4.8, Invariants

1,2,3 holds in epoch k on event Fk. Suppose Fk happens. By Lemma 4.7, there is a numerical
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constant c1 > 0 such that the number of label queries in Algorithm 4.2 in line 12 is at most

mk,1 ≤ c1

(

PU (x ∈∆(2ν + ǫk−1))

ǫk
(d′ ln

1

ǫk
+ ln

1

δk
)
)

Meanwhile, by Lemma 4.8, there is a numerical constant c2 > 0 such that the number of label

queries in Algorithm 4.4 in line 14 is at most

mk,2 ≤ c2

( (α(2ν + ǫk−1, ǫk/512) + ǫk)(ν + ǫk)

ǫ2
k

·d(ln2 1

ǫk
+ ln2 1

δk
)
)

Thus, the number of label requests in total at epoch k is at most

mk = mk,1 + mk,2

≤ c0

((α(2ν + ǫk−1, ǫk/512) + ǫk)(ν + ǫk)

ǫ2
k

d(ln2 1

ǫk
+ ln2 1

δk
)

+
PU(x ∈∆(2ν + ǫk−1))

ǫk
(d′ ln

1

ǫk
+ ln

1

δk
)
)

This completes the induction.

Theorem 4.3 (Statistical Consistency). If Fk0
happens, then the classifier ĥ returned by Algo-

rithm 4.1 is such that

errD(ĥ)− errD(h∗)≤ ǫ

Proof. By Lemma 4.2, Invariants 4.1, 4.2, 4.3 hold at epoch k0. Thus by Lemma 4.5,

errD(ĥ)− errD(h∗) = errD(ĥk0
)− errD(h∗)≤ ǫk0

/8≤ ǫ

Proof of Theorem 4.1. This is an immediate consequence of Theorem 4.3.

Theorem 4.4 (Label Complexity). If Fk0
happens, then the number of label queries made by

Algorithm 4.1 to O is at most

Õ

(

(sup
r≥ǫ

α(2ν + r,r/1024)

2ν + r
)d(

ν2

ǫ2
+ 1) + (sup

r≥ǫ

PU (x ∈∆(2ν + r))

2ν + r
)d′(

ν

ǫ
+ 1)

)
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Proof. Conditioned on event Fk0
, we bound the sum

∑k0
k=0 mk.

k0
∑

k=0

mk

≤ c0(d + ln
1

δ
) + c0

(

k0
∑

k=1

(α(2ν + ǫk−1, ǫk/512) + ǫk)(ν + ǫk)

ǫ2
k

d(ln2 1

ǫk
+ ln2 1

δk
)

+
PU (x ∈ ∆(2ν + ǫk−1))

ǫk
(d′ ln

1

ǫk
+ ln

1

δk
)
)

≤ c0(d + ln
1

δ
) + c0

(

k0
∑

k=1

(α(2ν + ǫk−1, ǫk/512) + ǫk)(ν + ǫk)

ǫ2
k

d(3 ln2 1

ǫ
+ 2ln2 1

δ
)

+
PU (x ∈ ∆(2ν + ǫk−1))

ǫk
(2d′ ln

1

ǫ
+ ln

1

δ
)
)

≤ (sup
r≥ǫ

α(2ν + r,r/1024) + r

2ν + r
)d(3 ln2 1

ǫ
+ 2ln2 1

δ
)

k0
∑

k=0

(ν + ǫk)2

ǫ2
k

+sup
r≥ǫ

PU (x ∈ ∆(2ν + r))

2ν + r
(2d′ ln

1

ǫ
+ ln

1

δ
)

k0
∑

k=0

(ν + ǫk)

ǫk

≤ Õ

(

(sup
r≥ǫ

α(2ν + r,r/1024) + r

2ν + r
)d(

ν2

ǫ2
+ 1) + (sup

r≥ǫ

PU (x ∈ ∆(2ν + r))

2ν + r
)d′(

ν

ǫ
+ 1)

)

where the first inequality is by Lemma 4.2, the second inequality is by noticing for all k ≥ 1,

ln2 1
ǫk

+ ln2 1
δk
≤ 3ln2 1

ǫ + 2ln2 1
δ and d′ ln 1

ǫk
+ ln 1

δk
≤ 2d′ ln 1

ǫ + ln 1
δ , the rest of the derivations

follows from standard algebra.

Proof of Theorem 4.2. Item 1 is an immediate consequence of Lemma 4.2, whereas item 2 is a

consequence of Theorem 4.4.

4.8 Case Study: Linear Classification under Uniform Dis-

tribution over Unit Ball

We remind the reader the setting of our example in Section 4.4. H is the class of

homogeneous linear separators on the d-dimensional unit ball and Hdf is defined to be {h∆h′ :

h,h′ ∈ H}. Note that d′ is at most 5d. Furthermore, U is the uniform distribution over the

unit ball. O is a deterministic labeler such that errD(h∗) = ν > 0, W is such that there exists a
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difference classifier h̄df with false negative error 0 for which PrU (h̄df (x) = 1)≤ g = o(
√

dν). We

prove the label complexity bound provided by Corollary 4.1.

Proof of Corollary 4.1. We claim that under the assumptions of Corollary 4.1, α(2ν + r,r/1024)

is at most g. Indeed, by taking hdf = h̄df , observe that

P (h̄df (x) =−1,yW 6= yO,x ∈∆(2ν + r))≤ P (h̄df (x) =−1,yW 6= yO) = 0

P (h̄df (x) = +1,x ∈∆(2ν + r))≤ g

This shows that α(2ν + r,0)≤ g. Hence, α(2ν + r,r/1024)≤ α(2ν + r,0)≤ g. Therefore,

sup
r:r≥ǫ

α(2ν + r,r/1024) + r

2ν + r
≤ sup

r≥ǫ

g + r

ν + r
≤max(

g

ν
,1)

Recall that the disagreement coefficient θ(2ν + r) ≤
√

d for all r, and d′ ≤ 5d. Thus, by Theo-

rem 4.2, the number of label queries to O is at most

Õ

(

dmax(
g

ν
,1)(

ν2

ǫ2
+ 1) + d3/2

(

1 +
ν

ǫ

)

)

4.9 Remaining Proofs

Proof of Fact 4.1. (1) First by Lemma 4.1, PD(x ∈ Rk−1)/2 ≤ p̂k ≤ PD(x ∈ Rk−1) holds with

probability 1− δk/6.

Second, for each classifier hdf ∈Hdf , define functions f1
hdf , and f2

hdf associated with it. Formally,

f1
hdf (x,yO,yW ) = 1(hdf (x) =−1,yO 6= yW )

f2
hdf (x,yO,yW ) = 1(hdf (x) = +1)

Consider the function class F1 = {f1
hdf : hdf ∈Hdf}, F2 = {f2

hdf : hdf ∈Hdf}. Note that both F1

and F2 have VC dimension d′, which is the same as Hdf . We note that A′
k is a random sample

of size mk drawn iid from Ak. The fact follows from normalized VC inequality on F1 and F2
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and the choice of mk in Algorithm 4.2 called in epoch k, along with union bound.

Proof of Fact 4.2. For fixed t, we note that St
k is a random sample of size 2t drawn iid from D.

By Equation (A.4) of Lemma A.5, for any fixed t ∈ N,

P

(

for all h,h′ ∈ H, |(err(h,St
k) − err(h′,St

k)) − (errD(h) − errD(h′))| ≤ σ(2t, δt
k) +

√

σ(2t, δt
k)ρSt

k

(h,h′)
)

≥ 1 − δt
k/8

Meanwhile, for fixed t ∈ N, note that Ŝt
k is a random sample of size 2t drawn iid from D̂k. By

Equation (A.2) of Lemma A.5,

P

(

for all h,h′ ∈H,err(h,Ŝt
k)− errD̂k

(h)≤ σ(2t,δt
k) +

√

σ(2t,δt
k)errD̂k

(h)
)

≥ 1− δt
k/8 (4.27)

Moreover, for fixed t ∈ N, note that St
k is a random sample of size 2t drawn iid from D. By

Lemma A.2,

P

(

PSt
k
(ĥdf

k (x) =−1,yO 6= yW ,x ∈Rk−1)≤ PD(ĥdf
k (x) =−1,yO 6= yW ,x ∈Rk−1)

+

√

γ(2t,δt
k)PD(ĥdf

k (x) = −1,yO 6= yW ,x ∈Rk−1)+ γ(2t,δt
k)
)

≥ 1− δt
k/8 (4.28)

Finally, for fixed t ∈ N , note that St
k is a random sample of size 2t drawn iid from D. By

Lemma A.2,

P

(

PSt

k

(ĥdf
k (x) = −1,x ∈ Rk−1) ≤ PD(ĥdf

k (x) = −1,x ∈ Rk−1)

+

√

PD(ĥdf
k (x) = −1,x ∈ Rk−1)γ(2t, δt

k) + γ(2t, δt
k)
)

≥ 1 − δt
k/8 (4.29)

Note that by algebra,

PD(ĥdf
k (x) = −1,x ∈Rk−1) +

√

PD(ĥdf
k (x) =−1,x ∈Rk−1)γ(2t,δt

k) + γ(2t,δt
k)

≤ 2(PD(ĥdf
k (x) =−1,x ∈Rk−1) + γ(2t,δt

k))

Therefore,

P

(

PSt
k
(ĥdf

k (x) =−1,x ∈Rk−1)≤ 2(PD(ĥdf
k (x) =−1,x ∈Rk−1) + γ(2t,δt

k))
)

≥ 1− δt
k/12 (4.30)
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The proof follows by applying union bound over Equations (4.27), (4.27), (4.28) and (4.30) and

t ∈ N.

We emphasize that St
k is chosen iid at random after ĥdf

k is determined, thus uniform

convergence argument over Hdf is not necessary for Equations (4.28) and (4.30).

Proof of Fact 4.3. By induction on k.

Base Case. For k = 0, it follows directly from normalized VC inequality that P(F0)≥

1− δ0.

Inductive Case. Assume P(Fk−1)≥ 1− δ0− . . .− δk−1 holds. By union bound,

P(Fk)≥ P(Fk−1 ∩E1
k ∩E2

k)≥ P(Fk−1)− δk/2− δk/2≥ P(Fk−1)− δk

Hence, P(Fk)≥ 1− δ0− . . .− δk. This finishes the induction.

In particular, P(Fk0
)≥ 1− δ0− . . .δk0

≥ 1− δ.
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Chapter 5

Active Learning using a Search

Oracle

5.1 Introduction

Most active learning theory is based on interacting with Label oracles. As discussed

in Section 1.1.1, a well-known deficiency of Label arises in the presence of rare classes in clas-

sification problems, frequently the case in practice [AP10, SCL+14]. Class imbalance may be

so extreme that simply finding an example from the rare class can exhaust the labeling budget.

Consider the problem of learning interval functions in [0,1]. Any Label-only active learner needs

at least Ω(1/ǫ) Label queries to learn an arbitrary target interval with error at most ǫ [Das05].

Given any positive example from the interval, however, the query complexity of learning intervals

collapses to O(log(1/ǫ)), as we can just do a binary search for each of the end points.

A natural approach used to overcome this hurdle in practice is to search for known

examples of the rare class [AP10, SCL+14]. Domain experts are often adept at finding examples

of a class by various, often clever means. For instance, when building a hate speech filter, a simple

web search can readily produce a set of positive examples. Sending a random batch of unlabeled

text to Label is unlikely to produce any positive examples at all. Another form of interaction

common in practice is providing counterexamples to a learned predictor. When monitoring the

stream filtered by the current hate speech filter, a human editor may spot a clear-cut example of

58
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hate speech that seeped through the filter. The editor, using all the search tools available to her,

may even be tasked with searching for such counterexamples. The goal of the learning system is

then to interactively restrict the searchable space, guiding the search process to where it is most

effective.

In this chapter, we define a new oracle, Search, that provides counterexamples to version

spaces. Given a set of possible classifiers H mapping unlabeled examples to labels, a candidate set

V ⊆H is the subset of classifiers still under consideration by the algorithm. A counterexample to

a candidate set is a labeled example which every classifier in the candidate set classifies incorrectly.

When there is no counterexample to the candidate set, Search returns nothing. In addition, we

consider a nested sequence of hypothesis classes of increasing complexity, akin to model selection

in passive learning [Vap82, DGL96]. When Search produces a counterexample to the candidate

set, it gives a proof that the current hypothesis class is too simplistic to solve the problem

effectively. We show that this guided increase in hypothesis complexity results in a radically

lower Label complexity than directly learning on the complex space. Sample complexity bounds

for model selection in Label-only active learning were studied by [BHV10, Han09].

Search can easily model the practice of seeding discussed earlier. If the first hypothesis

class has just the constant always-negative classifier h(x) =−1, a seed example with label +1 is

a counterexample to the candidate set. Our most basic algorithm uses Search just once before

using Label, but it is clear from inspection that multiple seeds are not harmful, and they may

be helpful if they provide the proof required to operate with an appropriately complex hypothesis

class. Defining Search with respect to a candidate set rather than a single classifier allows us

to formalize “counterexample far from the boundary” in a general fashion which is compatible

with the way Label-based active learning algorithms work.

5.2 Definitions and Setting

Recall from Chapter 3, in active learning, there is an underlying distribution D over

X ×Y, where X is the instance space and Y := {−1,+1} is the label space. The learner can

obtain independent draws from D, but the label is hidden unless explicitly requested through a

query to the Label oracle. Let DX denote the marginal of D over X .

We consider active learning with a nested sequence of hypotheses classes H0 ⊂ H1 ⊂

·· · ⊂Hk · · · , where Hk ⊆YX has VC dimension dk. For a set of labeled examples S ⊆X ×Y, let
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Hk(S) := {h ∈Hk : ∀(x,y) ∈ S �h(x) = y} be the set of hypotheses in Hk consistent with S. Let

h∗
k = argminh∈Hk

err(h) breaking ties arbitrarily and let k∗ := argmink≥0 err(h∗
k) breaking ties

in favor of the smallest such k. For simplicity, we assume the minimum is attained at some finite

k∗. Finally, define h∗ := h∗
k∗ , the optimal hypothesis in the sequence of classes. The goal of the

learner is to learn a hypothesis with error rate not much more than that of h∗.

In addition to Label, the learner can also query Search with a candidate set.

Oracle SearchH(V ) (where H ∈ {Hk}∞k=0)

Input: Set of hypotheses V ⊂H

Output: Labeled example (x,h∗(x)) s.t. h(x) 6= h∗(x) for all h ∈ V , or ⊥ if there is no such

example.

Thus if SearchH(V ) returns an example, this example is a systematic mistake made by

all hypotheses in V . (If V = ∅, we expect Search to return some example, i.e., not ⊥.)

5.3 The Relative Power of the Two Oracles

Although Search cannot always implement Label efficiently, it is as effective at reduc-

ing the region of disagreement. The clearest example is learning threshold classifiers H := {hw :

w ∈ [0,1]} in the realizable case, where hw(x) = +1 if w ≤ x≤ 1, and −1 if 0≤ x < w. A simple

binary search with Label achieves an exponential improvement in query complexity over passive

learning. The agreement region of any set of threshold classifiers with thresholds in [wmin,wmax]

is [0,wmin)∪ [wmax,1]. Since Search is allowed to return any counterexample in the agreement

region, there is no mechanism for forcing Search to return the label of a particular point we

want. However, this is not needed to achieve logarithmic query complexity with Search: If

binary search starts with querying the label of x ∈ [0,1], we can query SearchH(Vx), where

Vx := {hw ∈H : w < x} instead. If Search returns ⊥, we know that the target w∗ ≤ x and can

safely reduce the region of disagreement to [0,x). If Search returns a counterexample (x0,−1)

with x0 ≥ x, we know that w∗ > x0 and can reduce the region of disagreement to (x0,1].

This observation holds more generally. In the proposition below, we assume that Label(x)

equals h∗(x) for simplicity. If Label(x) is noisy, the proposition holds for any active learning

algorithm that doesn’t eliminate any h ∈H : h(x) = Label(x) from the candidate set.
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Proposition 5.1. For any call x ∈ X to Label such that Label(x) = h∗(x), we can construct

a call to Search that achieves a no lesser reduction in the region of disagreement.

Proof. For any V ⊆ H , let HSearch(V ) be the hypotheses in H consistent with the output of

SearchH(V ): if SearchH(V ) returns a counterexample (x,y) to V , then HSearch(V ) := {h ∈

H : h(x) = y}; otherwise, HSearch(V ) := V . Let HLabel(x) := {h ∈H : h(x) = Label(x)}. Also,

let Vx := H+1(x) := {h ∈H : h(x) = +1}. We will show that Vx is such that HSearch(Vx) ⊆

HLabel(x), and hence Dis(HSearch(Vx)) ⊆ Dis(HLabel(x)).

There are two cases to consider: If h∗(x) = +1, then SearchH(Vx) returns ⊥. In this

case, HLabel(x) = HSearch(Vx) = H+1(x), and we are done. If h∗(x) = −1, Search(Vx) returns

a valid counterexample (possibly (x,−1)) in the region of agreement of H+1(x), eliminating all

of H+1(x). Thus HSearch(Vx)⊂H \H+1(x) = HLabel(x), and the claim holds also.

As shown by the problem of learning intervals on the line, Search can be exponentially

more powerful than Label.

5.4 Realizable Case

We now turn to general active learning algorithms that combine Search and Label. We

focus on algorithms using both Search and Label since Label is typically easier to implement

than Search and hence should be used where Search has no significant advantage. (Whenever

Search is less expensive than Label, Section 5.3 suggests a transformation to a Search-only

algorithm.)

This section considers the realizable case, in which we assume that the hypothesis h∗ =

h∗
k∗ ∈Hk∗ has err(h∗) = 0. This means that Label(x) returns h∗(x) for any x in the support of

DX .

5.4.1 Combining LABEL and SEARCH

Our algorithm (shown as Algorithm 5.1) is called Larch, because it combines Label

and Search. Like many selective sampling methods, Larch uses a candidate set to determine

its Label queries.

For concreteness, we use (a variant of) the algorithm of [CAL94], denoted by CAL, as a

subroutine in Larch. The inputs to CAL are: a candidate set V , the Label oracle, a target error
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Algorithm 5.1 Larch

Input: Nested hypothesis classes H0 ⊂H1 ⊂ ·· · ; oracles Label and Search; learning parame-
ters ǫ,δ ∈ (0,1)

1: initialize S← ∅, (index) k← 0, ℓ← 0
2: for i = 1,2, . . . do
3: e← SearchHk

(Hk(S))
4: if e =⊥ then # no counterexample found
5: if 2−ℓ ≤ ǫ then
6: return any h ∈Hk(S)
7: else
8: ℓ← ℓ + 1
9: end if

10: else # counterexample found
11: S← S∪{e}
12: k←min{k′ : Hk′(S) 6= ∅}
13: end if
14: S← S∪CAL(Hk(S),Label,2−ℓ,δ/(i2 + i))
15: end for

rate, and a failure probability; and its output is a set of labeled examples (implicitly defining

a new candidate set). CAL is described in Section 5.7; its essential properties are specified in

Lemma 5.1.

Larch differs from Label-only active learners (like CAL) by first calling Search in

Step 3. If Search returns ⊥, Larch checks to see if the last call to CAL resulted in a small-

enough error, halting if so in Step 6, and decreasing the allowed error rate if not in Step 8. If

Search instead returns a counterexample, the hypothesis class Hk must be impoverished, so

in Step 12, Larch increases the complexity of the hypothesis class to the minimum complexity

sufficient to correctly classify all known labeled examples in S. After the Search, CAL is called

in Step 14 to discover a sufficiently low-error (or at least low-disagreement) candidate set with

high probability.

When Larch advances to index k (for any k ≤ k∗), its set of labeled examples S may

imply a candidate set Hk(S) ⊆Hk that can be actively-learned more efficiently than the whole

of Hk. In our analysis, we quantify this through the disagreement coefficient of Hk(S), which

may be markedly smaller than that of the full Hk.

The following theorem bounds the oracle query complexity of Algorithm 5.1 for learning

with both Search and Label in the realizable setting. The proof is in section 5.4.2.

Theorem 5.1. Assume that err(h∗) = 0. For each k′≥ 0, let θk′(·) be the disagreement coefficient

of Hk′(S[k′]), where S[k′] is the set of labeled examples S in Larch at the first time that k ≥ k′.
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Fix any ǫ,δ ∈ (0,1). If Larch is run with inputs hypothesis classes {Hk}∞k=0, oracles Label

and Search, and learning parameters ǫ,δ, then with probability at least 1− δ: Larch halts

after at most k∗ + log2(1/ǫ) for-loop iterations and returns a classifier with error rate at most

ǫ; furthermore, it draws at most Õ(k∗dk∗/ǫ) unlabeled examples from DX , makes at most k∗ +

log2(1/ǫ) queries to Search, and at most Õ (
(

k∗ + log(1/ǫ)
)

· (maxk′≤k∗ θk′(ǫ)) ·dk∗ · log2(1/ǫ))

queries to Label.

Union-of-intervals example. We now show an implication of Theorem 5.1 in the case

where the target hypothesis h∗ is the union of non-trivial intervals in X := [0,1], assuming that

DX is uniform. For k≥ 0, let Hk be the hypothesis class of the union of up to k intervals in [0,1]

with H0 containing only the always-negative hypothesis. (Thus, h∗ is the union of k∗ non-empty

intervals.) The disagreement coefficient of H1 is Ω(1/ǫ), and hence Label-only active learners

like CAL are not very effective at learning with such classes. However, the first Search query

by Larch provides a counterexample to H0, which must be a positive example (x1,+1). Hence,

H1(S[1]) (where S[1] is defined in Theorem 5.1) is the class of intervals that contain x1 with

disagreement coefficient θ1 ≤ 4.

Now consider the inductive case. Just before Larch advances its index to a value k (for

any k ≤ k∗), Search returns a counterexample (x,h∗(x)) to the candidate set; every hypothesis

in this candidate set (which could be empty) is a union of fewer than k intervals. If the candidate

set is empty, then S must already contain positive examples from at least k different intervals in

h∗ and at least k−1 negative examples separating them. If the candidate set is not empty, then

the point x is either a positive example belonging to a previously uncovered interval in h∗ or a

negative example splitting an existing interval. In either case, S[k] contains positive examples

from at least k distinct intervals separated by at least k−1 negative examples. The disagreement

coefficient of the set of unions of k intervals consistent with S[k] is at most 4k, independent of ǫ.

The VC dimension of Hk is O(k), so Theorem 5.1 implies that with high probability,

Larch makes at most k∗ + log(1/ǫ) queries to Search and Õ((k∗)3 log(1/ǫ) + (k∗)2 log3(1/ǫ))

queries to Label.

5.4.2 Proof of Theorem 5.1

The proof of Theorem 5.1 uses the following lemma regarding the CAL subroutine, proved

in Section 5.7. It is similar to a result of [Han09], but an important difference here is that the
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input candidate set V is not assumed to contain h∗.

Lemma 5.1. Assume Label(x) = h∗(x) for every x in the support of DX . For any hypothesis

set V ⊆ YX with VC dimension d <∞, and any ǫ,δ ∈ (0,1), the following holds with probability

at least 1−δ. CAL(V,Label, ǫ,δ) returns labeled examples T ⊆ {(x,h∗(x)) : x ∈X} such that for

any h in V (T ), Pr(x,y)∼D[h(x) 6= y ∧ x ∈Dis(V (T ))]≤ ǫ; furthermore, it draws at most Õ(d/ǫ)

unlabeled examples from DX , and makes at most Õ (θV (ǫ) ·d · log2(1/ǫ)) queries to Label.

We now prove Theorem 5.1. By Lemma 5.1 and a union bound, there is an event with

probability at least 1−∑i≥1 δ/(i2 +i)≥ 1−δ such that each call to CAL made by Larch satisfies

the high-probability guarantee from Lemma 5.1. We henceforth condition on this event.

We first establish the guarantee on the error rate of a hypothesis returned by Larch. By

the assumed properties of Label and Search, and the properties of CAL from Lemma 5.1, the

labeled examples S in Larch are always consistent with h∗. Moreover, the return property of

CAL implies that at the end of any loop iteration, with the present values of S, k, and ℓ, we have

Pr(x,y)∼D[h(x) 6= y∧x∈Dis(Hk(S))]≤ 2−ℓ for all h∈Hk(S). (The same holds trivially before the

first loop iteration.) Therefore, if Larch halts and returns a hypothesis h∈Hk(S), then there is

no counterexample to Hk(S), and Pr(x,y)∼D[h(x) 6= y∧x∈Dis(Hk(S))]≤ ǫ. These consequences

and the law of total probability imply err(h) = Pr(x,y)∼D[h(x) 6= y∧x ∈Dis(Hk(S))]≤ ǫ.

We next consider the number of for-loop iterations executed by Larch. Let Si, ki, and

ℓi be, respectively, the values of S, k, and ℓ at the start of the i-th for-loop iteration in Larch.

We claim that if Larch does not halt in the i-th iteration, then one of k and ℓ is incremented by

at least one. Clearly, if there is no counterexample to Hki
(Si) and 2−ℓi > ǫ, then ℓ is incremented

by one (Step 8). If, instead, there is a counterexample (x,y), then Hki
(Si ∪{(x,y)}) = ∅, and

hence k is incremented to some index larger than ki (Step 12). This proves that ki+1 + ℓi+1 ≥

ki + ℓi +1. We also have ki ≤ k∗, since h∗ ∈Hk∗ is consistent with S, and ℓi ≤ log2(1/ǫ), as long

as Larch does not halt in for-loop iteration i. So the total number of for-loop iterations is at

most k∗ + log2(1/ǫ). Together with Lemma 5.1, this bounds the number of unlabeled examples

drawn from DX .

Finally, we bound the number of queries to Search and Label. The number of queries

to Search is the same as the number of for-loop iterations—this is at most k∗ + log2(1/ǫ). By

Lemma 5.1 and the fact that V (S′∪S′′)⊆ V (S′) for any hypothesis space V and sets of labeled

examples S′,S′′, the number of Label queries made by CAL in the i-th for-loop iteration is at
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most Õ(θki
(ǫ) ·dki

·ℓ2
i ·polylog(i)). The claimed bound on the number of Label queries made by

Larch now readily follows by taking a max over i, and using the facts that i≤ k∗ and dk′ ≤ dk∗

for all k′ ≤ k.

5.4.3 An Improved Algorithm

Larch is somewhat conservative in its use of Search, interleaving just one Search

query between sequences of Label queries (from CAL). Often, it is advantageous to advance

to higher complexity hypothesis classes quickly, as long as there is justification to do so. Coun-

terexamples from Search provide such justification, and a ⊥ result from Search also provides

useful feedback about the current candidate set: outside of its disagreement region, the candidate

set is in complete agreement with h∗ (even if the version space does not contain h∗). Based on

these observations, we propose an improved algorithm for the realizable setting, which we call

Seabel. We defer its presentation to Section 5.8. We prove the following performance guarantee

for Seabel.

Theorem 5.2. Assume that err(h∗) = 0. Let θk(·) denote the disagreement coefficient of V ki
i at

the first iteration i in Seabel where ki ≥ k. Fix any ǫ,δ ∈ (0,1). If Seabel is run with inputs hy-

pothesis classes {Hk}∞k=0, oracles Search and Label, and learning parameters ǫ,δ ∈ (0,1), then

with probability 1−δ: Seabel halts and returns a classifier with error rate at most ǫ; furthermore,

it draws Õ((dk∗ + logk∗)/ǫ) unlabeled examples from DX , makes k∗ + O (log(dk∗ /ǫ) + loglogk∗)

queries to Search, and Õ (maxk≤k∗ θk(2ǫ) · (dk∗ log2(1/ǫ) + logk∗)) queries to Label.

It is not generally possible to directly compare Theorems 5.1 and 5.2 on account of the

algorithm-dependent disagreement coefficient bounds. However, in cases where these disagree-

ment coefficients are comparable (as in the union-of-intervals example), the Search complexity

in Theorem 5.2 is slightly higher (by additive log terms), but the Label complexity is smaller

than that from Theorem 5.1 by roughly a factor of k∗. For the union-of-intervals example,

Seabel would learn target union of k∗ intervals with k∗ + O(log(k∗/ǫ)) queries to Search and

Õ((k∗)2 log2(1/ǫ)) queries to Label.
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5.5 Non-Realizable Case

In this section, we consider the case where the optimal hypothesis h∗ may have non-

zero error rate, i.e., the non-realizable (or agnostic) setting. In this case, the algorithm Larch,

which was designed for the realizable setting, is no longer applicable. First, examples obtained

by Label and Search are of different quality: those returned by Search always agree with h∗,

whereas the labels given by Label need not agree with h∗. Moreover, the candidate sets (even

when k = k∗) as defined by Larch may always be empty due to the noisy labels.

Another complication arises in our SRM setting that differentiates it from the usual ag-

nostic active learning setting. When working with a specific hypothesis class Hk in the nested

sequence, we may observe high error rates because (i) the finite sample error is too high (but ad-

ditional labeled examples could reduce it), or (ii) the current hypothesis class Hk is impoverished.

In case (ii), the best hypothesis in Hk may have a much larger error rate than h∗, and hence

lower bounds [Kää06] imply that active learning on Hk instead of Hk∗ may be substantially more

difficult.

These difficulties in the SRM setting are circumvented by an algorithm that adaptively

estimates the error of h∗. The algorithm, A-Larch (Algorithm 5.5), is presented in Section 5.9.

Theorem 5.3. Assume err(h∗) = ν. Let θk(·) denote the disagreement coefficient of V ki
i at the

first iteration i in A-Larch where ki ≥ k. Fix any ǫ,δ ∈ (0,1). If A-Larch is run with inputs

hypothesis classes {Hk}∞k=0, oracles Search and Label, learning parameter δ, and unlabeled

example budget Õ((dk∗ + logk∗)(ν + ǫ)/ǫ2), then with probability 1− δ: A-Larch returns a clas-

sifier with error rate ≤ ν + ǫ; it makes at most k∗ +O (log(dk∗ /ǫ) + loglogk∗) queries to Search,

and Õ (maxk≤k∗ θk(2ν + 2ǫ) · (dk∗ log2(1/ǫ) + logk∗) · (1 + ν2/ǫ2)) queries to Label.

The proof is in Section 5.9. The Label query complexity is at least a factor of k∗ better

than that in [Han09], and sometimes exponentially better thanks to the reduced disagreement

coefficient of the candidate set when consistency constraints are incorporated.

5.5.1 AA-Larch: an Opportunistic Anytime Algorithm

In many practical scenarios, termination conditions based on quantities like a target

excess error rate ǫ are undesirable. The target ǫ is unknown, and we instead prefer an algorithm

that performs as well as possible until a cost budget is exhausted. Fortunately, when the primary
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cost being considered are Label queries, there are many Label-only active learning algorithms

that readily work in such an “anytime” setting [DHM07, Han14].

The situation is more complicated when we consider both Search and Label: we can

often make substantially more progress with Search queries than with Label queries (as the

error rate of the best hypothesis in Hk′ for k′ > k can be far lower than in Hk). AA-Larch (Al-

gorithm 5.2) shows that although these queries come at a higher cost, the cost can be amortized.

Algorithm 5.2 AA-Larch

Input: Nested hypothesis set H0 ⊆ H1 ⊆ ·· · ; oracles Label and Search; learning parameter
δ ∈ (0,1); Search-to-Label cost ratio τ , dataset size upper bound N .

Output: hypothesis h̃.
1: Initialize: consistency constraints S←∅, counter c← 0, k← 0, verified labeled dataset L̃←∅,

working labeled dataset L0←∅, unlabeled examples processed i← 0, Vi←Hk(S).
2: loop
3: Reset counter c← 0.
4: repeat
5: if Error-Check(Vi,Li,δi) then
6: (k,S,Vi)←Upgrade-Candidate-Set(k,S,∅)
7: Vi← Prune-Candidate-Set(Vi, L̃,δi)
8: Li← L̃
9: continue loop

10: end if
11: i← i + 1
12: (Li, c)← Sample-and-Label(Vi−1,Label,Li−1, c)
13: Vi← Prune-Candidate-Set(Vi−1,Li,δi)
14: until c = τ or li = N
15: e← SearchHk

(Vi)
16: if e 6=⊥ then
17: (k,S,Vi)←Upgrade-Candidate-Set(k,S,{e})
18: Vi← Prune-Candidate-Set(Vi, L̃,δi)
19: Li← L̃
20: else
21: Update verified dataset L̃← Li.
22: Store temporary solution h̃ = argminh′∈Vi

err(h′, L̃).
23: end if
24: end loop

AA-Larch relies on several crucial subroutines: Sample-and-Label, Error-Check,

Prune-Candidate-Set and Upgrade-Candidate-Set (Algorithms 5.6, 5.7, 5.8, and 5.9).

The detailed descriptions are deferred to Section 5.10. Sample-and-Label performs stan-

dard disagreement-based selective sampling using oracle Label; labels of examples in the dis-

agreement region are queried, otherwise inferred. Prune-Candidate-Set prunes the candi-

date set given the labeled examples collected, based on standard generalization error bounds.
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Error-Check checks if the best hypothesis in the candidate set has large error; Search is

used to find a systematic mistake for the candidate set; if either event happens, AA-Larch calls

Upgrade-Candidate-Set to increase k, the level of our working hypothesis class.

Theorem 5.4. Assume err(h∗) = ν. Let θk′(·) denote the disagreement coefficient of Vi at the

first iteration i after which k ≥ k′. Fix any ǫ ∈ (0,1). Let nǫ = Õ(maxk≤k∗ θk(2ν + 2ǫ)dk∗(1 +

ν2/ǫ2)) and define Cǫ = 2(nǫ + k∗τ). Run Algorithm 5.2 with a nested sequence of hypotheses

{Hk}∞k=0, oracles Label and Search, failure probability δ, cost ratio τ ≥ 1, and upper bound

N = Õ(dk∗/ǫ2). If the cost spent is at least Cǫ, then with probability 1−δ, the current hypothesis

h̃ has error at most ν + ǫ.

The proof is in Section 5.10. A comparison to Theorem 5.3 shows that AA-Larch is

adaptive: for any cost complexity C, the excess error rate ǫ is roughly at most twice that achieved

by A-Larch.

5.6 Basic Notations Used in Proofs

Because we apply the deviation inequalities to the hypothesis classes from {Hk}∞k=0, we

also define:

σk(m,δ) := σ(dk,m,δ), (5.1)

where dk is the VC dimension of Hk.

For integers i≥ 1 and k ≥ 0, define

δi :=
δ

i(i + 1)
, δi,k :=

δi

(k + 1)(k + 2)

Note that
∑∞

i=1 δi = δ and
∑∞

k=0 δi,k = δi.

5.7 Active Learning Algorithm CAL

In this section, we describe and analyze a variant of the Label-only active learning

algorithm of [CAL94], which we refer to as CAL. Note that [Han09] provides a label complexity

analysis of CAL in terms of the disagreement coefficient under the assumption that the Label

oracle is consistent with some hypothesis in the hypothesis class used by CAL. We cannot use
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Algorithm 5.3 CAL

Input: Hypothesis set V with VC dimension ≤d; oracle Label; learning parameters ǫ,δ ∈ (0,1)
Output: Labeled examples T

1: for i = 1,2, . . . do
2: Ti← ∅
3: for j = 1,2, . . . ,2i do
4: xi,j ← independent draw from DX (the corresponding label is hidden)
5: if xi,j ∈Dis(V (T≤i−1)) then
6: Ti← Ti∪{(xi,j ,Label(xi,j))}
7: end if
8: end for
9: if σ(d,2i,δi/2)≤ ǫ or V (T≤i) = ∅ then

10: return T≤i

11: end if
12: end for

that analysis because we call CAL as a subroutine in Larch with sets of hypotheses V that do

not necessarily contain the optimal hypothesis h∗.

5.7.1 Description of CAL

CAL takes as input a set of hypotheses V , the Label oracle (which always returns h∗(x)

when queried with a point x), and learning parameters ǫ,δ ∈ (0,1).

The pseudocode for CAL is given in Algorithm 5.3 below, where we use the notation

U≤i :=

i
⋃

j=1

Uj

for any sequence of sets (Uj)j∈N.

5.7.2 Proof of Lemma 5.1

We now give the proof of Lemma 5.1.

Let V0 := V and Vi := V (T≤i) for each i≥ 1. Clearly V0 ⊇ V1 ⊇ ·· · , and hence Dis(V0)⊇

Dis(V1)⊇ ·· · as well.

Let Ei be the event in which the following hold:

1. Every h ∈ Vi satisfies

Pr
x∼DX

[h(x) 6= h∗(x) ∧ x ∈Dis(Vi)] ≤ σ(d,2i,δi/2) .



70

2. The number of Label queries in iteration i is at most

2iµi + O

(

√

2iµi log(2/δi) + log(2/δi)

)

,

where

µi := θVi−1
(ǫ) ·2σ(d,2i−1,δi−1/2) .

We claim that E0∩E1 ∩·· · ∩Ei holds with probability at least 1−∑i
i′=1 δi′ ≥ 1− δ. The proof

is by induction. The base case is trivial, as E0 holds deterministically. For the inductive case,

we just have to show that Pr(Ei |E0∩E1∩·· ·∩Ei−1)≥ 1− δi.

Condition on the event E0 ∩E1 ∩ ·· · ∩Ei−1. For all x /∈ Dis(Vi−1), let Vi−1(x) denote

the label assigned by every h ∈ Vi−1 to x. Define

Ŝi :=
{

(xi,j , ŷi,j) : j ∈ {1,2, . . . ,2i} , xi,j /∈Dis(Vi−1), ŷi,j = Vi−1(xi,j)
}

.

Observe that Ŝi ∪Ti is an iid sample of size 2i from a distribution (call it Di−1) over labeled

examples (x,y), where x∼DX and y is given by

y :=















Vi−1(x) if x /∈Dis(Vi−1) ,

h∗(x) if x ∈Dis(Vi−1) .

In fact, for any h ∈ Vi−1, we have

errDi−1
(h) = Pr

(x,y)∼Di−1

[h(x) 6= y] = Pr
x∼DX

[h(x) 6= h∗(x) ∧ x ∈Dis(Vi−1)] . (5.2)

The VC inequality (Theorem A.1) implies that, with probability at least 1− δi/2,

∀h ∈ V �

(

err(h,Ŝi∪Ti) = 0 =⇒ errDi−1
(h) ≤ σ(d,2i,δi/2)

)

. (5.3)

Consider any h ∈ Vi. We have err(h,Ti) = 0 by definition of Vi. We also have err(h,Ŝi) = 0 since
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h ∈ Vi ⊆ Vi−1. So in the event that (5.3) holds, we have

Pr
x∼DX

[h(x) 6= h∗(x) ∧ x ∈Dis(Vi)] ≤ Pr
x∼DX

[h(x) 6= h∗(x) ∧ x ∈Dis(Vi−1)]

= errDi−1
(h)

≤ σ(d,2i,δi/2) ,

where the first inequality follows because Dis(Vi)⊆Dis(Vi−1), and the equality follows from (5.2).

Now we prove the Label query bound.

Claim 5.1. On event Ei−1 for every h,h′ ∈ Vi−1,

Pr
x∼DX

[h(x) 6= h′(x)] ≤ 2σ(d,2i−1,δi−1/2)

Proof. On event Ei−1, every h ∈ Vi−1 satisfies

Pr
x∼DX

[h(x) 6= h∗(x), x ∈Dis(Vi−1)] ≤ σ(d,2i−1,δi−1/2) .

Therefore, for any h,h′ ∈ Vi−1, we have

Pr
x∼DX

[h(x) 6= h′(x)] = Pr
x∼DX

[h(x) 6= h′(x), x ∈Dis(Vi−1)]

≤ Pr
x∼DX

[h(x) 6= h∗(x), x ∈Dis(Vi−1)]

+ Pr
x∼DX

[h′(x) 6= h∗(x), x ∈Dis(Vi−1)]

≤ 2σ(d,2i−1,δi−1/2) .

Since 2σ(d,2i−1,δi−1/2) ≥ ǫ, the above claim and the definition of the disagreement

coefficient imply

Pr
x∼DX

[x ∈Dis(Vi−1)] ≤ θVi−1
(ǫ) ·2σ(d,2i−1,δi−1/2) = µi .

Therefore, µi is an upper bound on the probability that Label is queried on xi,j , for each
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j = 1,2, . . . ,2i. By Lemma A.2, the number of queries to Label is at most

2iµi + O

(

√

2iµi log(2/δi) + log(2/δi)

)

.

with probability at least 1− δi/2. We conclude by a union bound that Pr(Ei | E0 ∩E1 ∩ ·· · ∩

Ei−1)≥ 1− δi as required.

We now show that in the event E0∩E1∩·· · , which holds with probability at least 1− δ,

the required consequences from Lemma 5.1 are satisfied. The definition of σ from Equation (A.1)

and the halting condition in CAL imply that the number of iterations I executed by CAL satisfies

σ(d,2I−1,δI−1/2) ≥ ǫ .

Thus by Fact A.1,

2I ≤ O

(

1

ǫ

(

d log
1

ǫ
+ log

1

δ

)

)

,

which immediately gives the required bound on the number of unlabeled points drawn from DX .

Moreover, I can be bounded as

I = O
(

log(d/ǫ) + loglog(1/δ)
)

.

Therefore, in the event E0 ∩E1 ∩ ·· · ∩EI , CAL returns a set of labeled examples T := T≤I in

which every h ∈ V (T ) satisfies

Pr
x∼DX

[h(x) 6= h∗(x) ∧ x ∈Dis(V (T ))] ≤ ǫ ,
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and the number of Label queries is bounded by

I
∑

i=1

(

2iµi + O

(

√

2iµi log(2/δi) + log(2/δi)

)

)

=

I
∑

i=1

O



2i ·
(

θVi−1
(ǫ)

d log2i + log(2/δi)

2i

)

+ log(2/δi)





=

I
∑

i=1

O
(

θVi−1
(ǫ) ·

(

d · i + log(1/δ)
)

)

= O

(

θV (ǫ) ·
(

d ·
(

log(d/ǫ) + loglog(1/δ)
)2

+
(

log(d/ǫ) + loglog(1/δ)
)

· log(1/δ)
)

)

= Õ
(

θV (ǫ) ·d · log2(1/ǫ)
)

as claimed.

5.8 An Improved Algorithm for the Realizable Case

In this section, we present an improved algorithm for using Search and Label in the

realizable section. We call this algorithm Seabel (Algorithm 5.4).

5.8.1 Description of Seabel

Seabel proceeds in iterations like Larch, but takes more advantage of Search. Each

iteration is split into two stages: the verification stage, and the sampling stage. In the verification

stage, Seabel makes repeated calls to Search to advance to as high of a complexity class

as possible, until ⊥ is returned. When ⊥ is returned, it guarantees that whenever the latest

candidate set completely agrees on an unlabeled point, then it is also in agreement with h∗, even

if it does not contain h∗.

5.8.2 Proof of Theorem 5.2

Observe that Ti+1 is an iid sample of size 2i+1 from a distribution—call it Di—over

labeled examples (x,y), where x∼DX , and

y :=















V ki
i (x) if x /∈Dis(V ki

i ) ,

h∗(x) if x ∈Dis(V ki
i ) ,
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Algorithm 5.4 Seabel

Input: Nested hypothesis classes H0 ⊆H1 ⊆ ·· · ; oracles Search and Label; learning parame-
ters ǫ,δ ∈ (0,1)

1: initialize S0←∅, k0← 0.
2: Draw x1,1,x1,2 at random from DX , T1←

{

(x1,1,Label(x1,1)),(x1,2,Label(x1,2))
}

3: for iteration i = 1,2, . . . do
4: S← Si−1, k←min

{

k′ ≥ ki−1 : Hk′ (Si−1∪Ti) 6= ∅
}

# Verification stage (Steps 4–13)
5: loop
6: e← SearchHk

(Hk(S∪Ti))
7: if e 6=⊥ then
8: S← S∪{e}
9: k←min

{

k′ > k : Hk′(S ∪Ti) 6= ∅
}

10: else
11: break
12: end if
13: end loop
14: Si← S, ki← k # Sampling stage (Steps 14–24)

15: Define new candidate set V ki
i = Hki

(Si∪Ti)
16: Ti+1←∅
17: for j = 1,2, . . . ,2i+1 do
18: xi+1,j ← independent draw from DX (the corresponding label is hidden)

19: if xi+1,j ∈Dis(V ki
i ) then

20: Ti+1← Ti+1∪{(xi+1,j ,Label(xi+1,j))}
21: else
22: Ti+1← Ti+1∪{(xi+1,j ,V k

i (xi+1,j))}
23: end if
24: end for
25: if σki

(2i+1,δi+1,ki
)≤ ǫ then

26: return any ĥ ∈ V ki
i (Ti+1)

27: end if
28: end for

for every x in the support of DX . (T1 is an iid sample from D0 := D; set k0 := 0 and S0 := ∅.)

Lemma 5.2. Algorithm 5.4 maintains the following invariants:

1. The loop in the verification stage of iteration i terminates for all i≥ 1.

2. ki ≤ k∗ for all i≥ 0.

3. h∗(x) = V ki
i (x) for all x /∈Dis(V ki

i ) for all i≥ 1.

4. h∗ is consistent with Si∪Ti+1 for all i≥ 0.

Proof. It is easy to see that S only contains examples provided by Search, and hence the labels

are consistent with h∗.
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Now we prove that the invariants hold by induction on i, starting with i = 0. For the

base case, only the last invariant needs to be checked, and it is true because the labels in T1 are

obtained from Label.

For the inductive step, fix any i≥ 1, and assume that ki−1 ≤ k∗, and that h∗ is consistent

with Ti. Now consider the verification stage in iteration i. We first prove that the loop in the

verification stage will terminate and establish some properties upon termination. Observe that k

and S are initially ki−1 and Si−1, respectively. Throughout the loop, the examples added to S

are obtained from Search, and hence are consistent with h∗. Thus, h∗ ∈Hk∗(S ∪Ti), implying

Hk∗(S ∪Ti) 6= ∅. If k = k∗, then SearchHk∗ (Hk∗(S ∪Ti)) would return ⊥ and Algorithm 5.4

would exit the loop. If SearchHk
(Hk(S ∪ Ti)) 6= ⊥, then k < k∗, and k cannot be increased

beyond k∗ since Hk∗(S ∪Ti) 6= ∅. Thus, the loop must terminate with k ≤ k∗, implying ki ≤ k∗.

Moreover, because the loop terminates with SearchHk
(Hk(S∪Ti)) returning ⊥ (and here, k = ki

and Hk(S ∪ Ti) = V ki
i ), there is no counterexample x ∈ X such that h∗ disagrees with every

h ∈ V ki
i . This implies that h∗(x) = V ki

i (x) for all x /∈Dis(V ki
i ).

Now consider any (x,y) added to Ti+1 in the sampling stage. If x ∈Dis(V ki
i ), the label

is obtained from Label, and hence is consistent with h∗; if x /∈ Dis(V ki
i ), the label is V ki

i (x),

which is the same as h∗(x) as previously argued. So h∗ is consistent with all examples in Ti+1,

and hence also all examples in Si∪Ti+1.

Let Ei be the event in which the following hold:

1. For every k ≥ 0, every h ∈Hk satisfies

err(h,Di−1) ≤ err(h,Ti) +
√

err(h,Ti)σk(2i,δi,k)+ σk(2i,δi,k) .

2. The number of Label queries in iteration i (to form Ti+1) is at most

2i+1 Pr
x∼DX

[x ∈Dis(V ki
i )] + O

(

√

2i+1 Pr
x∼DX

[x ∈Dis(V ki
i )] log(1/δi) + log(1/δi)

)

,

Using Theorem A.1 and Lemma A.2, along with the union bound, Pr(Ei) ≥ 1− δi. Define

E := ∩∞
i=1Ei; a union bound implies that Pr(E)≥ 1− δ.

We now prove Theorem 5.2, starting with the error rate guarantee. Condition on the

event E. Since ki ≤ k∗, the definition of σk from (5.1), the halting condition in Algorithm 5.4,
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and Fact A.1 imply that the algorithm must halt after at most I iterations, where

2I ≤ O

(

1

ǫ

(

dk∗ log
1

ǫ
+ log

k∗

δ

)

)

. (5.4)

So let i denote the iteration in which Algorithm 5.4 halts. By definition of Ei+1, we have

err(ĥ,Di) ≤ err(ĥ,Ti+1) +

√

err(ĥ,Ti+1)σki
(2i+1,δi+1,ki

) + σki
(2i+1,δi+1,ki

)

= σki
(2i+1,δi+1,ki

) ≤ ǫ .

By Lemma 5.2, h∗(x) = V ki
i (x) for all x /∈Dis(V ki

i ). Therefore, D(· | x) = Di(· | x) for every x in

the support of DX , and

err(ĥ,D) = err(ĥ,Di) ≤ ǫ .

Now we bound the unlabeled, Label, and Search complexities, all conditioned on event

E. First, as argued above, the algorithm halts after at most I iterations, where 2I is bounded

as in (5.4). The number of unlabeled examples drawn from DX across all iterations is within

a factor of two of the number of examples drawn in the final sampling stage, which is O(2I ).

Thus (5.4) also gives the bound on the number of unlabeled examples drawn.

Next, we consider the Search complexity. For each iteration i, each call to Search

either returns a counterexample that forces k to increment (but never past k∗, as argued in

Lemma 5.2), or returns ⊥ which causes an exit from the verification stage loop. Therefore, the

total number of Search calls is at most

k∗ + I = k∗ + O

(

log
dk∗

ǫ
+ loglog

k∗

δ

)

.

Finally, we consider the Label complexity. For i≤ I, we first show that the candidate set

V ki
i is always contained in a ball of small radius (with respect to the disagreement pseudometric).

Specifically, for every h,h′ in V ki
i , err(h,Ti) = 0 and err(h,Ti) = 0. By definition of Ei, this

implies that

err(h,Di−1) ≤ σki
(2i,δi,ki

) and err(h′,Di−1) ≤ σki
(2i,δi,ki

).
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Therefore, by the triangle inequality,

Pr
x∼D

[h(x) 6= h′(x)] ≤ 2σki
(2i,δi,ki

) ≤ 2σk∗(2i,δi,k∗).

Note that because 2I ≤ Õ(dk∗/ǫ), we have σk∗(2i,δi,k∗) ≥ ǫ/2 for i ≤ I. Thus, the size of the

disagreement region can be bounded as

Pr
x∼DX

[x ∈Dis(V ki
i )] ≤ θki

(ǫ) ·2σk∗(2i,δi,k∗).

By definition of Ei, the number of queries to Label at iteration i is at most

2i+1 Pr
x∼DX

[x ∈Dis(V ki
i )] + O

(

√

2i+1 Pr
x∼DX

[x ∈Dis(V ki
i )] log(1/δi,k) + log(1/δi)

)

,

which is at most

O
(

2i · θki
(ǫ) ·σk∗(2i,δi,k∗)

)

.

We get that the total number of Label queries by Algorithm 5.4 is bounded by

2 +

I
∑

i=1

O
(

2i · θki
(ǫ) ·σk∗(2i,δi,k∗)

)

= 2 +

I
∑

i=1

O

(

2i ·max
k≤k∗

θk(ǫ) ·σk∗(2i,δi,k∗)

)

= O






max
k≤k∗

θk(ǫ) ·





I
∑

i=1

2iσk∗(2i,δi,k∗)











= O






max
k≤k∗

θk(ǫ) ·





I
∑

i=1

2i d ln(2i) + ln( (i2+i)(k∗)2

δ )

2i











= O

(

max
k≤k∗

θk(ǫ) ·
(

dk∗I2 + I log
k∗

δ

)

)

= O



max
k≤k∗

θk(ǫ) ·
(

dk∗

(

log
dk∗

ǫ
+ loglog

k∗

δ

)2

+

(

log
dk∗

ǫ
+ loglog

k∗

δ

)

log
k∗

δ

)





= Õ

(

max
k≤k∗

θk(ǫ) ·
(

dk∗ · log2 1

ǫ
+ logk∗

)

)

as claimed.
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5.9 A-Larch: An Adaptive Agnostic Algorithm

Below we present A-Larch, an adaptive agnostic algorithm.

5.9.1 Description of A-Larch

A-Larch proceeds in iterations like Seabel. Each iteration is split into three stages:

the error estimation stage, the verification stage, and the sampling stage.

In the error estimation stage, A-Larch uses a structural risk minimization approach

(Steps 4–5) to compute γi−1, a (tight) upper bound on Pr[h∗(x) 6= y,x ∈Dis(Vi−1)].

In the verification stage, A-Larch makes repeated calls to Search to advance to as

high of a complexity class as possible, until ⊥ is returned (Steps 6–19). When ⊥ is returned, it

guarantees that whenever the latest candidate set completely agrees on an unlabeled point, then

it is also in agreement with h∗, even if it does not contain h∗.

In the sampling stage, A-Larch performs sampling (Steps 21–29), querying and inferring

labels based on disagreement over the verified candidate set V ki
i .

5.9.2 Proof of Theorem 5.3

Let

M(ν,k∗, ǫ,δ) := min

{

2n : n ∈ N, 3
√

νσk∗ (2n,δn,k∗) + 4σk∗(2n,δn,k∗)≤ ǫ

}

= O

(

(dk∗ log(1/ǫ) + log(k∗/δ))(ν + ǫ)

ǫ2

)

.

where the second line is from Fact A.1.

Theorem 5.5 (Restatement of Theorem 5.3). Assume err(h∗) = ν. If Algorithm 5.5 is run with

inputs hypothesis classes {Hk}∞k=0, oracles Search and Label, learning parameter δ, unlabeled

examples budget m = M(ν,k∗, ǫ,δ) and the disagreement coefficient of Hk(S) is at most θk(·),

then, with probability 1− δ:

(1) The returned hypothesis ĥ satisfies

err(ĥ)≤ ν + ǫ .
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Algorithm 5.5 A-Larch

Input: Nested hypothesis set H0 ⊆ H1 ⊆ ·· · ; oracles Label and Search; learning parameter
δ ∈ (0,1); unlabeled examples budget m = 2I+2.

Output: hypothesis ĥ.
1: Initialize: S← ∅, k← 0, k0← k.
2: Draw x1,1,x1,2 at random from DX , T1←

{

(x1,1,Label(x1,1)),(x1,2,Label(x1,2))
}

3: for i = 1,2, . . . ,I do

4: (ĥi, k̂i)← argmink′≥k,h∈Hk′

{

err(h,Ti) +
√

err(h,Ti)σk′ (2i,δi,k′) + σk′(2i,δi,k′ )

}

# Error

estimation stage (Steps 4–5)

5: γi−1← err(ĥi,Ti) +
√

err(ĥi,Ti)σk̂i
(2i,δi,k̂i

) + σk̂i
(2i,δi,k̂i

)

6: loop # Verification stage (Steps 6–19)
7: if minh∈Hk(S) err(h,Ti) > γi−1 +

√

γi−1σk(2i,δi,k) + σk(2i,δi,k) then
8: k← k + 1
9: else

10:

V k
i ←

{

h ∈Hk(S) : err(h,Ti) ≤ min
h′∈Hk(S)

err(h′,Ti) + 3
√

err(h′,Ti)σk(2i,δi,k)

+4σk(2i,δi,k)
}

11: e← SearchHk
(V k

i )
12: if e 6=⊥ then
13: S← S∪{e}
14: k←min

{

k′ > k : Hk′(S) 6= ∅
}

15: else
16: break
17: end if
18: end if
19: end loop
20: Si← S, ki← k
21: Ti+1←∅ # Sampling stage (Steps 21–29)
22: for j = 1,2, . . . ,2i+1 do
23: xi+1,j ← independent draw from DX (the corresponding label is hidden)
24: if xi+1,j ∈Dis(V k

i ) then
25: Ti+1← Ti+1∪{(xi+1,j ,Label(xi+1,j))}
26: else
27: Ti+1← Ti+1∪{(xi+1,j ,V k

i (xi+1,j))}
28: end if
29: end for
30: end for
31: return ĥI
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(2) The total number of queries to oracle Search is at most

k∗ + logm≤ k∗ + O

(

log
dk∗

ǫ
+ loglog

k∗

δ

)

.

(3) The total number of queries to oracle Label is at most

Õ



max
k≤k∗

θk(2ν + 2ǫ) ·dk∗

(

log
1

ǫ

)2

·
(

1 +
ν2

ǫ2

)



 .

The proof relies on an auxiliary lemma. First, we need to introduce the following nota-

tion.

Observe that Ti+1 is an iid sample of size 2i+1 from a distribution (call it Di) over

labeled examples (x,y), where x∼DX and the conditional distribution is

Di(y | x) :=















1{y = V ki
i (x)} if x /∈Dis(V ki

i ) ,

D(y | x) if x ∈Dis(V ki
i ) ,

T1 is a sample of size 2 from D0 = D.

Let Ei be the event in which the following hold:

1. For every k ≥ 0, every h ∈Hk satisfies

err(h,Di−1) ≤ err(h,Ti) +
√

err(h,Ti)σk(2i,δi,k) + σk(2i,δi,k) ,

err(h,Ti) ≤ err(h,Di−1) +
√

err(h,Di−1)σk(2i,δi,k)+ σk(2i,δi,k) .

2. The number of Label queries at iteration i is at most

2i+1 Pr
x∼DX

[x ∈Dis(V ki
i )] + O

(

√

2i+1 Pr
x∼DX

[x ∈Dis(V ki
i )] log(1/δi) + log(1/δi)

)

.

Using Theorem A.1 and Lemma A.2, along with the union bound, Pr(Ei)≥ 1−δi. Define

E := ∩∞
i=1Ei, by union bound, Pr(E)≥ 1− δ.

Lemma 5.3. On event E, Algorithm 5.5 maintains the following invariants:
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1. For all i≥ 1, γi−1 is such that

err(h∗,Di−1)≤ γi−1 ≤ err(h∗,Di−1) + 3
√

err(h∗,Di−1)σk∗ (2i,δi,k∗) + 4σk∗(2i,δi,k∗).

2. The loop in the verification stage of iteration i terminates for all i≥ 1.

3. ki ≤ k∗ for all i≥ 0.

4. h∗(x) = V ki
i (x) for all x /∈Dis(V ki

i ) for all i≥ 1.

5. For all i≥ 0, for every hypothesis h, err(h,Di)−err(h∗,Di)≥ err(h,D)−err(h∗,D). There-

fore, h∗ is the optimal hypothesis among ∪kHk with respect to Di.

Proof. Throughout, we assume the event E holds.

It is easy to see that S only contains examples provided by Search, and hence the labels

are consistent with h∗.

Now we prove that the invariants hold by induction on i, starting with i = 0. For the

base case, invariant 3 holds since k0 = 0≤ k∗, and invariant 5 holds since D0 = D and h∗ is the

optimal hypothesis in ∪kHk.

Now consider the inductive step. We first prove that invariant 1 holds.

(1) By definition of Ei, for all k′ ≥ ki−1, we have for all h ∈Hk′ ,

err(h,Di−1)≤ err(h,Ti) +
√

err(h,Ti)σk′ (2i,δi,k′) + σk′(2i,δi,k′) .

Thus,

min
h∈Hk′

err(h,Di−1)≤ min
h∈Hk′

err(h,Ti) +
√

err(h,Ti)σk′ (2i,δi,k′) + σk′(2i,δi,k′) .

Taking minimum over k′ ≥ ki−1 on both sides, notice that h∗ is the optimal hypothesis

with respect to Di−1 and recall the definition of γi−1, we get

err(h∗,Di−1)≤ γi−1 .



82

(2) By definition of γi−1, we have

γi−1 = min
k′≥ki−1,h∈Hk′

{

err(h,Ti) +
√

err(h,Ti)σk′ (2i,δi,k′) + σk′(2i,δi,k′ )

}

Taking k′ = k∗, h = h∗, we get

γi−1 ≤ err(h∗,Ti) +
√

err(h∗,Ti)σk∗(2i,δi,k∗) + σk∗(2i,δi,k∗)

In conjunction with the fact that by definition of Ei,

err(h∗,Ti)≤ err(h∗,Di−1) +
√

err(h∗,Di−1)σk∗ (2i,δi,k∗) + σk∗(2i,δi,k∗)

We get

γi−1 ≤ err(h∗,Di−1) + 3
√

err(h∗,Di−1)σk∗(2i,δi,k∗) + 4σk∗(2i,δi,k∗) .

Thus, invariant 1 is established.

Now consider the verification stage in iteration i. We first prove that the loop in the

verification stage will terminate and establish some properties upon termination. Observe that k

and S are initially ki−1 and Si−1, respectively. Throughout the loop, the examples added to S

are obtained from Search, and hence are consistent with h∗. In addition, we have the following

claim regarding k∗.

Claim 5.2. If invariants 1–5 holds for iteration i−1, then for iteration i, the following holds:

(a) minh∈Hk∗ (S) err(h,Ti)≤ γi−1 +
√

γi−1σk∗(2i,δi,k∗) + σk∗(2i,δi,k∗)

(b) h∗ is in V k∗

i , where V k∗

i is defined as:

{

h ∈Hk∗(S) : err(h,Ti)≤ min
h′∈Hk∗

err(h′,Ti) + 3
√

err(h′,Ti)σk∗(2i,δi,k∗) + 4σk∗(2i,δi,k∗)

}
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Proof. Recall that h∗ is the optimal hypothesis under distribution Di−1. By the definition of Ei,

min
h′∈Hk∗ (S)

err(h′,Ti) ≤ err(h∗,Ti)

≤ err(h′,Di−1) +
√

err(h′,Di−1)σ(2i,δi,k∗) + σ(2i,δi,k∗)

≤ γi−1 +
√

γi−1σk∗ (2i,δi,k∗) + σk∗(2i,δi,k∗)

where the last inequality is from invariant 1. This proves item (a).

On the other hand, for all h′ in Hk(S),

err(h∗,Ti) ≤ err(h∗,Di−1) +
√

err(h∗,Di−1)σ(2i,δi,k∗) + σ(2i,δi,k∗)

≤ err(h′,Di−1) +
√

err(h′,Di−1)σ(2i,δi,k∗)+ σ(2i,δi,k∗)

≤ err(h′,Ti) + 3
√

err(h′,Ti)σ(2i,δi,k∗) + 4σ(2i,δi,k∗) .

Thus, err(h∗,Ti) ≤minh′∈Hk(S) err(h′,Ti) + 3
√

err(h′,Ti)σ(2i,δi,k∗) + 4σ(2i,δi,k∗), proving item

(b).

Thus, if k = k∗, then Claim 5.2(a) implies that line 7 will never be satisfied. In addition,

Claim 5.2(b) says that h∗ ∈ V k∗

i , implying V k∗

i 6= ∅, then SearchHk∗ (V k∗

i ) would return ⊥ and

Algorithm 5.5 would exit the loop. If SearchHk
(V k

i ) 6=⊥, then k < k∗, and k cannot be increased

beyond k∗ since V k∗

i 6= ∅. Thus, the loop must terminate with k ≤ k∗, implying ki ≤ k∗. This

establishes invariants 2 and 3.

Moreover, because the loop terminates with SearchHk
(V ki

i ) returning ⊥, there is no

counterexample x∈X such that h∗ disagrees with every h∈V ki
i . This implies that h∗(x) = V ki

i (x)

for all x /∈Dis(V ki
i ) (i.e., invariant 4). Hence, for any hypothesis h,

err(h,Di) = Pr[h(x) 6= h∗(x),x ∈Dis(V ki
i )] + Pr[h(x) 6= y,x /∈Dis(V ki

i )] .
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Therefore,

err(h,Di)− err(h∗,Di)

= Pr[h(x) 6= h∗(x),x ∈Dis(V ki
i )] + Pr[h(x) 6= y,x /∈Dis(V ki

i )]

−Pr[h∗(x) 6= y,x /∈Dis(V ki
i )]

≥ Pr[h(x) 6= y,x ∈Dis(V ki
i )]−Pr[h∗(x) 6= y,x ∈Dis(V ki

i )]

+ Pr[h(x) 6= y,x /∈Dis(V ki
i )]−Pr[h∗(x) 6= y,x /∈Dis(V ki

i )]

= err(h,D)− err(h∗,D) ,

which proves invariant 5.

Proof of Theorem 5.5. Suppose event E happens.

We first prove the error rate guarantee. Suppose iteration i = I has been reached. Ob-

serve that by definition of EI ,

err(ĥI ,DI−1)≤ err(ĥI ,TI) +
√

err(ĥI ,TI)σk̂I
(2I ,δI,k̂I

)+ σk̂I
(2I ,δI,k̂I

) = γI−1

Combining with item 1 of Lemma 5.3, which states that

γI−1 ≤ err(h∗,DI−1) + 3
√

err(h∗,DI−1)σk∗ (2I ,δI,k∗) + 4σk∗(2I ,δI,k∗)

we have

err(ĥI ,DI−1)− err(h∗,DI−1) ≤ 3
√

err(h∗,DI−1)σk∗ (2I ,δI,k∗)+ 4σk∗(2I ,δI,k∗)

≤ 3
√

νσk∗ (2I ,δI,k∗) + 4σk∗(2I ,δI,k∗)

≤ ǫ

where the second inequality is from that err(h∗,DI−1) ≤ err(h∗,D) = ν, the third inequality is

from that m = 2I = M(ν,k∗, ǫ,δ). Thus, by item 5 of Lemma 5.3,

err(ĥI ,D)− err(h∗,D)≤ err(ĥI ,DI−1)− err(h∗,DI−1)≤ ǫ .

Next, we prove the bound on the number of Search queries. From Lemma 5.3, Algo-
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rithm 5.5 maintains the invariant that k ≤ k∗. For each iteration i, each call to Search either

returns an example forcing k to increment, or returns ⊥ which causes an exit from the verification

stage loop. Therefore, the total number of Search calls is at most

k∗ + I ≤ k∗ + O

(

log
dk∗

ǫ2
+ loglog

k∗

δ

)

.

Finally, we prove the bound on the number of Label queries. This is done in a few

steps.

1. We first show that the candidate set V ki
i is always contained in a ball of small radius (with

respect to the disagreement pseudometric Prx∼DX
[h(x) 6= h′(x)]). Specifically, the following

holds.

Claim 5.3. On event E, for every 1≤ i≤ I, and all h,h′ ∈ V ki
i ,

Pr
(x,y)∼D

[h(x) 6= h′(x)] ≤ 2γi−1 + 16
√

γi−1σki
(2i,δi,ki

) + 30σki
(2i,δi,ki

) .

Proof. First, for every h in V ki
i ,

err(h,Ti)≤ min
h′∈Hki

(S)
err(h′,Ti) + 3

√

err(h′,Ti)σki
(2i,δi,ki

)+ 4σki
(2i,δi,ki

) ,

and since the condition in step 7 is not satisfied for k = ki, we know that

min
h′∈Hki

(S)
err(h′,Ti)≤ γi−1 +

√

γi−1σki
(2i,δi,ki

) + σki
(2i,δi,ki

) .

Thus,

err(h,Ti)≤ γi−1 + 6
√

γi−1σki
(2i,δi,ki

) + 10σki
(2i,δi,ki

) . (5.5)

By definition of event Ei, we also have

err(h,Di−1)≤ err(h,Ti) +
√

err(h,Ti)σki
(2i,δi,ki

) + σki
(2i,δi,ki

) .

Hence,

err(h,Di−1)≤ γi−1 + 8
√

γi−1σki
(2i,δi,ki

) + 15σki
(2i,δi,ki

) .
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Therefore, for any h,h′ ∈ V ki
i , we have

Pr
x∼DX

[h(x) 6= h′(x)] ≤ err(h,Di−1) + err(h′,Di−1)

≤ 2γi−1 + 16
√

γi−1σki
(2i,δi,ki

) + 30σki
(2i,δi,ki

) .

The claim follows.

2. Next we bound the label complexity per iteration. For 1≤ i≤ I, by item 1 of Lemma 5.3,

γi−1 ≤ err(h∗,Di−1) + 3
√

err(h∗,Di−1)σk∗(2i,δi,k∗) + 4σk∗(2i,δi,k∗)

≤ ν + 3
√

νσk∗(2i,δi,k∗) + 4σk∗(2i,δi,k∗) .

Now for h,h′ ∈ V ki
i ,

Pr
x∼DX

[h(x) 6= h′(x)] ≤ 2γi−1 + 16
√

γi−1σki
(2i,δi,ki

) + 30σki
(2i,δi,ki

)

≤ 2γi−1 + 16
√

γi−1σk∗(2i,δi,k∗) + 30σki
(2i,δi,k∗)

≤ 2ν + 38
√

νσk∗ (2i,δi,k∗) + 86σki
(2i,δi,k∗) .

Thus, V ki
i is contained in BHki

(S)(h,2ν + 38
√

νσk∗(2i,δi,k∗) + 86σk∗(2i,δi,k∗)) for some h in

Hki
(S).

Note that by the choice of m = 2I = M(ν,k∗, ǫ,δ), 38
√

νσk∗ (2i,δi,k∗) + 86σk∗(2i,δi,k∗) ≥ 2ǫ

for i≤ I. Thus, the size of the disagreement region can be bounded as

Pr
x∼DX

[x ∈Dis(Vi)] ≤ θk(2ν + 2ǫ) ·
(

2ν + 38
√

νσk∗ (2i,δi,k∗) + 86σk∗(2i,δi,k∗)

)

≤ θk(2ν + 2ǫ) ·
(

21ν + 105σk∗(2i,δi,k∗)
)

. (5.6)

By definition of Ei, the number of queries to Label at iteration i is at most

2i+1 Pr
x∼DX

[x ∈Dis(V ki
i )] + O

(

√

2i+1 Pr
x∼DX

[x ∈Dis(V ki
i )] log(1/δi,k∗) + log(1/δi,k∗)

)

.
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Combining this with (5.6) gives

# Label queries in iteration i = O
(

2i · θki
(2ν + 2ǫ) · (ν + σk∗(2i,δi,k∗))

)

. (5.7)

3. From the setting of m = 2I = Õ(dk∗ (ν + ǫ)/ǫ2), we get that

I = O

(

log
dk∗

ǫ
+ loglog

k∗

δ

)

.

Now, using (5.7), we get that the total number of Label queries by Algorithm 5.5 is bounded

by

2 +
I
∑

i=1

O
(

2i · θki
(2ν + 2ǫ) · (ν + σk∗(2i,δi,k∗))

)

= 2 +

I
∑

i=1

O

(

2i ·max
k≤k∗

θk(2ν + 2ǫ) · (ν + σk∗(2i,δi,k∗))

)

= O






max
k≤k∗

θk(2ν + 2ǫ) ·





I
∑

i=1

2i(ν + σk∗(2i,δi,k∗))











= O






max
k≤k∗

θk(2ν + 2ǫ) ·



ν2I +

I
∑

i=1

2i d ln(2i) + ln( (i2+i)(k∗)2

δ )

2i











= O

(

max
k≤k∗

θk(2ν + 2ǫ) ·
(

ν2I + dk∗I2 + I log
k∗

δ

)

)

= O



max
k≤k∗

θk(2ν + 2ǫ) ·
(

ν2 + ǫν

ǫ2

(

dk∗ log
1

ǫ
+ log

k∗

δ

)

+ dk∗

(

log
dk∗

ǫ
+ loglog

k∗

δ

)2

+

(

log
dk∗

ǫ
+ loglog

k∗

δ

)

log
k∗

δ

)





= Õ



max
k≤k∗

θk(2ν + 2ǫ) ·
(

dk∗(log
1

ǫ
)2 + log

k∗

δ

)

·
(

1 +
ν2

ǫ2

)



 .
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5.10 Performance Guarantees of AA-Larch

5.10.1 Detailed Description of Subroutines

Subroutine Sample-and-Label performs standard disagreement-based selective sam-

pling. Specifically, it draws an unlabeled example x from the DX . If x is in the agreement region

of candidate set V , its label is inferred as V (x); otherwise, we query the Label oracle to get its

label. The counter c is incremented when Label is called.

Algorithm 5.6 Sample-and-Label

Input: Candidate set V ⊂H , oracle Label, labeled dataset L, counter c.

Output: New labeled dataset L′, new counter c′.

1: x← independent draw from DX (the corresponding label is hidden).

2: if x ∈Dis(V ) then

3: L′← L∪
{

(x,Label(x))
}

4: c′← c + 1

5: else

6: L′← L∪
{

(x,V (x))
}

7: c′← c

8: end if

Subroutine Error-Check checks if the candidate set has high error, based on item 2 of

Lemma 5.5 – that is, if k = k∗, then Error-Check should never fail. Furthermore, if candidate

set Vi fails Error-Check, then Vi should have small radius – see Lemma 5.4 for details.

Algorithm 5.7 Error-Check

Input: Candidate set V ⊂Hk, labeled dataset L of size l, confidence δ.

Output: Boolean variable b indicating if V has high error.

1: Let δk := δ/((k + 1)(k + 2)) for all k ≥ 0.

2: γ←mink′≥k,h∈Hk′

{

err(h,L) + 2
√

err(h,L)σk′ (l,δk′) + 3σk′(l,δk′)
}

3: if minh∈V err(h,L) > γ + 2
√

γσk(l,δk) + 3σk(l,δk) then

4: b← true

5: else

6: b← false

7: end if



89

Subroutine Prune-Candidate-Set performs update on our candidate set based on

standard generalization error bounds. The candidate set never eliminates the optimal hypothesis

in Hk(S) when working with Hk. Claim 5.4 shows that, if at step i, k = k∗, then h∗ ∈ Vi from

then on.

Algorithm 5.8 Prune-Candidate-Set

Input: Candidate set V ⊂Hk, labeled dataset L of size l, confidence δ.

Output: Pruned candidate set V ′.

1: Update candidate set:

V ′←
{

h ∈ V : err(h,L)≤ min
h′∈V

err(h′,L) + 2
√

err(h′,L)σk(l,δk)+ 3σk(l,δk)
}

,

where δk := δ
(k+1)(k+2)

.

Subroutine Upgrade-Candidate-Set is called when (1) a systematic mistake of the

candidate set Vi has been found by Search; or (2) Error-Check detects that the error of Vi

is high. In either case, k can be increased to the minimum level such that the updated Hk(S) is

nonempty. This still maintains the invariant that k ≤ k∗.

Algorithm 5.9 Upgrade-Candidate-Set

Input: Current level of hypothesis class k, seed set S, seed to be added s.

Output: New level of hypothesis class k, new seed set S, updated candidate set V .

1: S← S∪s

2: k←min
{

k′ > k : Hk′(S) 6= ∅
}

3: V ←Hk(S)

5.10.2 Proof of Theorem 5.4

We restate Theorem 5.4 here for convenience.

Theorem 5.6. There exist constants c1, c2 > 0 such that the following holds. Assume err(h∗) = ν.

Let θk′(·) denote the disagreement coefficient of Vi at the first step i after which k ≥ k′. Fix any

ǫ,δ ∈ (0,1). Let nǫ = c1 maxk≤k∗ θk(2ν + 2ǫ)(dk∗ log 1
ǫ + log 1

δ )(1 + ν2/ǫ2) and define Cǫ = 2(nǫ +

k∗τ). Run Algorithm 5.2 with a nested sequence of hypotheses {Hk}∞k=0, oracles Label and

Search, confidence parameter δ, cost ratio τ ≥ 1, and upper bound N = c2(dk∗ log 1
ǫ + log 1

δ )/ǫ2.
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If the cost spent is at least Cǫ, then with probability 1− δ, the current hypothesis h̃ has error at

most ν + ǫ.

Remark. The purpose of having a bound on unlabeled examples, N , is rather technical—

to deter the algorithm from getting into an infinite loop due to its blind self-confidence. Suppose

that AA-Larch starts with H0 that has a single element h. Then, without such an N -based

condition, it will incorrectly infer the labels of all the unlabeled examples drawn and end up

with an infinite loop between lines 4 and 14. The condition on N is very mild—any N satisfying

N = poly(dk∗ ,1/ǫ) and N = Ω(dk∗/ǫ2) is sufficient.

Proof of Theorem 5.6. For integer j ≥ 0, define step j as the execution period in AA-Larch

when the value of i is j.

Let li = |Li|. Denote by LD
i the dataset containing unlabeled examples in Li labeled

entirely by Label, i.e., LD
i =

{

(x,Label(x)) : (x,y) ∈ Li

}

. Note that LD
i is an iid sample from

D.

We call dataset Li has favorable bias, if the following holds for any hypothesis h:

err(h,LD
i )− err(h∗,LD

i )≤ err(h,Li)− err(h∗,Li). (5.8)

Let Ei be the event that the following conditions hold:

1. For every k ≥ 0, every h ∈Hk satisfies

err(h,D) ≤ err(h,LD
i ) +

√

err(h,LD
i )σk(li,δi,k)+ σk(li,δi,k) ,

err(h,LD
i ) ≤ err(h,D) +

√

err(h,D)σk(li,δi,k) + σk(li,δi,k) .

For every h,h′ ∈Hk,

(err(h,LD
i )− err(h′,LD

i ))− (err(h,D)− err(h′,D))

≤
√

dLD
i

(h,h′) ·σk(li,δi,k) + σk(li,δi,k) .

where dLD
i

(h,h′) = 1
li

∑

(x,y)∈LD
i

[h(x) 6= h′(x)], fraction of LD
i where h and h′ disagree.
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2. For every 1≤ i′ < i, the number of Label queries from step i′ to step i is at most

i
∑

j=i′

Pr
x∼DX

[x ∈Dis(Vj−1)] + O







√

√

√

√

i
∑

j=i′

Pr
x∼DX

[x ∈Dis(Vj−1)] log(1/δi) + log(1/δi)






,

where Vj denotes its final value in Algorithm 5.2.

Using Theorem A.1 and Lemma A.4, along with the union bound, Pr(Ei) ≥ 1− δi. Define

E := ∩∞
i=1Ei, by union bound, Pr(E)≥ 1− δ. We henceforth condition on E holding.

Define

M(ν,k∗, ǫ,δ,N) := min

{

m ∈N : 8
√

νσk∗ (m,δm+k∗N,k∗) + 35σk∗(m,δm+k∗N,k∗)≤ ǫ

}

≤ O

(

(dk∗ log(1/ǫ) + log(Nk∗/δ))(ν + ǫ)

ǫ2

)

We say that an iteration of the loop is verified if Step 20 is triggered; all other iterations

are unverified. Let Γ be the set of i’s where xi gets added to the final set L, and ∆ be the set of

i’s where xi gets discarded. It is easy to see that if i is in Γ (resp. ∆), then the i is in a verified

(resp. unverified) iteration.

Define i∗ := min
{

i ∈ Γ : li ≥M(ν,k∗, ǫ,δ,N)
}

. Denote by ki the final value of k after i

unlabeled examples are processed.

We need to prove two claims:

1. For i≥ i∗, err(h̃i)≤ ν + ǫ, where h̃i is the hypothesis h̃ stored at the end of step i.

2. The total cost spent by Algorithm 5.2 up to step i∗ is at most Cǫ.

To prove the first claim, fix any i≥ i∗. The stored hypothesis h̃i is updated only when

i ∈ Γ, so it suffices to consider only i ∈ Γ. From Lemma 5.6, i ≤ li + k∗N . We also have li ≥

M(ν,k∗, ǫ,δ,N). Since h̃i ∈ Vi, Lemma 5.4 gives

err(h̃i) ≤ ν + 8
√

νσk∗(li,δi,k∗) + 35σk∗(li,δi,k∗)

≤ ν + 8
√

νσk∗(li,δli+k∗N,k∗) + 35σk∗(li,δli+k∗N,k∗)

≤ ν + ǫ,

as desired.
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For the second claim, we first show that for i in Γ, the candidate set is contained in a

ball of small radius (with respect to the disagreement pseudometric), thus bounding the size of

its disagreement region. Lemma 5.4 shows that for i ∈ Γ, every hypothesis h ∈ Vi has error at

most ν + 8
√

νσk∗ (li,δi,k∗) + 35σk∗(li,δi,k∗).

Thus, by the triangle inequality and Lemma 5.6,

Vi ⊆ BHki
(h,2ν + 16

√

νσk∗(li,δi,k∗) + 70σk∗(li,δi,k∗))

⊆ BHki
(h,2ν + 16

√

νσk∗(li,δli+k∗N,k∗) + 70σk∗(li,δli+k∗N,k∗)).

for some h in Hki
(S). This shows that for i ∈ Γ, i≤ i∗,

Prx∼DX
[x ∈Dis(Vi)]

≤ θki
(2ν + 2ǫ) ·

(

2ν + 16
√

νσk∗(li,δli+k∗N,k∗) + 70σk∗(li,δli+k∗N,k∗)
)

≤ maxk≤k∗ θk(2ν + 2ǫ) ·
(

2ν + 16
√

νσk∗(li,δli+k∗N,k∗) + 70σk∗(li,δli+k∗N,k∗)
)

, (5.9)

where the first inequality is from the definition of θki
(·) and the fact that 8

√

νσk∗(li,δli+k∗N,k∗)+

35σk∗(li,δli+k∗N,k∗)≥ ǫ for i≤ i∗, the second inequality is from ki ≤ k∗.

For i≥ 1, let Zi be the indicator of whether Label is queried with xi in Step 12, i.e.,

Zi = 1{xi ∈Dis(Vi−1)} .

For 0≤ k ≤ ki∗ , define

i0
k := min

{

i≤ i∗ : ki ≥ k
}

, the first step when the hypothesis class reaches ≥ k,

ik := max
{

i≤ i∗ : ki ≤ k
}

, the last step by the end of which the hypothesis class is still ≤ k,

i′
k := max

{

i0
k ≤ i≤ ik : ki ≤ k,i ∈ Γ

}

, the last verified step for hypothesis class ≤ k (if exists).

We call class k skipped if there is no step i such that ki = k. If level k is skipped, then ik = ik−1 =

i0
k−1, and i′

k is undefined.
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Let

Wk :=

i′

k
∑

i=i0
k

+1

Zi

be the number of verified queried examples when working with hypothesis class Hk. Note that

Wk/τ is the number of verified iterations when working with Hk. If level k is skipped, then

Wk := 0.

Let

Yk :=

ik+1
∑

i=i′

k
+1

Zi

be the number of unverified queried examples when working with hypothesis class Hk. Note

that Yk ≤ τ , and there is at most one unverified iteration when working with Hk. If level k is

skipped,then Yk := 0.

Therefore, the total cost when working with Hk is at most

Wk

τ
·2τ + Yk + τ ≤ 2τ + 2Wk

Furthermore, Claim 5.4 implies that there is no unverified iteration when working with Hk∗ .

Hence the total cost when working with Hk∗ has a tighter upper bound, that is, 2Wk∗ .

As a shorthand, let m = M(ν,k∗, ǫ,δ,N). We now bound the total cost incurred up to
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time i∗ as

k∗−1
∑

k=0

(2τ + 2Wk) + 2Wk∗ = 2τk∗ + 2

ki∗
∑

k=0

Wk

= 2τk∗ + 2

ki∗
∑

k=0

i′

k
∑

i=i0
k

+1

Zi

= 2τk∗ + O



2
∑

i∈Γ:i≤i∗

Pr
x∼DX

[x ∈Dis(Vi−1)]



+ O

(

k∗ ln
1

δi∗

)

≤ 2






τk∗ + O





m−1
∑

l=1

max
k≤k∗

θk(2ν + 2ǫ)(ν + σk∗(l,δl+k∗N,k∗))











≤ 2






τk∗ + O



max
k≤k∗

θk(2ν + 2ǫ)

m−1
∑

l=1

(ν + σk∗(l,δl+k∗N,k∗)))











≤ 2






τk∗ + Õ



max
k≤k∗

θk(2ν + 2ǫ)dk∗

(

1 +
ν2

ǫ2

)











≤ 2
(

τk∗ + nǫ

)

= Cǫ,

where the first equality is by algebra, the second equality is from the definition of Wk, and

the third equality is from the definition of E. The first inequality is from Lemma 5.4, using

Equation (5.9) to bound Prx∼DX
[x ∈Dis(Vi−1)] and noting that {li : i ∈ Γ, i≤ i∗}= [m].

Now we provide the proof of our two key lemmas(Lemmas 5.4 and 5.6).

Consider the last call of Prune-Candidate-Set in step i. Define γi as the value of γ

in line 2 of Error-Check:

γi = min
k′≥ki,h∈Hk′

{

err(h,Li) + 2
√

err(h,Li)σk′ (l,δi,k′) + 3σk′(l,δi,k′)

}

(5.10)

Meanwhile, from line 1 of Prune-Candidate-Set, we have for all h ∈ Vi,

err(h,Li)≤ min
h′∈Vi

err(h′,Li) + 2
√

err(h′,Li)σki
(li,δi,ki

) + 3σki
(li,δi,ki

)

where Vi denotes its final value.

Lemma 5.4. Assume that the following conditions hold:
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1. The dataset Li has favorable bias, i.e. it satisfies Equation (5.8).

2. The candidate set Vi is such that Error-Check(Vi,Li,δi) returns false, i.e. it has a low

empirical error on Li:

min
h′∈Vi

err(h′,Li)≤ γi + 2
√

γiσki
(li,δi,ki

) + 3σki
(li,δi,ki

). (5.11)

Then, every h ∈ Vi is such that

err(h)≤ ν + 8
√

νσk∗(li,δi,k∗) + 35σk∗(li,δi,k∗). (5.12)

where Vi and Li denote their final values, respectively. Specifically, Equation (5.12) holds for any

h ∈ Vi such that i ∈ Γ or i + 1 ∈ Γ.

Proof. Lemma 5.6 shows that ki ≤ k∗, which we will use below.

Start with Equation (5.11):

min
h′∈Vi

err(h′,Li)≤ γi + 2
√

γiσki
(li,δi,ki

)+ 3σki
(li,δi,ki

).

Since ki ≤ k∗, σki
(li,δi,ki

)≤ σk∗(li,δi,k∗).

From the definition of γi (Equation (5.10)), taking k = k∗ ≥ ki, h = h∗ ∈Hk∗ ,

γi ≤ err(h∗,Li) + 2
√

err(h∗,Li)σk∗ (li,δi,k∗)+ 3σk∗(li,δi,k∗).

Plugging the latter into the former and using σ as a shorthand for σk∗(li,δi,k∗), we have

min
h′∈Vi

err(h′,Li)≤err(h∗,Li) + 2
√

err(h∗,Li)σ + 3σ + 2

√

(err(h∗,Li) + 2
√

err(h∗,Li)σ + 3σ)σ

+ 3σ

≤err(h∗,Li) + 2
√

err(h∗,Li)σ + 6σ + 2(
√

err(h∗,Li)σ +
√

3σ)

≤err(h∗,Li) + 4
√

err(h∗,Li)σ + 10σ .

Fix any h ∈ Vi. By construction,

err(h,Li)≤ min
h′∈Vi

err(h′,Li) + 2
√

err(h′,Li)σki
(li,δi,ki

) + 3σki
(li,δi,ki

).
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Plugging the former into the latter (recalling that σki
(li,δi,ki

)≤ σ) gives

err(h,Li)− err(h∗,Li)≤4
√

err(h∗,Li)σ + 10σ + 2(
√

err(h∗,Li)σ +
√

10σ) + 3σ

≤6
√

err(h∗,Li)σ + 20σ.

Combined with Equation (5.8), we have,

err(h,LD
i )− err(h∗,LD

i )≤ 6
√

err(h∗,Li)σ + 20σ.

Since err(h∗,Li)≤ err(h∗,LD
i ),

err(h,LD
i )− err(h∗,LD

i )≤ 6
√

err(h∗,LD
i )σ + 20σ.

From the definition of Ei,

err(h∗,LD
i )≤ ν +

√
νσ + σ.

err(h)≤ err(h,LD
i ) +

√

err(h,LD
i )σ + σ.

Plugging in and simplifying algebraically gives

err(h)≤ ν + 8
√

νσ + 35σ.

Now, if i ∈ Γ, the dataset Li has favorable bias from lemma 5.7; if i /∈ Γ and i + 1 ∈ Γ, the final

value of Li equals some Lj for some j ∈ Γ, therefore also has favorable bias.

Meanwhile, if i ∈ Γ, Algorithm 5.2 fails Error-Check(Vi,Li,δi) for k = ki. If i /∈ Γ and

i + 1 ∈ Γ, then i + 1 is the start of some verified iteration, i.e. i + 1 = i0
k for some k. Hence the

final value of Vi also fails Error-Check(Vi,Li,δi) for k = ki. In both cases, Equation (5.11)

holds.

Therefore, if i ∈ Γ or i + 1∈ Γ, then Equation (5.12) holds for every h in Vi.

Lemma 5.5. For step i, suppose Li has favorable bias, i.e. Equation (5.8) holds. Then for any

k and any h ∈Hk,

err(h∗,Li)− err(h,Li)≤ 2
√

err(h,Li)σk̄(li,δi,k̄)+ 3σk̄(li,δi,k̄),
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where k̄ = max(k∗,k). Specifically:

1. for any h ∈Hk∗ ,

err(h∗,Li)− err(h,Li)≤ 2
√

err(h,Li)σk∗ (li,δi,k∗) + 3σk∗(li,δi,k∗), (5.13)

2. The empirical error of h∗ on Li can be bounded as follows:

err(h∗,Li)≤ γi + 2
√

γiσk∗(li,δi,k∗) + 3σk∗(li,δi,k∗) (5.14)

Proof. Fix any k and h ∈ Hk. Since k̄ ≥ k, σk(li,δi,k) ≤ σk̄(li,δi,k̄). Similarly, σk∗(li,δi,k∗) ≤

σk̄(li,δi,k̄). Using the shorthand σ := σk̄(li,δi,k̄) and noting that h,h∗ ∈Hk̄,

err(h∗,Li)− err(h,Li) ≤ err(h∗,LD
i )− err(h,LD

i )

≤
√

dLD
i

(h∗,h) ·σ + σ

≤
√

(err(h∗,Li) + err(h,Li)) ·σ + σ.

≤
√

err(h∗,Li)σ +
√

err(h,Li)σ + σ.

where the first inequality is from Equation (5.8), the second inequality is from the definition of

Ei and the optimality of h∗, and the third inequality is from the triangle inequality. Letting

A = err(h∗,Li), B = err(h,Li), and C = B +
√

Bσ + σ, we can rewrite the above inequality as

A≤C +
√

Aσ. Solving the resulting quadratic equation in terms of A, we have A≤C +σ+
√

Cσ,

or

A ≤ B +
√

Bσ + 2σ +

√

σ(B +
√

Bσ + σ)

≤ B +
√

Bσ + 2σ +
√

σ(
√

B +
√

σ)

≤ B + 2
√

Bσ + 3σ,

or

err(h∗,Li)≤ err(h,Li) + 2
√

err(h,Li)σ + 3σ.

Specifically:
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1. Taking k = k∗, we get that Equation (5.13) holds for any h ∈Hk∗ , establishing item 1.

2. Define

(k̂i, ĥi) := arg min
k′≥k∗,h∈Hk′

{

err(h,Li) + 2
√

err(h,Li)σk′ (li,δi,k′) + 3σk′(li,δi,k′)

}

.

In this notation, γi = err(ĥi,Li) + 2
√

err(ĥi,Li)σk̂i
(li,δi,k̂i

) + 3σk̂i
(li,δi,k̂i

). We have

γi + 2
√

γiσk∗ (li,δi,k∗) + 3σk∗(li,δi,k∗)

≥err(ĥi,Li) + 2
√

err(ĥi,Li)σk̄(li,δi,k̄) + 3σk̄(li,δi,k̄)

≥err(h∗,Li),

where k̄ = max(k∗, k̂i) and the last inequality comes from applying Lemma 5.5 for h′ = ĥi ∈

Hk̂i
and k̄. This establishes Equation (5.14), proving item 2.

Lemma 5.6. At any step of AA-Larch, k ≤ k∗. Consequently, for every i, i≤ li + k∗N .

Proof. We prove the lemma in two steps.

1. Notice that there are two places where k is incremented in AA-Larch, line 6 and line 17. If

k < k∗, neither line would increment it beyond k∗ as h∗ ∈Hk∗ and h∗ is consistent with S. If

k = k∗, Claim 5.4 below shows that k will stay at k∗. This proves the first part of the claim.

2. An iteration becomes unverified only if k gets incremented, and Algorithm 5.2 maintains the

invariant that ki ≤ k∗. Thus, the number of unverified iterations is at most k∗. In addition,

each newly sampled set is of size at most N . So the number of unverified examples is at most

k∗N .

Hence, i—the total number of examples processed up to step i—equals the sum of the number

of verified examples li, plus the number of unverified examples, which is at most k∗N . This

proves the second part of the claim.

We show a technical claim used in the proof of Lemma 5.6 which guarantees that, on

event E, when k has reached k∗, it will remain k∗ from then on. Recall that ki is defined as

the final value of k at the end of step i; i0
k = min{i : ki ≥ k} is the step at the end of which the

working hypothesis space reaches level ≥ k.
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Claim 5.4. If i0
k∗ is finite, then the following hold for all i≥ i0

k∗ :

(C1) Li has favorable bias.

(C2) Step i terminates with ki = k∗.

(C3) h∗ ∈ Vi.

Above, Li and Vi denote their final values in AA-Larch.

Proof. By induction on i. Base Case. Let i = i0
k∗ . Consider the execution of AA-Larch at the

start of step i0
k∗ (line 11). Since by definition of ik, the final value of k at step i0

k∗ − 1 is < k∗,

at step i0
k∗ , line 5 or line 16 is triggered. Hence the dataset Li0

k∗
equals some verified labeled

dataset L stored by AA-Larch, i.e. Lj for some j ∈ Γ. Thus, applying Lemma 5.7, Claim C1

holds.

We focus on the moment in step i = i0
k∗ when k increases to k∗ in subprocedure

Upgrade-Candidate-Set(line 6 or 17). Now consider the temporary Vi0
k∗

computed in the

next line (Prune-Candidate-Set). Item 2 of Lemma 5.5 implies that the candidate set Vi0
k∗

is

such that Error-Check(Vi0
k∗

,Li0
k∗

,δi0
k∗

) returns false. Therefore the final value of k in step i0
k∗

is exactly k∗. Claim C2 follows.

Claim C2 implies the temporary Vi0
k∗

is final. Item 1 of Lemma 5.5 implies that h∗ ∈ Vi0
k∗

,

establishing Claim C3.

Inductive Case. Now consider i≥ i0
k∗ + 1. The inductive hypothesis says that Claims

C1–3 hold for step i−1.

Claim C1 follows from Claim C3 in step i−1. Indeed, the newly added xi either comes

from the agreement region of Vi−1, in which case label yi agrees with h∗(xi), or is from the

disagreement region of Vi−1, in which case the inferred label yi is queried from Label. Following

the same reasoning as the proof of Lemma 5.7, Claim C1 is true.

Claims C2 and C3 follows the same reasoning as the proof for the base case.

Lemma 5.7. If i is in Γ, then Li has favorable bias. That is, for any hypothesis h,

err(h,LD
i )− err(h∗,LD

i )≤ err(h,Li)− err(h∗,Li).
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Proof. We can split LD
i into two subsets, the subset where LD

i agrees with Li and the subset

QD
i = {(x,y)∈LD

i : h∗(x) 6= y} where LD
i disagrees with Li. On the former subset, LD

i is identical

to Li, thus we just need to show that

err(h,QD
i )− err(h∗,QD

i )≤ err(h,Qi)− err(h∗,Qi),

where Qi = {(x,y) : (x,−y) ∈ QD
i }. Since err(h∗,QD

i ) = 1 and err(h∗,Qi) = 0, this reduces to

showing that err(h,QD
i )≤ 1+err(h,Qi), which is easily seen to hold for any h as err(h,QD

i )≤ 1

and err(h,Qi)≥ 0.
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Chapter 6

Confidence-rated Prediction in

the Batch Setting

6.1 Introduction

Confidence-rated prediction (also known as “classification with a reject option”) refers

to the learning setting where the learned classifier (also known as confidence-rated predictor),

is allowed to abstain, that is, to output “I don’t know”. In this chapter, we study confidence-

rated prediction in the batch setting, that is, we are given training and test examples in batches,

and would like to output predictions on the test examples. As discussed in Section 1.2, the

performance of a confidence-rated predictor is measure by two quantities: error (or mistake), the

fraction of examples on which it predicts a wrong label, and abstention, the fraction of examples

on which it abstains. Usually there is tradeoff between these two performance measures - if we

are allowed a higher abstention rate, then error rate can be reduced.

To establish a tradeoff between the two measures, one plausible formulation is to design

confidence-rated predictors that provide a guaranteed upper bound on the error. 1 In this chapter,

we focus on this formulation. A natural strategy for confidence-rated prediction in this setting

is as follows. Maintain a candidate set of hypotheses based on the input training examples, and

1Alternatively, we can design confidence-rated predictors that have a guaranteed upper bound on the abstention
rate. These two formulations can sometimes be equivalent if concrete objectives are defined, using the techniques
in Section 4.7.5 of [BV04].
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abstain from prediction whenever there are two hypotheses in this candidate set that disagree

on the label of a test example. This disagreement-based strategy was proposed by [EYW10],

and was shown to have zero error in the realizable case. If a small error η is allowed, then,

instead of abstaining, they suggest predicting the label assigned by a reference classifier in the

candidate set with some small probability, and abstaining otherwise. However, the optimality of

this algorithm is questionable, and it leaves open the question that whether better algorithms

exist in this setting.

In this chapter, we address this question by providing a novel confidence-rated prediction

algorithm with error guarantees. Our algorithm is fully general, in the sense that it applies to

any hypothesis class and any data distribution. We show that our algorithm is optimal in the

realizable case, in the sense that any other algorithm that guarantees error η given the input la-

beled examples will necessarily have the same or higher abstention rate. We show how to convert

this algorithm to work in the agnostic setting such that its error with respect to the best hypoth-

esis in the class is at most η; in this case, our algorithm still has better performance than the

disagreement-based strategy adapted to this setting. Our algorithm applies in the transductive

setting, and given a set of labeled and unlabeled examples drawn from a data distribution, finds

a confidence-rated predictor with guaranteed error η on the unlabeled examples.

While our algorithm is computationally inefficient in general, we next show how to

implement an approximate version of it and one of its variants efficiently through bootstrap

sampling from the candidate sets. These approximate versions have error guarantees with respect

to the bootstrapped subsample of hypotheses.

Finally, we evaluate our algorithm and one of its variants through two experimental

tasks on real data. Define the coverage of a confidence rated predictor as 1 minus its abstention

rate, as in [EYW10]. For the first task, we measure the coverage as a function of the worst-

case error guarantee, and show that our algorithms provide significantly better coverage for the

same error guarantee when compared with previous work. For our second experimental task, we

measure the risk (or error to coverage ratio) where the error is evaluated with respect to the

actual test labels. We show that a variant of our algorithm significantly outperforms [EYW10]

in this case, and achieves error-abstention tradeoffs competitive with the algorithms of [EYW11]

and [GWBV02, Muk03] which do not possess any error guarantees.



103

6.2 Algorithms

We present a confidence-rated prediction strategy in Algorithm 6.1, and one of its vari-

ants, Algorithm 6.2 in the transductive setting. These algorithms are fully general in the sense

that they apply to any hypothesis class and any data distribution. Both are presented for the

realizable case; extension to the non-realizable case is discussed in Section 6.2.4.

6.2.1 The Transductive Setting

We begin with some definitions. In the transductive setting, we assume that we are given

a set S of n labeled examples {(x1,y1), . . . ,(xn,yn)}, where each xi lies in a domain X and each

yi ∈ {−1,1}. We are also given a set U = {xn+1, . . . ,xn+m} of m unlabeled examples.

A confidence-rated predictor P is a function that maps each element of U to a distribution

over {−1,1,⊥}, where ⊥ indicates “I don’t know”. If for xn+j ∈ U , P (xn+j) = (αj ,βj ,γj), then

the prediction of P on xn+j is +1 with probability αj , −1 with probability βj and ⊥ with

probability γj .

In the sequel, we distinguish between confidence-rated predictors and selective classi-

fiers, which are a special case of confidence-rated predictors. A selective classifier C is a tuple

(h,(µ1, . . . ,µm)), where h lies in a hypothesis class H, and 0≤ µi ≤ 1 for all i = 1, . . . ,m. For any

xn+j ∈ U , the prediction of a selective classifier C on xn+j is h(xn+j) with probability µj and

⊥ with probability 1−µj.

Finally, we calculate the error and the abstention of a confidence-rated predictor with

respect to the uniform distribution over the unlabeled sample set U .

6.2.2 Algorithms

Given a training set S and an unlabeled dataset U , Algorithm 6.1 first constructs the

candidate set V of S with respect to the hypothesis class H. Our key observation is that once

this candidate set has been constructed, finding the optimal abstention rate confidence-rated

predictor which has guaranteed error ≤ η can be expressed as a linear program. The linear

program has three variables for each unlabeled example i, αi, which denotes the probability

with which we predict 1, βi, the probability with which we predict −1, and γi, the probability

we predict ⊥ on this example. There is a constraint corresponding to each hypothesis h in the
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candidate set, which ensures that if the true hypothesis is h, then the error of the predictor is

at most η. Finally, the constraints αi + βi + γi = 1, αi,βi,γi ≥ 0 for all i ensures (αi,βi,γi) is a

valid probability distribution.

A similar observation can be used to construct a selective classifier; we present this

construction in Algorithm 6.2. We maintain a candidate set V , and we select an arbitrary h0 ∈ V

as the classifier h. The linear program has a variable µi for each example i which denotes the

probability with which we do not abstain on this example, and a constraint for each hypothesis

h′ in the candidate set that ensures that if h′ is the true hypothesis, then its error is ≤ η. We

note that abstention achieved by Algorithm 6.2 depends on the actual choice of the hypothesis

h0; however, Theorem 6.2 indicates that the choice of h0 would not change the abstention of the

selective classifier by more than η.

Algorithm 6.1 Confidence-rated Predictor: Realizable Case

1: Inputs: labeled data S, unlabeled data U , error bound η.
2: Compute candidate set V with respect to S.
3: Solve the linear program:

min

m
∑

i=1

γi

subject to:

∀i, αi + βi + γi = 1 (6.1)

∀h ∈ V,
∑

i:h(xn+i)=+1

βi +
∑

i:h(xn+i)=−1

αi ≤ ηm (6.2)

∀i, αi,βi,γi ≥ 0 (6.3)

4: Output the confidence-rated predictor: {(α,βi,γi), i = 1, . . . ,m}.

Algorithm 6.2 Selective Classifier: Realizable Case

1: Inputs: labeled data S, unlabeled data U , error bound η.
2: Compute candidate set V with respect to S. Pick an arbitrary h0 ∈ V .
3: Solve the linear program:

min

m
∑

i=1

(1−µi)

subject to:

∀i, 0≤ µi ≤ 1 (6.4)

∀h ∈ V,
∑

i:h(xn+i)6=h0(xn+i)

µi ≤ ηm (6.5)

4: Output the selective classifier: (h0,(µ1, . . . ,µm)).
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Observe that as both algorithms involve solving a linear program over the candidate set,

they are generally computationally inefficient. In Section 6.3, we show how to implement an

approximate version of these algorithms for linear classification by a bootstrapping procedure

that draws samples from the candidate set, and solves the linear programs using the constraints

generated by these samples.

6.2.3 Guarantees for the Realizable Case

Algorithms 6.1 and 6.2 have the following performance guarantees; detailed proofs are

provided in the Section 6.4.

Theorem 6.1. Suppose we are in the realizable case, and let P be the confidence-rated predictor

output by Algorithm 6.1 on inputs S, U and η. Then, errU (P )≤ η. Moreover, if P ′ is any other

confidence-rated predictor that guarantees errU (P ′)≤ η given S and U , then absU (P ′)≥ absU (P ).

Theorem 6.2. Suppose we are in the realizable case, and let C be the selective classifier output by

Algorithm 6.2 on inputs S, U and η for any arbitrary choice of h0 in the candidate set V . Then,

errU (C)≤ η. Moreover, absU (C)≤ absU (P )+η, where P is the predictor output by Algorithm 6.1

on input S, U and η.

Thus, Algorithms 6.1 and 6.2 offer an error guarantee ≤ η with respect to the candidate

set; even if any arbitrary classifier in the candidate set is the true hypothesis, Algorithms 6.1

and 6.2 will guarantee error ≤ η. Algorithm 6.1 is also optimal in the sense that any other

confidence-rated predictor which offers a similar error guarantee has equal or higher abstention.

6.2.4 The Non-Realizable Case

In the non-realizable case, in general, it is impossible to provide strong error guarantees if

error is measured with respect to the true labels, without further generative assumptions. For ex-

ample, for true labels generated by random classification noise, guaranteeing an error better than

the noise rate will require a predictor that can predict the exact noise value! Following [EYW11],

we therefore consider a different notion of error, error with respect to the best hypothesis in a

class H.
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Let H be a hypothesis class, and let h∗ be the hypothesis in H which minimizes the

true error Pr(x,y)∼D[h(x) 6= y] with respect to the data distribution D. Then, the error of a

confidence-rated predictor P with respect to the best hypothesis in H is the probability that P

predicts 1 when h∗(x) =−1 and vice versa. More precisely, errH(P ) = Pr[P (x) =−h∗(x)], where

the probability is taken over the uniform distribution on the unlabeled data U as well as the

randomness in the prediction of P .

In the non-realizable case, there is usually no h∈H consistent with the training set, and

the candidate set V is empty. Therefore, to ensure guaranteed error, we use instead a subset of

H that is very likely to include the true error minimizer h∗.

Corollary 6.1 shows that if we replace V in Algorithms 6.1 and 6.2 by a (1−δ)-confidence

set C(S), then, the resulting predictor provides an error guarantee with probability ≥ 1− δ.

Corollary 6.1. Suppose we are in the non-realizable case, and let P and C respectively be the

confidence-rated predictor and selective classifier obtained by replacing the candidate set V in

Algorithms 6.1 and 6.2 by a (1− δ)-confidence set C(S). If S consists of n iid examples drawn

from the data distribution D, then, with probability ≥ 1− δ with respect to D, errH(P ) ≤ η and

errH(C) ≤ η.

We cannot show a guarantee of optimal abstention in the non-realizable case. While any

(1− δ)-confidence set C(S) will give us an error guarantee with probability ≥ 1− δ, to get good

abstention, in general, we would like C(S) to be as small as possible.

If ĥ minimizes the empirical error on the training data, then, the following set V̂(ĥ), used

by [EYW11], is a (1− δ)-level confidence set:

V̂(ĥ) =
{

h ∈H : err(h,S)≤ err(ĥ,S) + 2σ(n,δ)
}

Depending on the hypothesis class, V̂(ĥ) may have complex structure and may even be

disconnected. To address this, previous active learning literature uses instead BS(ĥ,2err(ĥ,S) +

2σ(n,δ)), the empirical disagreement ball around ĥ of radius 2err(ĥ,S) + 2σ(n,δ). Since V̂(ĥ)⊆

BS(ĥ,2err(ĥ,S) + 2σ(n,δ)), this process preserves the error guarantees, and results in a higher

abstention rate.
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6.3 Implementation and Experiments

We next show how to implement Algorithms 6.1 and 6.2 through bootstrapping, and

evaluate their performance. We will also be using the performance measures defined in [EYW10]

in this section: the coverage of a confidence-rated predictor is 1 minus its abstention rate, and

its risk is the ratio between its error and its coverage. Note that the coverage is equivalent to the

abstention rate modulo scaling and translation. We consider two experimental tasks. First, we

compare the coverages of Algorithms 6.1 and 6.2 on real data with disagreement-based strategy

for the same error guarantee ≤ η. Second, we evaluate the actual risk-coverage tradeoff achieved

by our algorithms on real data, by comparing it with several existing confidence-rated prediction

algorithms. All experiments are based on linear separators.

Implementation by Bootstrapping The linear programs in Algorithms 6.1 and 6.2

have a constraint for each hypothesis in the candidate set; to implement them, we draw a set of

samples to approximate the candidate set (or a 1−δ confidence set) by a finite hypothesis set H ,

and use the constraints corresponding to each hypothesis in H . The resulting algorithms provide

an error guarantee of η with respect to the bootstrapped sample H .

In the realizable case, the candidate set V is convex. To sample from V , we first use

linear programming to find a consistent (w,b) as a starting point, and then draw samples using

the Hit and Run Markov Chain [GBNT05, LV06]. In non-realizable case, we first use an SVM

solution to find a (ŵ, b̂) as a starting point ĥ, and sample linear classifiers in the star-shaped

body BS(ĥ,2err(ĥ,S) + Cσ(n,δ)),C = 0.2 using a ball walk[CDV10]. 2 In each case, we run

the Markov Chain until t = 100000, and randomly select 1000 classifiers from the trajectory.

Algorithm 6.2 requires a reference classifier h0, which we select to be the SVM solution. We use

the LIBSVM implementation [CL11] of SVM with C = 105.

The linear programs in Algorithms 6.1 and 6.2 usually have multiple optimal solutions for

a given η; we break ties among these by selecting the one which has the best alignment with the

SVM solution. To do this, we solve the original LP for a given η to get an optimal abstention A(η).

Next, we add a linear constraint to the LP to enforce that the abstention is equal to A(η) and

select the solution that maximizes, under these constraints, the quantity
∑m

i=1(αi−βi)〈w0,xi〉

for Algorithm 6.1 and the quantity
∑m

i=1 µi|〈w0,xi〉| for Algorithm 6.2. Here w0 is the SVM

solution vector. This tie-breaking process improves the performance of Algorithms 6.1 and 6.2

2Note the bound we use is optimistic over standard generalization bounds.
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on real data.

Experiments: Coverage as a Function of Error. We compare the coverages

achieved by Algorithms 6.1 and 6.2 with the baseline selective classifier proposed by [EYW10]

(EYW10) as a function of the error guarantee η.

For our comparison purposes, we use linear classifiers on the Breast Cancer, KDD-

Cup99 [BL13] (normal vs malicious) and subsets of the MNIST data [LC05]. kddcup, mnist0v1

and mnist6v9 are linearly separable, while the rest are not. We implement Algorithms 6.1 and 6.2

using the bootstrap sampling scheme described in Subsection 6.3. EYW10 is also implemented

using the same bootstrap sample, so all algorithms offer error guarantees with respect to the

bootstrapped sample set H . The reference classifier h0 in EYW10 is chosen as the SVM solu-

tion.

Figure 5 shows the results. It is evident from the results that for the same error guarantee

η, the coverages of Algorithms 6.1 and 6.2 do not differ much, while EYW10 provides much lower

coverage.
Experiments: Risk-Coverage Tradeoffs. We next evaluate the actual risk-coverage

tradeoffs of Algorithms 6.1 and 6.2 on real data. The risk of a confidence-rated predictor is

defined as the ration between its error and its coverage. In addition to EYW10, we choose as

baselines the Agnostic Selective Classification (ASC) algorithm [EYW11] and thresholding based

on the distance from the decision boundary (DDB) of the SVM. ASC sorts unlabeled examples

based on a disbelief index and abstains from prediction when this index lies below a threshold.

DDB abstains from prediction on examples whose distance from the decision boundary of an

SVM classifier is below a threshold. Each algorithm has a parameter which can be varied to

control the risk-coverage tradeoff; we run several iterations of each with different values of these

parameters, and plot the corresponding risk (as measured with respect to the actual test labels)

as a function of the coverage. DDB does not offer any error guarantees, and ASC only has

theoretical error guarantees for zero error with respect to h∗.

Figure 6 shows the results. EYW10 performs the worst, as it treats all points in the

disagreement region as equivalent. ASC typically performs the same as DDB or better, while our

Algorithm 6.2 is competitive with ASC. An interesting observation is that Algorithm 6.2 usually

performs better than Algorithm 6.1 in practice, even though it is worse in theory. This may

be explained as follows. Algorithm 6.1 treats all hypotheses in the candidate set the same way,

and generates the predicted labels by solving an LP; on the other hand, the labels predicted by
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Figure 6.1: Coverage(y-axis) vs. Error guarantee η (x-axis) for the experiment datasets.



110

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

coverage

ris
k

 

 
ASC
DDB
Algorithm 1
Algorithm 2
EYW10

kddcup

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

coverage

ris
k

 

 
ASC
DDB
Algorithm 1
Algorithm 2
EYW10

mnist0v1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

coverage

ris
k

 

 
ASC
DDB
Algorithm 1
Algorithm 2
EYW10

mnist6v9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

coverage

ris
k

 

 
ASC
DDB
Algorithm 1
Algorithm 2
EYW10

mnist3v5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

coverage

ris
k

 

 
ASC
DDB
Algorithm 1
Algorithm 2
EYW10

mnist2v3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

coverage

ris
k

 

 
ASC
DDB
Algorithm 1
Algorithm 2
EYW10

breast

Figure 6.2: Risk(y-axis) vs. coverage(x-axis) tradeoffs for the experiment datasets. Note
that ASC overlaps completely with DDB for mnist0v1, mnist2v3, mnist3v5, and mnist6v9.
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Algorithm 6.2 always agree with the SVM solution, and as seen from the results on DDB, these

labels work quite well in practice.

6.4 Proofs from Section 6.2

Proof of Theorem 6.1. We observe that for unlabeled example xn+i, βi = P[P (xn+i) = −1] and

αi = P[P (xn+i) = +1]. Suppose h∗ ∈ H is the true hypothesis which has 0 error with re-

spect to the data distribution. By the realizability assumption, h∗ ∈ V . Moreover, errU (P ) =

1
m

∑

i:h(xn+i)=1 βi +
∑

i:h(xn+i)=−1 αi ≤ η by Algorithm 6.1. The first part of the lemma follows.

For the second part, suppose P ′ assigns probabilities {(α′
i,β

′
i,γ

′
i,), i = 1, . . . ,m} to the

unlabeled examples xn+i, and suppose for the sake of contradiction that absU (P ′) < absU (P ).

Then, (α′
i,β

′
i,γ

′
i)’s cannot satisfy the LP in Algorithm 6.1, and thus there exists some h′ ∈ V for

which constraint (6.2) is violated. Given S, the true hypothesis that generates the data could be

any h ∈ V ; if this true hypothesis is h′, then errU (P ′) > η.

Proof of Theorem 6.2. The first part follows from constraint (6.5), which ensures that if some

h ∈ V is the true hypothesis, then errU (C) ≤ η.

For the second part, let {(αi,βi,γi)}, i = 1, . . . ,m be the optimal solution to the LP in

Algorithm 6.1. Pick any h0 ∈ V . For all i = 1, . . . ,m, define µi = αi if h0(xn+i) = 1 and µi = βi

otherwise; define µ̄i = αi + βi−µi. Thus for all i, αi + βi = µi + µ̄i.

Observe that for all h ∈ V ,

∑

i:h0(xn+i)6=h(xn+i)

µi

=
∑

i:h0(xn+i)=−,h(xn+i)=+

µi +
∑

i:h0(xn+i)=+,h(xn+i)=−

µi

≤
∑

i:h(xn+i)=1

βi +
∑

i:h(xn+i)=−1

αi

≤ ηm

Thus, the µi’s form a feasible solution to the LP in Algorithm 6.2.

Since h0 ∈ V , from constraint (6.2),
∑

i µ̄i =
∑

i:h0(xn+i)=1 βi +
∑

i:h0(xn+i)=−1 αi ≤ ηm.
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Thus,
∑

i µi ≥
∑

i αi + βi− ηm. Therefore,

absU (C) =
1

m

∑

i

(1−µi)≤ (
1

m

∑

i

(1−αi−βi)) + η = absU (P ) + η.

Therefore there exists a feasible solution to the LP in Algorithm 6.2 for which the abstention is

at most absU (P ) + η. The theorem follows.

Proof of Corollary 6.1. Let h∗ be the hypothesis inH which minimizes the true risk err(h). From

the properties of C(S), if S consists of n iid examples drawn from a data distribution D, then

with probability≥ 1−δ, h∗ ∈C(S). The corollary now follows as a consequence of constraint (6.2)

in Algorithm 6.1 and constraint (6.5) in Algorithm 6.2.



Chapter 7

Confidence-rated Prediction in

the Online Setting

7.1 Introduction

This chapter studies the problem of online confidence-rated prediction. In settings such as

online credit card fraud detection, confidence-rated prediction algorithms are useful, in the sense

that when the detecting algorithm is in doubt, it can upload the transaction details to a human

expert for a more careful analysis. However, different from batch confidence-rated prediction

studied in Chapter 6, in this setting, the transactions come sequentially, and the algorithm needs

to makes a decision as soon as a new transaction arrives. Moreover, the transactions are not

generated iid - there can be many temporal and spatial localities in the data. Therefore, the

algorithms in Chapter 6 does not apply in this setting. Thus, it is of importance to analyze

a new model of confidence-rated prediction - that is, confidence-rated prediction in the online

setting.

In this chapter, we focus on the model of [SZB10], trading off its mistakes and abstentions

in the online setting. Similar to confidence-rated prediction with error guarantees in the batch

setting, we consider online confidence-rated prediction where the number of mistakes must not

exceed a pre-specified upper bound. While previous work has looked at designing generic online

learning algorithm in this setting [LLWS11, SZB10], there are two remaining challenges. First

113
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not much is known about the optimality of these algorithms, and in particular, about what an

optimal algorithmic strategy would be for any individual hypothesis class. The second challenge

is to understand what happens in a more realistic scenario where the realizability assumption

does not hold. While this has been studied in a regression setting [SS11], not much is known

about the classification case.

In this chapter, we address both challenges. We first provide a new combinatorial mea-

sure that, given a hypothesis class H, captures how many abstentions are needed to ensure a

certain number of mistakes. In addition, we provide an optimal algorithm that achieves this

number. Our measure is closely related to the notion of Littlestone’s dimension for online learn-

ing with no abstentions, and we call it the Extended Littlestone’s dimension. Formalizing this

notion additionally allows us to extend our algorithm to infinite hypothesis classes; while algo-

rithms were previously known for some specific infinite classes [SZB10], no generic algorithm was

known.

Next, we focus our attention on the non-realizable case. In this case, we make an l-

bias assumption, which ensures that the labels are generated by a function that disagrees with

some (unknown) hypothesis h ∈H on at most l examples. We show that (at least some form of)

this assumption is necessary; there exists a finite hypothesis class H, such that when the l-bias

assumption holds, any algorithm that abstains a finite number of times must make at least l

mistakes. Moreover, there also exists an infinite hypothesis class H with Littlestone’s dimension

d such that any algorithm that abstains a finite number of times must make at least l+d mistakes.

To complement these lower bounds, we show that we can run a version of our algorithm when

the l-bias assumption holds, and provide an upper bound on the number of abstentions it makes.

7.2 The Setting

We consider the problem of online classification in the model of [SZB10], where the

learner is allowed to occasionally abstain from prediction. Recall from Section 3.5, the interaction

between the learning algorithm and the adversary is as follows. At time t, the adversary presents

an example xt in some instance space X . The learner makes its prediction ŷt, which can be

either −1, +1, or ⊥ (I don’t know). The adversary then reveals an outcome yt ∈ {−1,+1}. The

interaction between the learner and the adversary continues, and the performance of the learner

is measured by the total number of mistakes and abstentions made throughout the process.
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To help make decisions, the learner has access to a hypothesis class H. Each hypothesis

h in H is a prediction rule mapping from X to {−1,+1}.

Basic Notations. Given two hypothesis h1 and h2, their product is defined as a new

hypothesis h1 ·h2 which is a function that takes x as input, and outputs h1(x) ·h2(x). Given two

hypothesis classes H1 and H2, we define H1 ·H2 to be the class of functions achievable by taking

the product between a function in H1 and a function in H2. Formally,

H1 ·H2 = {h1 ·h2 : h1 ∈H1,h2 ∈H2}

Denote by Cl the class of union of at most l singletons in instance domain X . That is,

hypotheses that take value +1 on X , except for at most l points:

Cl =
{

1−2I(x = x1∨ . . .∨x = xi) : x1, . . . ,xi ∈ X , i≤ l
}

In this chapter, we will address both realizable and nonrealizable cases, defined below.

Realizable Case. In the realizable case, we assume there is a hypothesis h in H that

makes no mistakes over time. Formally, a sequence S = (x1,y1), . . . , (xn,yn) is calledH-realizable,

if and only if

∃h ∈H, |
{

t : h(xt) 6= yt

}

|= 0

Non-realizable Case. In the non-realizable case, we assume that the label of examples

are generated by a function that disagrees with some hypothesis on at most l examples, which

we call l-bias assumption.1 Formally, define Hl as the set of classifiers where its prediction differs

from some classifier in H on at most l points, i.e. Hl = H · Cl. A sequence S = (x1,y1), . . . ,

(xn,yn) is said to have l-bias with respect to H, if and only if it is Hl-realizable, i.e.

∃h ∈Hl, |
{

t : h(xt) 6= yt

}

|= 0

Version Space and Disagreement Region. Similar to active learning, it is often

convenient to consider the set of hypotheses that agree with the labeled examples revealed so far

in online confidence-rated prediction. We will also use the same notion in this chapter. Given a

set of labeled examples S and a set of hypotheses V , the version space V [S] ⊆ V is defined as

1This is similar to the l-mistake assumption in the expert problem [CFHW96, ALW06].
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the set of all classifiers that classify S correctly:

V [S] =
{

h ∈ V : for all (x,y) ∈ S,h(x) = y
}

At the start of time t, the version space is defined as the set of hypotheses in H that agree with

the examples (x1,y1), . . . , (xt−1,yt−1) seen so far.

We say that an example x is in the disagreement region of a hypothesis set V , denoted

by Dis(V ), if both V [(x,+1)] and V [(x,−1)] are nonempty.

7.3 Extended Littlestone’s Dimension

We begin with the realizable case and the definition of the Extended Littlestone’s Di-

mension. We first define an extended mistake tree, which is a natural generalization of the

mistake tree, and then use it characterize the optimal number of non-trivial rounds (abstentions

+ mistakes) for any algorithm in the k-SZB model. We finally present an optimal algorithm

(Algorithm 7.2) for this model, and a recursive formulation of Extended Littlestone’s dimension.

7.3.1 Background: Mistake Bound, Littlestone’s Dimension and Stan-

dard Optimal Algorithm

[Lit87] provides a characterization of the optimal mistake bound in the realizable case,

which is measured by Littlestone’s dimension. We begin by describing this characterization.

Mistake Trees. Littlestone’s dimension is closely related to the notion of a mistake tree.

A mistake tree2 of a hypothesis class H is a complete binary tree3 , whose leaves are classifiers in

H and whose internal nodes correspond to examples in X . A mistake tree may have no internal

nodes, in which case it only contains a leaf corresponding to a classifier h in H – we call it a

zeroth order mistake tree. Given an internal node, the edge connecting it and its left (resp. right)

child is labeled −1 (resp. +1).

A root to leaf path p in mistake tree T is a sequence of nodes and edges, denoted as

v1e1v2e2 . . .vnenvn+1, where v1, . . . ,vn are internal nodes in T corresponding to examples in X ,

v1 is the root node of T , each ei is an edge in T that connects vi and vi+1, vn+1 = h is a classifier

2In [Lit87] this is instead called a “complete mistake tree”; in [Sha12] this is called a H-shattered tree.
3A complete binary tree is one in which every level is completely filled with nodes.
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3

−1 +1

2 4
1 2 3 4

h1 h2 h3 h4

−1 +1 −1 +1

Figure 7.1: A mistake tree with respect to H =
{

hi = 2I(x ≤ i) − 1 : i = 1,2,3,4
}

, a set of
threshold classifiers.

in H corresponding to a leaf in T . For each i, edge ei connects vi and vi+1. The length of a path

l(p) is defined as the number of edges in p. For each leaf, the associated classifier agrees with

the internal nodes and edges along the path up to the root. That is, if each node vi corresponds

to example xi and each edge ei has label yi, then h agrees with examples
{

(x1,y1), . . . ,(xn,yn)
}

.

See Figure 7.1 for an illustration.

A mistake tree T succinctly represents a strategy of the adversary in response to a

deterministic learner. At t = 1, the adversary picks the example x1 corresponding to the root

node to show to the learner. If the learner predicts ŷ1 =−1, the adversary reveals label y1 = +1,

and follows the downward edge labeled +1; otherwise it follows the other edge. If at time t≥ 2,

the adversary reaches a node with example xt, then xt is shown to the learner, and one of the

downward edges adjacent to this node is followed. The interaction comes to an end when a leaf

is reached. It can be seen that the adversary forces the learner to make a mistake at each node

of the mistake tree; this implies that if every root-to-leaf path of the mistake tree has depth d,

then the adversary can force the learner to make d mistakes using the associated strategy.

We are now ready to define Littlestone’s dimension.

Definition 7.1. The Littlestone’s dimension of hypothesis class H, Ldim(H), is the maximum

depth of any mistake tree of H.

Theorem 7.1 ([Lit87]). For a hypothesis class H, the optimal mistake bound of any deterministic

algorithm with respect to adversaries showing H-realizable sequences is equal to Ldim(H).

Standard Optimal Algorithm. Algorithm 7.1 presents the Standard Optimal Algo-

rithm, which is an optimal deterministic algorithm for online classification in the realizable case.

It maintains a version space V over time. At each time t, it predicts a label yt such that each

mistake will force the version space’s Littlestone’s dimension to drop by at least 1. Therefore,

the number of mistakes made by Algorithm 7.1 is at most Ldim(H).
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Algorithm 7.1 Standard Optimal Algorithm [Lit87]

1: Input: hypothesis class H.

2: Initialize version space V ←H.

3: for t = 1,2, . . . , do

4: Receive example xt ∈ X .

5: Make prediction ŷt = argmaxy Ldim(V [(x,y)]).

6: Receive label yt.

7: if ŷt =−yt then

8: Update version space V ← V [(xt,yt)].

9: end if

10: end for

Recursive Definition. For finite H4 one also has the following recurrence for its

Littlestone’s dimension:

Ldim(H) =















0 |H|= 1

1 + maxx∈Dis(H) miny∈{±1} Ldim(H[(x,y)]) |H|> 1

7.3.2 Extended Littlestone’s Dimension

We now define extended Littlestone’s Dimension, which measures the difficulty of online

learning a hypothesis class in the k-SZB model.

Extended Mistake Trees. An adversary’s strategy in response to a deterministic

learner in the k-SZB model can be succinctly represented by extended mistake trees. An extended

mistake tree for H is a full5 binary tree, whose leaves are classifiers in H and whose internal nodes

are examples in X . An extended mistake tree may have no internal node, in which case it only

contains a leaf corresponding to a classifier h in H – we call it a zeroth order extended mistake

tree. Unlike mistake trees, now, there are two type of edges: solid and dashed, representing

mistakes and abstentions, respectively. Each node is associated with two downward solid edges,

one to each child. Additionally, each node is associated with exactly one downward dashed edge

connecting to one of its two children. For a downward edge of a node, whether solid or dashed, if

it is connected with the node’s left child, then it is labeled −1, and vice versa. Just as in mistake

4For infinite H, the recurrence may not reach the base case.
5A full binary tree is one in which every internal node has exactly two children.
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trees, for each leaf, the associated classifier agrees with the internal nodes and edges along the

path up to the root. See Figure 7.2 for an illustration.

A root to leaf path p of an extended mistake tree T is a sequence of nodes and edges

v1e1v2e2 . . .vnenvn+1, where v1, . . . ,vn are internal nodes in T corresponding to examples in X ,

v1 is the root node of T , each ei is an edge in T that connects vi and vi+1, vn+1 = h is a classifier

in H corresponding to a leaf in T . Here if there are multiple edges between vi and vi+1, any one

of them can be used by p.

Given an extended mistake tree T , the associated adversarial strategy can be described

as follows. At t = 1, the adversary chooses the example x1 corresponding to the root node to show

to the learner. If the learner predicts ŷ1 = −1, it reveals label y1 = +1, follows the downward

solid edge labeled +1, and vice versa. Otherwise, if ŷ1 = ⊥, it reveals y1 as the label on the

dashed edge and follows the downward dashed edge. At time t ≥ 2, if the adversary reaches a

node with example xt, then xt is shown to the learner, and one of its adjacent downward edges

is followed. The interaction comes to an end when a leaf is reached. It can be seen that with

this strategy, the adversary forces every round to be nontrivial. If the depth of the leaf reached

is d, then the number of nontrivial rounds is d.

As an example, the extended mistake tree in Figure 7.2 can be used by the adversary as

follows. Initially x1 = 2 is presented to the learner. If the learner predicts ŷ1 =−1, the adversary

reveals label y1 = +1 and follows the right downward solid edge to reach node x2 = 3. At time

t = 2, the learner now shows example x2 = 3; If the learner predicts ŷ2 =⊥, the adversary reveals

y2 = +1 according to the label on the dashed edge and follows the edge to reach node x3 = 4. At

time t = 3, the learner shows example x3 = 4; If the learner predicts ŷ2 = +1, the adversary reveals

label y2 = −1 and follows the left downward solid edge to reach a leaf containing hypothesis h3.

This concludes the interaction, and the learner makes a total of 3 nontrivial rounds: 2 mistakes

and 1 abstentions. Note that realizability assumption is maintained, as h3 ∈H agrees with the

examples (2,+1), (3,+1), (4,−1) shown. More generally, one can show that if the learner is not

allowed to make any mistakes, then the adversary is able to force 3 nontrivial rounds by following

this strategy. This motivates the definition below.

Definition 7.2. We say that an extended mistake tree T is (k,m)-difficult for integers k,m≥ 0,

if all its root to leaf paths in T using at most k solid edges have length at least m.

For example, the extended mistake tree in Figure 7.2 is (0,3)-difficult.
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−1 +1

−1 +1

−1 +1

Figure 7.2: An extended mistake tree with respect to H =
{

hi = 2I(x ≤ i) − 1 : i = 1,2,3,4
}

,
a set of threshold classifiers.

Extended Standard Optimal Algorithm. Algorithm 7.2 presents the Extended

Standard Optimal Algorithm (SOA.DK), which, as we will show, is an optimal deterministic

algorithm for online prediction in the k-SZB model in the realizable case. Note that it works

even when the hypothesis class H is infinite. Similar to the Standard Optimal Algorithm, it

maintains a version space V . For a new example xt, it predicts ŷt ∈ {−1,+1,⊥} by computing

function ELdim over subsets of V . The function ELdim is defined as follows.

Definition 7.3 (Extended Littlestone’s Dimension). For a hypothesis class V and integer k ≥ 0,

the extended Littlestone’s dimension ELdim(V,k) is defined as:

ELdim(V,k) := sup
{

m ∈ N : There exists a (k,m)-difficult extended mistake tree for V
}

We remark that if for every integer m, V has a (k,m)-extended mistake tree, then

ELdim(V,k) =∞; If V = ∅, then ELdim(V,k) =−∞. Since for k′ < k, a (k,m)-difficult extended

mistake tree is also (k′,m)-difficult, ELdim(V,k) is monotonically nonincreasing with respect to

k.

We first show that when ELdim(V,k) is high, then an adversary can force a large number

of nontrivial rounds by showing a V -realizable sequence, to any deterministic algorithms that

guarantees at most k mistakes.

Lemma 7.1. Suppose we are given a hypothesis set V and integers k≥ 0,m≥ 0. If ELdim(V,k)≥

m, then there is a strategy of the adversary that presents a V -realizable sequence and that can

force any deterministic algorithm that guarantees ≤ k mistakes to have ≥m nontrivial rounds.

In the following lemma, we show that given a mistake budget k, if the extended Lit-
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tlestone’s dimension of V is small, then SOA.DK has a small number of nontrivial rounds for

V -realizable sequences.

Lemma 7.2 (Performance Guarantees of SOA.DK). Suppose we are given a hypothesis class V

and integers k ≥ 0,m≥ 0. If ELdim(V,k)≤m, then Algorithm 7.2, when run on V with mistake

budget k, achieves a (k,m)-SZB bound with respect to any adversary that shows V -realizable

sequences.

Algorithm 7.2 Extended Standard Optimal Algorithm: SOA.DK

1: Input: hypothesis class H, mistake budget k.
2: Initialize version space V ←H.
3: for t = 1,2, . . . , do
4: Receive example xt ∈ X .
5: if xt ∈Dis(V ) then # All classifiers in V predict unanimously
6: Predict ŷt = h(xt), where h is an arbitrary hypothesis in V .
7: else # There is disagreement among V
8: if k = 0 then # Zero mistake budget, must output ⊥
9: Predict ŷt =⊥.

10: else # Predict by minimizing the ELdim of future version space
11: Compute m+1 = ELdim(V [(xt,−1)],k − 1), m−1 = ELdim(V [(xt,+1)],k − 1), and

m⊥ = max(ELdim(V [(xt,−1)],k),ELdim(V [(xt,+1)],k))
12: Predict ŷt = argmin

{

my : y ∈ {−1,+1,⊥}
}

.
13: end if
14: end if
15: Receive label yt.
16: if ŷt =−yt or ŷt =⊥ then V ← V [(xt,yt)] end if # Update version space
17: if ŷt =−yt then k← k−1 end if # Update mistake budget
18: end for

An immediate consequence of Lemma 7.2 is that SOA.DK is optimal, in the sense that

it has the smallest number of worst case nontrivial rounds, amongst all deterministic algorithms

that work in k-SZB model.

Theorem 7.2 (Optimality of SOA.DK). Suppose we are given a hypothesis class H and integers

k ≥ 0, m≥ 1 such that ELdim(H,k) = m. Then:

(a) SOA.DK achieves a (k,m)-SZB bound for any adversary that shows H-realizable sequences.

(b) There exists an adversary showing H-realizable sequences, such that no deterministic algo-

rithm A can achieve a (k,m−1)-SZB bound.

The following simple property relates extended Littlestone’s dimension to Littlestone’s

dimension.
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Theorem 7.3 (Relating Ldim to ELdim). Suppose we are given a hypothesis class H. If

Ldim(H) = d <∞, then

ELdim(H,d) = d

Recursive Definition. We provide a recursive characterization of Extended Little-

stone’s dimension. For finite H6, the following recurrence holds for its extended Littlestone’s

dimension:

ELdim(H,k) =


































0 |H|= 1

1 + max
x∈Dis(H)

max
y∈{±1}

ELdim(H[(x,y)],0) |H|> 1,k = 0

1 + max
x∈Dis(H)

max
y∈{±1}

min(ELdim(H[(x,y)],k−1),ELdim(H[(x,−y)],k)) |H|> 1,k ≥ 1

The recurrence is an immediate consequence of Lemma 7.11 in Section 7.9.

7.4 Properties of Extended Littlestone’s Dimension

We next present upper bounds on the Extended Littlestone’s Dimension of a hypothesis

class H. Our upper bounds depend on the tree shattering coefficient, a notion analogous to

the growth function, which is implicit in [BPS09]. We also present some examples of Extended

Littlestone’s Dimension.

7.4.1 Tree Shattering Coefficient

The shattering coefficient (also known as the growth function), initially studied in [VC71],

is a key notion in PAC learnability.

Definition 7.4. Given a hypothesis H, the shattering coefficient of H, Π(H, t) is defined as the

maximum number of labelings achievable by H over t points. Formally,

Π(H, t) := max
x1,...,xt

|
{

(h(x1), . . . ,h(xt)) : h ∈H
}

|
6Just as with Littlestone’s dimension, for infinite H, the recurrence may not reach the base case.
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x1

−1 +1

x2(−1) x2(+1)

x3(−1,−1) x3(−1,+1) x3(+1,−1) x3(+1,+1)

−1 +1 −1 +1

Figure 7.3: A depth-3 X -valued tree x.

Inspired by the shattering coefficient, in online learning, we define the notion of tree

shattering coefficient below, implicit in [BPS09]. As we will see, this notion is crucial to online

learnability in both the mistake bound and the k-SZB models. First we set up our notation by

adopting the notion of trees in [RST10].

Definition 7.5 (X -valued Trees, see [RST10]). A depth-t X -valued tree x is a series of mappings

(x1, . . . ,xt), where xi : {±1}i−1→X . The root of the tree x is the constant function x1 ∈X . For

integer t, the mapping xt(·) takes care of the nodes in level t.

To see why a series of mappings corresponds to a tree, we first note that a tuple

(ǫ1, . . . , ǫs−1) in {±1}s−1 can be thought of as a left/right sequence of length s− 1, where −1

stands for left and +1 stands for right, respectively. The node reached from the root following the

path corresponding to the left/right sequence corresponds to xs(ǫ1, . . . , ǫs−1) ∈ X . For example,

the root node corresponds to x1 ∈ X , the left child of the root corresponds to x2(−1) ∈ X , the

right child of the left child of the root corresponds to x3(−1,+1) ∈ X , etc. See Figure 7.3 for an

illustration. We slightly abuse the notation to let xt(ǫ) denote xt(ǫ1, . . . , ǫt−1).

Note that a X -valued tree is not a mistake tree or an extended mistake tree, since it does

not have leaves corresponding to hypotheses in H.

Given a X -valued tree x, we add an extra level of edges at the bottom. Specifically for

each leaf xt(ǫ), we attach a left and a right downward edge onto it, labeled −1 and +1 respectively.

Now, consider every root to leaf path in the tree. If there is some classifier h in H that agrees

with the path, we label the leaf with h; otherwise we label the leaf with symbol ×. We count the

number of leaves not labeled ×, denoted by function S(H,x). See Figure 7.4 for an example.

Definition 7.6. For a depth-t X -valued tree x, and a hypothesis class H, define function S(H,x)
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z1

−1 +1

z2 z3

z4 z5 z6 z7

−1 +1

h1 h2 h3 h4× × × ×

−1 +1 −1 +1

−1 +1−1 +1−1 +1

Figure 7.4: A depth-3 X -valued tree x, where x1 = z1, x2(−1) = z2, x2(+1) = z3,
x3(−1,−1) = z4, x3(−1,+1) = z5, x3(+1,−1) = z6, x3(+1,+1) = z7. There are 4 root to
leaf paths that agrees with some hypothesis in H (× in a leaf indicates that no hypothesis in
H agree with the path from root to it), i.e. |S(H,x)| = 4.

as the maximum number of labelings achievable by H on x. Formally,

S(H,x) :=
{

(ǫ1, ǫ2, . . . , ǫt) ∈ {±1}t : ∃h ∈H, ǫ1 = h(x1(ǫ)), ǫ2 = h(x2(ǫ)), . . . , ǫt = h(xt(ǫ)),
}

Definition 7.7. Given hypothesis class H, and integer t ≥ 1, the tree shattering coefficient of

H, S(H, t) is defined as the maximum number of labelings achievable by H over all depth-t trees.

Formally,

S(H, t) := max
x
|S(H,x)|

Additionally, define S(H,0) := 1 if H is nonempty, S(H,0) := 0 if H is empty.

In other words, given hypothesis class H and a depth-t tree x with internal nodes only,

there are at most S(H, t) distinct paths in T consistent with some classifier h∈H. Since a depth-t

has at most 2t root to leaf paths, S(H, t) ≤ 2t. Note that if H has a depth-t mistake tree, then

S(H, t) = 2t. If we constrain the trees chosen to be constant among nodes in the same depth, then

the tree shattering coefficient is equivalent to the shattering coefficient. In Section 7.6, we show

that the tree shattering coefficient is connected with the sequential growth function(maximal

sequential zero covering number), defined in [RST10].

The following two lemmas give bounds on tree shattering coefficients, implicit in [RST10,

BPS09]. For finite hypothesis class H, its tree shattering coefficient is at most the size of |H|.

Lemma 7.3. If H is finite, then for any t≥ 0, S(H, t) ≤ |H|.
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Furthermore, if an infinite hypothesis class H has Littlestone’s dimension d <∞, its tree

shattering coefficient is polynomial in t, that is, O(td).

Lemma 7.4. If H has Littlestone’s dimension d <∞, then for any t≥ 0, S(H, t) ≤
(

t
≤d

)

.

7.4.2 Upper Bound on Extended Littlestone’s Dimension

We present Theorem 7.4, the main result of this section, which upper bounds the ex-

tended Littlestone’s dimension in terms of tree shattering coefficient. Intuitively, if H is not

expressive, then it has small tree shattering coefficient, and a tighter upper bound on its ex-

tended Littlestone’s dimension can be established. Note that the bound is valid even if H is

infinite, and hence it is a strict generalization of [SZB10].

Theorem 7.4. For any hypothesis class H and integer k ≥ 0,

ELdim(H,k)≤ sup

{

t :

(

t

≤ k + 1

)

≤ S(H, t)

}

For finite hypothesis classes one has the following corollary.

Corollary 7.1. For any hypothesis class H such that |H|<∞ and integer k ≥ 0,

ELdim(H,k)≤max

{

t :

(

t

≤ k + 1

)

≤ |H|
}

Since
(

t
≤k+1

)

≥ ( t
k+1 )k+1, this implies ELdim(H,k) ≤max

{

t : ( t
k+1 )k+1 ≤ |H|

}

≤ (k +

1)|H| 1
k+1 , which recovers the result of [SZB10]. 7

7.4.3 Case Study: Thresholds (Finite Class)

We give a precise characterization of the Extended Littlestone’s dimension for the class

of thresholds. In this case, the bound given by Theorem 7.4 is tight.

7Although it is implicit in [SZB10] that the result can be refined by using the optimal solution of the Egg
Dropping Game [GF08, Boa04], here we give a alternative proof using a more general technique.
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Consider the instance domain X being R and the hypothesis class H being the set of n

distinct threshold functions
{

2I(x≤ t)−1 : t ∈ {t1, . . . , tn}
}

. 8

Theorem 7.5. Consider H a set of threshold classifiers H =
{

2I(x≤ t)−1 : t ∈ {t1, . . . , tn}
}

.

Then

ELdim(H,k) = max

{

t :

(

t

≤ k + 1

)

≤ n

}

The proof of Theorem 7.5 is provided in Section 7.10. The upper bound follows imme-

diately from Corollary 7.1. The lower bound comes from an explicit construction of optimal

extended mistake trees by exploiting structure in the class of threshold classifiers.

7.4.4 Case Study: Union of Singletons (Infinite Class)

We give a precise characterization of the Extended Littlestone’s dimension for the class

of unions of singletons. In this case the bound given by Theorem 7.4 is tight. Consider the

concept class of union of at most l singletons Cl, with instance domain X such that |X | =∞.

Note that Ldim(Cl) = l and S(Cl, t) =
( t

≤l

)

(See Lemma 7.15 for a proof). We have the following

result.

Theorem 7.6. Consider the hypothesis class Cl, the class of union of at most l singletons. Then,

ELdim(Cl,k) = sup

{

t :

(

t

≤ k + 1

)

≤
(

t

≤ l

)

}

=















∞, k ≤ l−1

l, k ≥ l

Note that Theorem 7.6 involves infinite hypothesis classes and is broader than the results

of [SZB10]. The proof of Theorem 7.6 is provided in Section 7.10. The upper bound follows

immediately from Theorem 7.4. The lower bound comes from an explicit construction of optimal

extended mistake trees by exploiting structures in the class of union of singleton classifiers.

8Note that for an infinite set of thresholds, e.g. H =
{

2I(x ≤ t) − 1 : t ∈ [0,1]
}

, Ldim(H) = ∞, hence

ELdim(H,k) = ∞ for any finite k.
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7.5 Non-Realizable Case

We now consider the non-realizable case. For the rest of the section, we assume the

l-bias assumption holds, i.e. the sequence (x1,y1), . . . ,(xn,yn) presented by the adversary is Hl-

realizable. Recall that Hl = H·Cl, the class of hypothesis that disagrees with H on at most l

points.

7.5.1 Lower Bounds for Deterministic Prediction

A natural question is, when the l-bias assumption holds, is it possible to derive algorithms

with a small number of abstentions in k-SZB model? Perhaps surprisingly, the answer depends

on whether H is finite or not. We show next that there is a finite hypothesis class H, such that

for any k < l, and any integer m, any algorithm which is guaranteed to make k or less mistakes

can be forced to abstain at least m times. Moreover, for any m, there is a infinite hypothesis

class with Littlestone’s dimension d, such that for any k < l+d, any algorithm that is guaranteed

to make k or less mistakes can be forced to abstain at least m times.

Lower Bounds for Finite Hypothesis Classes

We first show that, for finite hypothesis classesH, when k < l, no algorithm can guarantee

a (k,m)-SZB bound with finite m under the l-bias assumption.

Theorem 7.7. There exists an instance domain X , a single-element hypothesis class H, such

that the following holds. If k < l, then for any integer m ≥ 0, there exists a strategy of the

adversary satisfying the l-bias assumption that forces any deterministic algorithm guaranteeing

at most k mistakes to have at least m + 1 nontrivial rounds.

Lower Bounds for Infinite Hypothesis Classes

We show that, given a hypothesis classes H with Ldim(H) = d, when k < l + d, no

algorithm can guarantee a (k,m)-SZB bound for finite m under the l-bias assumption.

Theorem 7.8. There exists an instance domain X , a hypothesis class H with Littlestone’s

dimension d <∞, such that the following holds. If k < l + d, then for any integer m ≥ 0, there

exists a strategy of the adversary satisfying the l-bias assumption that forces any deterministic

algorithm guaranteeing at most k mistakes to have at least m + 1 nontrivial rounds.
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7.5.2 Upper Bounds

Upper Bounds for Finite Hypothesis classes

Since a sequence satisfying the l-bias assumption is Hl-realizable, to provide an upper

bound on the number of non-trivial rounds under this assumption, we need to provide an upper

bound on ELdim(Hl,k). We now provide such upper bounds on arbitrary finite hypothesis classes

H. Note that since the hypothesis class Hl is infinite, this result is more general than the kind

of results in [SZB10].

Lemma 7.5. Suppose we are given a finite hypothesis class H, integer k ≥ 0, l ≥ 0 such that

k ≥ l. Then,

ELdim(Hl,k)≤ e(k + 1) · |H| 1
k+1−l

Corollary 7.2. Suppose we are given a finite hypothesis class H and integers k, l ≥ 0 such that

k≥ l. If Algorithm SOA.DK is run with input hypothesis class Hl and mistake budget k, then for

any adversary that shows sequences satisfying the l-bias assumption with respect to H, SOA.DK

makes at most k mistakes and has at most e(k + 1) · |H| 1
k+1−l nontrivial rounds.

Upper Bounds for Infinite Hypothesis classes

We now derive a corresponding upper bound for infinite hypothesis classes H with finite

Littlestone’s dimension.

Lemma 7.6. Suppose we are given a hypothesis class H with Littlestone’s dimension d <∞,

integer k ≥ 0, l ≥ 0 such that k ≥ l + d. Then,

ELdim(Hl,k)≤ (k + 1) · e
2k+2

k+1−l−d

Corollary 7.3. Suppose we are given a hypothesis class H with Littlestone’s dimension d and

integer k, l≥ 0 such that k≥ l+d. If Algorithm SOA.DK is run with input hypothesis class Hl and

mistake budget k, then for any adversary that shows sequences satisfying the l-bias assumption

with respect to H, SOA.DK makes at most k mistakes and has at most (k+1) ·e
2k+2

k+1−l−d nontrivial

rounds.
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7.5.3 Lower Bounds for Randomized Prediction

We show that the results in Section 7.5.1 hold even when the learner makes soft predic-

tions.

Randomized Prediction Model. Consider the following randomized variant of online

classification model. At time t, the adversary presents example xt in X , and the learner outputs

a tuple (pt,−,pt,+,1− pt,−− pt,+), with pt,− ≥ 0, pt,+ ≥ 0 and 1− pt,−− pt,+ ≥ 0. The tuple

(pt,−,pt,+,1− pt,−− pt,+) represents the learner’s strategy of predicting +1 with probability

pt,+, −1 with probability pt,− and abstaining with probability 1− pt,+− pt,−. The adversary

then reveals an outcome yt ∈ {−1,+1}, and the learner incurs a mistake penalty of pt,+ if yt =−1

and pt,− if yt = 1; it also incurs an abstention penalty of 1− pt,+− pt,−. When pt,+ and pt,−

take values in {0,1}, observe that this is equivalent to our prediction model in Section 7.2.

So given examples (x1,y1), . . . ,(xn,yn), the cumulative mistake penalty upto time n is as
∑n

t=1 I(yt =−1)pt,+ + I(yt = +1)pt,− and the cumulative abstention penalty is
∑n

t=1(1−pt,+−

pt,−). We have the following result for finite hypothesis classes.

Theorem 7.9. There exists an instance domain X , a single-element hypothesis class H, such

that the following holds. If k < l, then for any a ≥ 0, there exists a strategy of the adversary

satisfying l-bias assumption, such that any algorithm guaranteeing a cumulative mistake penalty

at most k in the randomized prediction model must have cumulative abstention penalty at least a.

For infinite hypothesis classes with Littlestone’s dimension d, we have the following

result.

Theorem 7.10. There exists an instance domain X and a hypothesis class H with Littlestone’s

dimension d such that the following holds. If k < l +d, then for any a≥ 0, there exists a strategy

of the adversary satisfying the l-bias assumption, such that any algorithm guaranteeing a mistake

penalty of at most k in the randomized prediction model must have cumulative abstention penalty

at least a.
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7.6 The Relationship Between Tree Shattering Coefficient

and Sequential Growth Function

In this section, we show that the tree shattering coefficient S(H, t) is at most the size

of the sequential growth function(also known as maximal sequential zero covering number) of

H [RST10]. We start with some notations.

Definition 7.8 (Sequential Zero Cover and Sequential Zero Covering Number, see [RST10]). A

set V of depth-t trees is a sequential zero cover of H on a depth-t tree x, if

∀h ∈H,∀ǫ ∈ {±1}t ,∃v ∈ V,s.t.vs(ǫ) = h(xs(ǫ)),s = 1,2, . . . , t

The sequential zero covering number of a hypothesis class H on a given tree x is defined as

N (0,H,x) := min
{

|V | : V is a zero-cover of H on x
}

The maximal sequential zero covering number is the maximum sequential zero covering number

of H over all depth-t X -valued trees x, that is,

N (0,H, t) := max
x
N (0,H,x)

Theorem 7.11. For a given hypothesis class H and integer t≥ 0,

S(H, t) ≤N (0,H, t)

Proof. This is an immediate consequence of Lemma 7.7.

Lemma 7.7. Suppose we are given a X -valued tree x and a hypothesis class H. If V is a

sequential zero cover of H on x, then the size of S(H,x) is at most |V |.

Proof. Recall that

S(H,x) =
{

(ǫ1, ǫ2, . . . , ǫt) ∈ {±1}t : ǫ1 = h(x1(ǫ)), ǫ2 = h(x2(ǫ)), . . . , ǫt = h(xt(ǫ)),h ∈H
}
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Given an element (ǫ1, ǫ2, . . . , ǫt) in S(H,x), there exists some h in H such that

ǫ1 = h(x1(ǫ)), ǫ2 = h(x2(ǫ)), . . . , ǫt = h(xt(ǫ))

Since V is a zero-cover of H, there exists a depth-t tree v = (v1, . . . ,vt) in V such that

v1(ǫ) = h(x1(ǫ)),v2(ǫ) = h(x2(ǫ)), . . . ,vt(ǫ) = h(xt(ǫ))

Hence,

v1(ǫ) = ǫ1,v2(ǫ) = ǫ2, . . . ,vt(ǫ) = ǫt

More explicitly,

v1 = ǫ1,v2(ǫ1) = ǫ2,v3(ǫ1, ǫ2) = ǫ3, . . . ,vt(ǫ1, . . . , ǫt−1) = ǫt (7.1)

To summarize, for every (ǫ1, ǫ2, . . . , ǫt) in S(H,x), there is a tree v in V such that Equation (7.1)

holds. Since for each tree v there can be at most one (ǫ1, ǫ2, . . . , ǫt) such that Equation (7.1)

holds, this implies that |S(H,x)| ≤ |V |.

7.7 Reducing the Expert Problem to Online Classification

with Finite Class

In this section, we show that the problem of Prediction with Expert Advice (abbrev.

Expert Problem) with l-mistake assumption [CFHW96, ALW06] can be cast to the problem

studied in this chapter, i.e. online classification with a finite hypothesis class with l-bias as-

sumption. Specifically, in the expert problem, at each time t, the algorithm is given experts’

advice (x1,t, . . . ,xN,t) ∈ {−1,1}N , and predicts ŷt ∈ {−1,1,⊥}. Then adversary reveals label

yt ∈ {−1,1}. The l-mistake assumption states that there is an expert i that makes at most l

mistakes throughout the process, i.e.

∃i, |
{

t : xi,t 6= yt

}

| ≤ l
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For i = 1,2, . . . ,N , define hypothesis hi : RN+1 → R as mapping a (N + 1)-dimensional vector

to its ith coordinate. Define hypothesis class HN := {hi : i = 1, . . . ,N}. We have the following

result relating the l-mistake assumption to l-bias assumption; the intuition is to concatenate a

new coordinate at the end of the experts’ advice to make all the examples shown distinct.

Proposition 7.1. The following are equivalent:

(a) The sequence of expert advice and labels (x1,t, . . . ,xN,t),yt, t = 1,2, . . . satisfies l-mistake as-

sumption.

(b) The sequence xt = (x1,t, . . . ,xN,t, t),yt, t = 1,2, . . . satisfies l-bias assumption with respect to

HN .

Proof. We show the implication in both directions.

(⇒) If (x1,t, . . . ,xN,t),yt, t = 1,2, . . . satisfies l-mistake assumption, then there is i ∈ {1, . . . ,N}

such that

Mi = |
{

t : xi,t 6= yt

}

| ≤ l

Hence, hi is correct on all but the rounds t in Mi, i.e. on examples
{

(x1,t, . . . ,xN,t, t) : t ∈Mi

}

,

which are distinct and has size at most l. Therefore, the sequence
{

(x1,t, . . . ,xN,t, t)
}

, t =

1,2, .. satisfies l-bias assumption with respect to HN .

(⇐) If the sequence (x1,t, . . . ,xN,t, t),yt, t = 1,2, . . . satisfies l-bias assumption with respect to HN ,

then there exists hi that is correct on all but p≤ l examples shown. That is, p, the size of

the set

Mi = |
{

t : xi,t 6= yt

}

|

is at most l. This immediately implies (a).

An immediate consequence of the above proposition is that, for an instance of the expert

problem with l-mistake assumption, we can convert it to an instance of online classification in

HN under l-bias assumption, and apply SOA.DK on HN to get mistake-abstention tradeoffs.
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7.8 A Note on the Recursive Definition of ELdim

At the end of Section 7.3, we give a recursive definition on ELdim(H,k) when k ≥ 1:

ELdim(H,k) := max
x

max
y∈{−1,+1}

min
(

ELdim(H[(x,y)],k),ELdim(H[(x,−y)],k−1)
)

= max
x

max
(

min
(

ELdim(H[(x,−1)],k),ELdim(H[(x,+1)],k−1)
)

,

min
(

ELdim(H[(x,+1)],k),ELdim(H[(x,−1)],k−1)
)

)

(7.2)

On the other hand, Algorithm 7.2 implicitly implies

ELdim(H,k) = max
x

min
(

ELdim(H[(x,−1)],k−1),ELdim(H[(x,+1)],k−1)
)

,

max
(

ELdim(H[(x,+1)],k),ELdim(H[(x,−1)],k)
)

)

(7.3)

In this section we show that these two definition are indeed equivalent. First we need a

simple observation.

Lemma 7.8. If A,B,C are real numbers, then min(max(A,B),C) = max(min(A,C),min(B,C)).

Lemma 7.9. The right hand sides of Equations (7.2) and (7.3) are equal.
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Proof. Fix x in X . We have:

min
(

ELdim(H[(x,−1)],k − 1),ELdim(H[(x,+1)],k − 1)
)

,

max
(

ELdim(H[(x,+1)],k),ELdim(H[(x,−1)],k)
)

)

= min

(

ELdim(H[(x,−1)],k − 1),

min
(

ELdim(H[(x,+1)],k − 1)
)

,max
(

ELdim(H[(x,+1)],k),ELdim(H[(x,−1)],k)
)

)

)

= min

(

ELdim(H[(x,−1)],k − 1),

max
(

ELdim(H[(x,+1)],k),min
(

ELdim(H[(x,−1)],k),ELdim(H[(x,+1)],k − 1)
)

)

)

= max

(

min
(

ELdim(H[(x,−1)],k − 1),ELdim(H[(x,+1)],k)
)

,

min
(

ELdim(H[(x,−1)],k),ELdim(H[(x,+1)],k − 1)
)

)

where the first equality is from the associativity of min; the second equality is from Lemma 7.8

and ELdim(H[(x,+1)],k−1)≥ ELdim(H[(x,+1)],k); the third equality is from Lemma 7.8 and

ELdim(H[(x,−1)],k− 1) ≥ ELdim(H[(x,−1)],k). Taking the maximum over x ∈ X proves the

lemma.

7.9 Proofs from Section 7.3

We first provide some auxiliary lemmas regarding properties of extended mistake trees

and extended Littlestone’s dimension. This will serve as the basis of the proof of Lemma 7.2.

We state a property about subtrees of a (k,m)-difficult extended mistake tree.

Lemma 7.10 (Recursive Property of Extended Mistake Trees). Suppose we are given hypothesis

class H that has an extended mistake tree T with root x, left subtree T−1, right subtree T+1 and

integers k ≥ 0,m ≥ 1. For the root node x, denote by el its downward left solid edge, er its

downward right solid edge, and ed its downward dashed edge. Denote by y the label of ed.

(i) The following statements are equivalent: (a) T is (0,m)-difficult. (b) Ty is (0,m− 1)-

difficult.
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(ii) For k ≥ 1, the following statements are equivalent: (a) T is (k,m)-difficult. (b) T−y is

(k−1,m−1)-difficult, and Ty is (k,m−1)-difficult.

Proof of Lemma 7.10. Without loss of generality, suppose y = +1. The case of y = −1 can be

shown symmetrically.

Proof of item (i): We show the implication in both directions.

(⇒) Consider a root to leaf path p in T+1 that uses no solid edges. Now consider path p+,

the result of prepending the root node x and the downward dashed edge from root x to

its right child onto p, i.e. p+ = xedp. It can be seen that p+ uses no solid edges, and

l(p+) = l(p)+1. Since T is (0,m)-difficult, l(p+)≥m, therefore l(p)≥m−1, thus showing

T+1 is (0,m−1)-difficult.

(⇐) Consider a root to leaf path p = v1e1v2e2 . . . vnenvn+1 in T that uses no solid edges. The

first edge of p must be the downward dashed edge ed. Define path p− as the result of

deleting the first node v1 = x and the first edge e1 from p, i.e. p− = v2e2 . . .vnenvn+1.

Since T−1 is (0,m−1)-difficult, we get that l(p−)≥m−1. Therefore l(p) = l(p−)+1≥m.

Therefore, any path p in T that uses no solid edges must be of length at least m. Thus, T

is (0,m)-difficult.

Proof of item (ii): We show the implication in both directions.

(⇒) (1) Consider a root to leaf path p in T−1 that uses at most k−1 solid edges. Now consider

path p+, the result of prepending the root node x and the downward edge from root x

to its left child onto p, i.e. p+ = xelp. It can be seen that p+ uses at most k solid edges,

and l(p+) = l(p)+1. Since T is (k,m)-difficult, l(p+)≥m, therefore l(p)≥m−1, thus

showing T−1 is (k−1,m−1)-difficult.

(2) Consider a root to leaf path p in T+1 that uses at most k solid edges. Now consider

path p+, the result of prepending the root node x and the downward dashed edge from

root x to its right child onto p, i.e. p+ = xedp. It can be seen that p+ uses at most

k solid edges, and l(p+) = l(p) + 1. Since T is (k,m)-difficult, l(p+) ≥ m, therefore

l(p)≥m−1, thus showing T+1 is (k,m−1)-difficult.

(⇐) Consider a root to leaf path p = v1e1v2e2 . . . vnenvn+1 in T that uses at most k solid edges.

Define path p− as the result of deleting the first node v1 = x the first edge e1 from p, i.e.

p− = v2e2 . . . vnenvn+1.
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(1) If the first edge of p is a downward edge from root x to its left child, then p− is a root

to leaf path in T−1, and uses at most k−1 solid edges, since the first edge e1 has to be

a solid edge. Since T+1 is (k−1,m−1)-difficult, we get that l(p−)≥m−1.

(2) If the first edge of p is the downward edge from root x to its right child, then p− is a

root to leaf path in T+1, and uses at most k solid edges. Since T−1 is (k,m−1)-difficult,

we get that l(p−)≥m−1.

In both cases, l(p−) ≥m− 1. Hence l(p) = l(p−) + 1 ≥m. In summary, any path p in T

that uses at most k solid edges must be of length m. Thus, T is (k,m)-difficult.

Built upon Lemma 7.10, we obtain the following result regarding H’s extended Little-

stone’s dimension.

Lemma 7.11 (Recursive Property of ELdim). Suppose we are given hypothesis class H and

integers k ≥ 0,m≥ 1.

(i) The following statements are equivalent: (a) ELdim(H,0) is at least m. (b) There exists

(x,y) such that x is in Dis(H), and ELdim(H[(x,y)],0) is at least m−1.

(ii) If k ≥ 1, the following statements are equivalent: (a) ELdim(H,k) is at least m. (b) There

exists (x,y) such that both ELdim(H[(x,y)],k) and ELdim(H[(x,−y)],k− 1) are at least

m−1.

Proof of Lemma 7.11.

Proof of item (i): We show the implication in both directions.

(⇒) Suppose ELdim(H,0) ≥m. Then H has a (0,m)-difficult mistake tree T . Let x be the

root of T , and y ∈ {−1,+1} be the label of the root’s downward dashed edge. Since T is

a full binary tree, there must be leaves in both the left subtree and the right subtree of

the root, i.e. there exist h1,h2 in H, h1(x) = −1 and h2(x) = −1. Thus, x is in Dis(H).

By Lemma 7.10, Ty is a (0,m−1)-difficult extended mistake tree with respect to H[(x,y)].

The result follows.

(⇐) Suppose there exists an example (x,y) such that x∈Dis(H) and ELdim(H[(x,y)],0)≥m−1.

Then, H[(x,y)] has a (0,m− 1)-difficult extended mistake tree Ty and H[(x,−y)] has a
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zeroth order mistake tree T−y. Construct a new tree T , where its root is x, and its subtrees

are Ty and T−y respectively. The dashed downward edge is connected to the subtree Ty.

By Lemma 7.10, T is a (0,m)-difficult extended mistake tree with respect to H. The result

follows.

Proof of item (ii): We show the implication in both directions.

(⇒) Suppose ELdim(H,k)≥m. Then H has a (k,m)-difficult mistake tree T . Let x be the root

of T , and y ∈ {−1,+1} be the root’s downward dashed edge label. By Lemma 7.10, T−y

is a (k− 1,m− 1)-difficult extended mistake tree with respect to H[(x,−y)], and Ty is a

(k,m−1)-difficult extended mistake tree with respect to H[(x,y)]. The result follows.

(⇐) Suppose there exists an example (x,y) such that both ELdim(H[(x,y)],k) ≥ m− 1 and

ELdim(H[(x,−y)],k− 1) ≥m− 1. Then, H[(x,y)] has a (k,m− 1)-difficult extended mis-

take tree Ty and H[(x,−y)] has a (k−1,m−1)-difficult extended mistake tree T−y. Now

construct a new tree T , where its root is x, and its subtrees are Ty and T−y respectively.

The dashed downward edge is connected to the subtree Ty. By Lemma 7.10, T is a (k,m)-

difficult extended mistake tree with respect to H. The result follows.

Proof of Lemma 7.1. Since ELdim(H,k) ≥ m, there is a (k,m)-difficult extended mistake tree

TH with respect to H. We consider the the strategy of the adversary associated with TH. Now

consider any deterministic learning algorithm A that guarantees at most k mistakes. Since A is

deterministic, the interaction between A and the adversary follows some path p from root to leaf.

The number of mistakes is equal to the number of solid edges in p, and the number of abstentions

is equal to the number of dashed edges in the p. Since A guarantees k mistakes, p must contain

at most k solid edges, thus it must be of length at least m, as TH is (k,m)-difficult. Therefore,

the number of nontrivial rounds of A is at least m.

Proof of Lemma 7.2. We prove the lemma by joint induction on (k,m). Base Case. Consider

pairs (k,m), where k = 0 or m = 0.

(1) For m = 0 and k≥ 0, if there is no (k,1)-difficult extended mistake tree, then for all x∈X , V

predicts unanimously on x. Otherwise, there are two hypotheses h1 and h2 and an example

x such that h1(x) =−1 and h2(x) = +1. Consider extended mistake tree T as follows. T has
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x as its root, and h1 and h2 are leaves directly connecting to the root, where h1 is on the left

and h2 is on the right. The downward dashed edge is connected to the right, i.e. has label

+1. It can be seen that T is (k,1)-difficult for any k ≥ 0. Therefore, Algorithm 7.2 always

predicts correctly, and there will be no nontrivial rounds subsequently.

(2) For k = 0 and m≥ 0, we show the result by induction on m. The base case m = 0 has been

shown in (1). For the inductive case, assume the inductive hypothesis holds for m′ ≤m−1.

Now, given a hypothesis class V such that ELdim(V,0) is at most m. Consider the first

nontrivial round t when running Algorithm 7.2 with version space V . The example xt must

be in Dis(V ), and the algorithm outputs ŷt = ⊥. We claim that the resulting version space

V [(xt,yt)] is such that ELdim(V [(xt,yt)],0)≤m−1. Indeed, suppose ELdim(V [(xt,yt)],0)≥

m, then by Lemma 7.11, ELdim(V,0)≥m + 1, which is a contradiction.

Note that from time t + 1 on, the adversary is only allowed to show V [(xt,yt)]-realizable

sequences. By inductive hypothesis, Algorithm 7.2 runs on V [(xt,yt)] and achieves (0,m−

1)-SZB bound from time t + 1 on. Therefore, Algorithm 7.2 achieves (0,m)-SZB bound

throughout the process.

Inductive Case. Consider pairs (k,m) where k ≥ 1 and m≥ 1. Assume for all k′ ≤ k,

m′ ≤m and k′ +m′ ≤ k +m−1, the inductive hypothesis holds. Now, consider a hypothesis class

V such that ELdim(V,k)≤m. Consider the first nontrivial round t when we run Algorithm 7.2 on

V . The example xt must be in Dis(V ). According to Algorithm 7.2’s prediction ŷt, we consider

three cases separately,

Case 1: ŷt = −1. In this case, since round t is nontrivial, yt = −ŷt = +1. We claim

that ELdim(V [(xt,+1)],k− 1) ≤ m− 1. Indeed, assume (for the sake of contradiction) that

m−1≥ELdim(V [(xt,+1)],k−1)≥m. By definition of Algorithm 7.2, ELdim(V [(xt,−1)],k−1) =

m+1 ≥m−1 ≥m. Hence, for any y ∈ {−1,+1}, ELdim(V [(xt,y)],k−1)≥m.

Also by definition of Algorithm 7.2, max(ELdim(V [(xt,+1)],k),ELdim(V [(xt,−1)],k)) =

m⊥ ≥m. Thus, there exists some ŷ ∈ {−1,+1} such that

ELdim(V [(xt, ŷ)],k)≥m

Therefore, for ŷ, we have ELdim(V [(xt, ŷ)],k) ≥ m and ELdim(V [(xt,−ŷ)],k − 1) ≥ m. By

Lemma 7.11, ELdim(V,k)≥m + 1, which is a contradiction.
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Note that from time t+1 on, the adversary is only allowed to show V [(xt,yt)]-realizable

sequences. By inductive hypothesis, Algorithm 7.2 runs on V [(xt,yt)] with mistake budget k−1

and achieves (k− 1,m− 1)-SZB bound from round t + 1 on. Therefore, Algorithm 7.2 achieves

(k,m)-SZB bound throughout the process.

Case 2: ŷt = +1. This case is symmetric to Case 1.

Case 3: ŷt = ⊥. We first claim that ELdim(V [(xt,−1)],k) ≤m− 1. Indeed, assume

(for the sake of contradiction) that ELdim(V [(xt,−1)],k) ≥m. By definition of Algorithm 7.2,

m−1 ≥m⊥ ≥m, that is

ELdim(V [(xt,+1)],k−1)≥m

By Lemma 7.11, ELdim(V,k) ≥m + 1, contradiction. Symmetrically, we can also deduce that

ELdim(V [(xt,+1)],k) is at most m−1.

Hence, irrespective of the outcome yt ∈ {−1,+1}, the resulting version space V [(xt,yt)]

satisfies that ELdim(V [(xt,yt)],k) ≤m−1. Note that from time t + 1 on, the adversary is only

allowed to show V [(xt,yt)]-realizable sequences. By inductive hypothesis, Algorithm 7.2 runs

on V [(xt,yt)] with mistake budget k, and achieves (k,m− 1)-SZB bound from round t + 1 on.

Therefore, Algorithm 7.2 achieves (k,m)-SZB bound throughout the process.

In summary, Algorithm 7.2, when run on V , achieves (k,m)-SZB bound. This completes

the induction.

Proof of Theorem 7.2. (a) This is an immediate consequence of Lemma 7.2.

(b) By Lemma 7.1, there is a strategy of the adversary such that any deterministic learner

guaranteeing at most k mistakes must have at least m nontrivial rounds. Therefore, no

deterministic learner can achieve a (k,m−1)-SZB bound.

Proof of Theorem 7.3. Recall that Ldim(H) = d <∞. We show the equality by showing inequal-

ities in both sides.

(1) We first show ELdim(H,d)≤ d. Indeed, SOA is guaranteed to make at most d mistakes and

no abstentions for H-realizable sequences. This has a total of at most d nontrivial rounds.

Now, by Lemma 7.1, if ELdim(H,d)≥ d+1, SOA must have at least d+1 nontrivial rounds,

contradiction.
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(2) On the other hand, since Ldim(H) = d, there is a depth-d mistake tree T with respect to H.

Consider the following modification of T : for each internal node, add a dashed downward

edge to its right child. It can be seen that the resulting tree, T̃ , is a (d,d)-difficult extended

mistake tree. Therefore ELdim(H,d)≥ d.

In summary, ELdim(H,d) = d.

7.10 Proofs from Section 7.4

Proof of Lemma 7.3. For any depth-t tree x, note that

|S(H,x)| ≤ |H|

Therefore,

S(H, t) = max
x
|S(H,x)| ≤ |H|.

Lemma 7.12 (Recursive Formula). For a hypothesis class H and t≥ 1, we have

S(H, t) = max
x∈X

(S(H[(x,−1)], t−1) +S(H[(x,+1)], t−1))

We need the following notation of subtrees to give the proof of Lemma 7.12.

Definition 7.9 (Subtrees, see [RST10]). Given a depth-t tree x, the left subtree xl of x at the root

is defined as t−1 mappings (xl
1, . . . ,xl

t−1), where xl
i(ǫ) = x({−1}×ǫ), for ǫ∈ {±1}t−1. The right

subtree xr of x at the root is defined as t−1 mappings (xr
1, . . . ,xr

t−1), where xr
i (ǫ) = x({+1}× ǫ),

for ǫ ∈ {±1}t−1.

Proof of Lemma 7.12. Consider the definition of S(H, t):

max
x
|
{

(ǫ1, ǫ2, . . . , ǫt) ∈ {±1}t : ǫ1 = h(x1(ǫ)), ǫ2 = h(x2(ǫ)), . . . , ǫt = h(xt(ǫ)),h ∈H
}

|
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This can be alternatively written as

max
x
|
{

(−1,σ1, . . . ,σt−1) ∈ {±1}t−1 : σ1 = h(xl
1(σ)), . . . ,σt = h(xl

t−1(σ)),h ∈H[(x1,−1)]
}

∪
{

(+1,σ1, . . . ,σt−1) ∈ {±1}t−1 : σ2 = h(xr
1(σ)), . . . ,σt = h(xr

t−1(σ)),h ∈H[(x1,+1)]
}

|

The above is equal to maxx1∈X F (x1), where F (x1) equals

max
xl
|
{

(−1,σ1, . . . ,σt−1) ∈ {±1}t−1 : σ1 = h(xl
1(σ)), . . . ,σt−1 = h(xl

t−1(σ)),h ∈H[(x1,−1)]
}

|

plus

max
xr
|
{

(+1,σ1, . . . ,σt−1) ∈ {±1}t−1 : σ1 = h(xl
1(σ)), . . . ,σt−1 = h(xl

t−1(σ)),h ∈H[(x1,+1)]
}

|

Note that the above is precisely S(H[(x1,−1)], t−1) +S(H[(x1,+1)], t−1). The lemma follows.

Now we are ready to prove Lemma 7.4.

Proof of Lemma 7.4. We prove the result by joint induction on (t,d). Base Case: Consider

t = 0 or d = 0. If t = 0, then S(H,0) ≤ 1 =
( 0

≤d

)

. If d = 0, then S(H, t) ≤ 1 =
( t

≤0

)

.

Inductive Case: For t≥ 1 and d≥ 1, assume the result holds for (t′,d′) such that t′ ≤ t,

d′ ≤ d and t′ + d′ ≤ t + d−1. First by Lemma 7.12, for some x in X , S(H, t) ≤ S(H[(x,−1)], t−

1) +S(H[(x,+1)], t−1).

Second, Since Ldim(H) = d, for x, there exists y ∈ {−1,+1} such that Ldim(H[(x,y)])≤

d−1 and Ldim(H[(x,−y)])) ≤ d. Hence by inductive hypothesis, there exists y ∈ {−1,+1} such

that S(H[(x,y)], t−1)≤
(

t−1
≤d−1

)

and S(H[(x,−y)], t−1)≤
(

t−1
≤d

)

. Therefore

S(H, t) ≤ S(H[(x,−1)], t−1) +S(H[(x,+1)], t−1)≤
(

t−1

≤ d−1

)

+

(

t−1

≤ d

)

≤
(

t

≤ d

)

This completes the induction.

Proof of Theorem 7.4. For any integer m, if m≤ ELdim(H,k), then by Lemma 7.13,

S(H,m)≥
(

m

≤ k + 1

)
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This implies that

m≤ sup

{

t :

(

t

≤ k + 1

)

≤ S(H, t)

}

Taking m = ELdim(H,k), we get the theorem.

Lemma 7.13. Suppose k,t are nonnegative integers. If ELdim(H,k)≥ t, then S(H, t)≥
( t

≤k+1

)

.

Proof of Lemma 7.13. By joint induction on (k,t). Base Case: We consider (k,t) pairs where

k = 0 or t = 0.

(1) For t = 0, ELdim(H,k)≥ 0 implies that H is nonempty. Thus, S(H,0) = 1≥
(

0
≤k+1

)

.

(2) For k = 0, we prove the result by induction on t. The case of t = 0 has been shown in

(1). For the inductive case, by Lemma 7.11, there exists (x,y) such that x ∈ Dis(H) and

ELdim(H[(x,y)],0)≥ t−1. Thus, by inductive hypothesis, S(H[(x,y)], t−1)≥ t. Also, since

H[(x,−y)] is nonempty, we get S(H[(x,−y)], t−1)≥ 1. Thus,

S(H, t)≥ S(H[(x,y)], t−1) +S(H[(x,−y)], t−1)≥ t + 1

This completes the proof for k = 0.

Inductive Case: For t ≥ 1 and k ≥ 1, suppose the inductive hypothesis holds for any (k′, t′)

such that k′ ≤ k, t′ ≤ t, k′ + t′ ≤ k + t + 1.

Now suppose ELdim(H,k)≥ t. By Lemma 7.11, there exists (x,y) such that the following

hold simultaneously: ELdim(H[(x,y)],k) ≥ t− 1 and ELdim(H[(x,−y)],k− 1)≥ t− 1. Thus by

inductive hypothesis, S(H[(x,y)], t−1)≥
( t−1

≤k+1

)

and S(H[(x,−y)], t−1)≥
(t−1

≤k

)

. Therefore,

S(H, t) ≥ S(H[(x,y)], t−1) +S(H[(x,−y)], t−1)≥
(

t

≤ k + 1

)

This completes the induction.

Proof of Theorem 7.5. Note that S(H, t) ≤ |H| = n, therefore by Lemma 7.13, ELdim(H,k) ≤

max
{

t :
(

t
≤k+1

)

≤ n
}

.

On the other hand, Lemma 7.14 implies that for all m such that
(

m
≤k+1

)

≤ n, there is a
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t1 t2 tm+1

t2

−1 +1

t3

−1 +1

tm+1

−1 +1

h1

h2

hm+1hm

. . .

Figure 7.5: Construction of T0,m, an extended mistake tree given parameters k = 0 and
m ≥ 0. For each i, hi is defined as hi(x) := 2I(x ≤ ti) − 1.

(m,k)-difficult extended mistake tree with respect to H. Hence,

ELdim(H,k)≥max

{

t :

(

t

≤ k + 1

)

≤ n

}

Combining the lower and upper bound, we get the theorem.

Lemma 7.14. Consider the set of threshold classifiers H =
{

2I(x≤ t)−1 : t ∈ {t1, . . . , tn}
}

. If

integers k ≥ 0 and m≥ 0 are such that
( m

k+1

)

≤ n, then H has a (k,m)-difficult mistake tree.

Proof. We prove the lemma by joint induction on (k,m).

Base Case: Consider k = 0 or m = 0.

(1) For k = 0,
(

m
≤k

)

= m+1. We show a construction of T0,m, a (0,m)-difficult extended mistake

tree in Figure 7.5. It can be seen that the resulting tree T0,m is (0,m)-difficult, as the only

root to leaf path using no solid edges corresponds to examples (t2,+1), . . ., (tm+1,+1), which

has length m.

(2) For m = 0 and integer k,
(

m
≤k

)

= 1. The zeroth order extended mistake tree containing ht1 is

a (k,0)-difficult extended mistake tree.

Inductive Case: For k ≥ 1 and m≥ 1, assume the inductive hypothesis holds for (k′,m′) such

that k′ ≤ k, m′ ≤m and k′ + m′ ≤ k + m−1.

We now construct Tk,m, a (k,m)-difficult extended mistake tree, using hypotheses in H.

Let r− =
(

m−1
≤k

)

, r+ =
(

m−1
≤k+1

)

. Consider hypothesis classH− =

{

2I(x≤ t)−1 : t ∈
{

t1, . . . , tr−

}

}
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x

−1 +1

Tk−1,m−1 Tk,m−1

Figure 7.6: Construction of Tk,m, an extended mistake tree given parameters k ≥ 1 and
m ≥ 1, from Tk,m−1 and Tk−1,m−1.

and H+ =

{

2I(x≤ t)−1 : t ∈
{

tr−+1, . . . , tr−+r+

}

}

. Note that r− + r+ ≤
(m−1

≤k

)

+
(m−1

≤k−1

)

≤
(m

≤k

)

≤ n, thus H− and H+ are well defined.

Since |H−| ≥
(m−1

≤k

)

, by inductive hypothesis, there is a (k−1,m−1) difficult extended

mistake tree Tk−1,m−1 with respect to H−. Similarly, since |H+| ≥
(

m−1
≤k+1

)

, by inductive hypoth-

esis, there is a (k,m−1) difficult extended mistake tree Tk,m−1 with respect to H+.

Now Let x be a real number in (tr−
, tr−+1), it can be seen that all hypotheses in H−

classifies x as −1 and all hypothesis in H+ classifies x as +1. We construct Tk,m as in Figure 7.6,

where x is at the root, and its downward left solid edge connect to Tk−1,m−1; its downward right

solid edge and downward dashed edge connects to Tk,m−1. Note that Tk,m is a valid extended

mistake tree, since all hypotheses at the leaves in Tk−1,m−1 (resp. Tk−1,m) classifies x as −1

(resp. +1). By Lemma 7.10, Tk,m is (k,m)-difficult.

Lemma 7.15. Let Cl be the class of unions of at most l singletons. Then

S(Cl, t) =

(

t

≤ l

)

Proof. We show the equality by showing the inequality in both directions.

(1) S(Cl, t)≤
( t

≤l

)

From Lemma 7.4.

(2) Consider a X -valued tree x with all its elements distinct. Then, consider the set

S(Cl,x) =
{

(ǫ1, . . . , ǫt) : ∃h ∈ Cl,h(xs(ǫ)) = ǫs,s = 1,2, . . . , t
}
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We claim that S(Cl,x) contains
{

ǫ = (ǫ1, . . . , ǫt) : |{s : ǫs =−1}| ≤ l
}

. Indeed, for any element

in
{

ǫ = (ǫ1, . . . , ǫt) : |{s : ǫs =−1}| ≤ l
}

, the hypothesis h = 1−2I(x∈
{

xs(ǫ) : ǫs =−1
}

) ∈ Cl

satisfies that h(xs(ǫ)) = ǫs, for s = 1,2, . . . , t. Hence S(Cl,x) ≥
( t

≤l

)

, implying S(Cl, t)≥
( t

≤l

)

.

In summary, S(Cl, t) =
(

t
≤l

)

.

Proof of Theorem 7.6. We show the equality by showing the inequality in both directions.

(1) Consider the case that k ≤ l−1. By Lemma 7.16, for any integer m, there is a (k,m)-difficult

extended mistake tree with respect to Cl. Thus, ELdim(Cl,k) =∞.

(2) Consider the case that k ≥ l. By Lemma 7.15, S(Cl, t) =
( t

≤l

)

. By Theorem 7.4,

ELdim(Cl,k)≤max

{

t :

(

t

≤ k + 1

)

≤
(

t

≤ l

)

}

= l

This gives that ELdim(Cl,k)≤ l.

On the other hand, Cl has a mistake tree T of depth l. Consider the following modification

of T : for each internal node, add a dashed downward edge to its right child. It can be seen

that the resulting tree, T̃ , is an (l, l)-difficult extended mistake tree. Therefore T ′ is also a

(k, l)-difficult mistake tree, which gives that ELdim(Cl,k)≥ l.

Hence, we conclude that ELdim(Cl,k) = l.

Recall that Cl is the class of union of at most l singletons in instance domain X . That

is, hypotheses that take value +1 on X , except for at most l points.

Lemma 7.16. Suppose we are given an infinite domain X and an integer l ≥ 1. Then for any

integer m ≥ 0, there exists a (l− 1,m)-difficult extended mistake tree with respect to hypothesis

class Cl, such that all its dashed edges are labeled +1.

Proof. By induction on l.

Base Case: For l = 1, the construction of the required extended mistake tree with

respect to C1 is given in Figure 7.7. Note that the tree is (0,m)-difficult, and all its dashed edges

are labeled +1.

Inductive Case: Suppose the inductive hypothesis holds for any l′ ≤ l− 1. Now pick

an arbitrary x ∈ X . Fix integer m. Consider (X1,X2), a partition of X \{x}, where both |X1|

and |X2| are infinite.
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x1

−1 +1

x2

−1 +1

xm

−1 +1

h1

h2

h+hm

. . .

Figure 7.7: A (0,m)-difficult extended mistake tree with respect to C1. x1, . . . ,xm are distinct
elements in X , and for each i, hi is defined as hi(x) := 1 − 2I(x = xi). h+ is the constant
function +1.

By inductive hypothesis, there is a (l− 1,m)-difficult extended mistake tree T+ with

respect to Cl on domain X1, such that all its dashed edges are labeled +1. Since for any h ∈ Cl−1,

there exists h′ ∈ Cl[(x,+1)] such that h≡ h′ on X1, we can modify T+’s leaves such that they all

correspond to hypotheses in Cl[(x,+1)], getting a new extended mistake tree T̃+.

Similarly, by inductive hypothesis, there is a (l−2,m)-difficult extended mistake tree T−

with respect to Cl−1 on domain X2, such that all its dashed edges are labeled +1. Since for any

h ∈ Cl, there exists h′ ∈ Cl[(x,−1)] such that h≡ h′ on X2, we can modify T−’s leaves such that

they all correspond to hypotheses in Cl[(x,−1)], getting a new extended mistake tree T̃−.

Now consider the extended mistake tree T rooted at x, with its left subtree as T̃− and

right subtree as T̃+. The dashed downward edge of root is linked to its right child, i.e. has

label +1. Note that T is a valid extended mistake tree, since all hypotheses at the leaves in

T̃− (resp. T̃+) classifies x as −1 (resp. +1). By Lemma 7.10, T is (l−1,m + 1)-difficult, hence

(l− 1,m)-difficult. Additionally, all its dashed edges are labeled +1. Since the choice of m is

arbitrary, this completes the induction.

7.11 Proofs from Section 7.5

Proof of Theorem 7.7. Let X be an infinite set. Let H be the hypothesis class containing only

one hypothesis h≡+1. Note that Hl = Cl and by Theorem 7.6, ELdim(Hl,k) =∞ for k < l. By

Lemma 7.1, the theorem follows.
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Proof of Theorem 7.8. Let X be an infinite set. Let H be the Cd, the class of unions of at most

d singletons. Note that Hl = Cl+d and by Theorem 7.6, ELdim(Cl+d,k) =∞ for k < l + d. By

Lemma 7.1, the theorem follows.

We will need the following result regarding the tree shattering coefficient of the “product”

of two hypothesis classes.

Lemma 7.17. Suppose H1,H2 are two hypothesis classes. If H =H1 ·H2, then for all integers

t≥ 0,

S(H, t) ≤ S(H1, t) · S(H2, t)

We first show a basic property of tree shattering coefficient.

Lemma 7.18. For hypothesis classes H1, H2, S(H1 ∪H2, t)≤ S(H1, t) +S(H2, t).

Proof. For any depth-t tree x, we have that

S(H1∪H2,x) ⊆ S(H1,x)∪S(H2,x)

Therefore,

|S(H1∪H2,x)| ≤ |S(H1,x)|+ |S(H2,x)| ≤ S(H1, t) +S(H2, t)

Since the choice of x is arbitrary, we get

S(H1 ∪H2, t)≤ S(H1, t) +S(H2, t).

Proof of Lemma 7.17. By induction on t. Base Case: Consider t = 0. If one of S(H1,0),

S(H2,0) is 0, this implies H1 = ∅ or H2 = ∅. Therefore, H= ∅, the result holds. Otherwise, both

S(H1,0) and S(H2,0) are at least 1. In this case H is nonempty, thus 1 = S(H,0)≤ 20 = 1, the

result also hold.

Inductive Case: Given t ≥ 1, assume the inductive hypothesis S(F1 · F2, t− 1) ≤

S(F1, t−1)·S(F2, t−1) holds for any hypothesis classesF1, F2. Fix x∈X . Note thatH[(x,+1)] =
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(H1[(x,+1)] ·H2[(x,+1)])∪ (H1[(x,−1)] ·H2[(x,−1)]). Therefore,

S(H[(x,+1)], t−1)

≤ S(H1[(x,+1)] ·H2[(x,+1)], t−1) +S(H1[(x,−1)] ·H2[(x,−1)], t−1)

≤ S(H1[(x,+1)], t−1)S(H2[(x,+1)], t−1) +S(H1[(x,−1)], t−1)S(H2[(x,−1)], t−1)

where the first inequality is Lemma 7.18, the second inequality is by inductive hypothesis.

Likewise, we have

S(H[(x,−1)], t−1)

≤ S(H1[(x,−1)], t−1)S(H2[(x,+1)], t−1) +S(H1[(x,+1)], t−1)S(H2[(x,−1)], t−1)

Therefore,

S(H[(x,−1)], t−1) +S(H[(x,+1)], t−1)

≤ (S(H1[(x,−1)], t−1) +S(H1[(x,+1)], t−1))(S(H2[(x,−1)], t−1) +S(H2[(x,+1)], t−1))

≤ S(H1, t)S(H2, t)

where the second inequality is from Lemma 7.11. Since the choice of x is arbitrary, we get

S(H, t) = max
x∈X

(S(H[(x,−1)], t−1) +S(H[(x,+1)], t−1))≤ S(H1, t)S(H2, t).

Proof of Lemma 7.5. Note that by Lemmas 7.4 and 7.17,

S(Hl, t)≤ S(Cl, t) · S(H, t) =

(

t

≤ l

)

· S(H, t)≤ |H|
(

t

≤ l

)

Hence,

ELdim(Hl,k)≤max

{

t :

(

t

≤ k + 1

)

≤ |H|
(

t

≤ l

)

}

Now, consider any t such that t≥ 2l and

(

t

≤ k + 1

)

≤ |H|
(

t

≤ l

)
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Since
( t

≤k+1

)

≥
( t

k+1

)

≥ ( t
k+1 )k+1, and

( t
≤l

)

≤ (et
l )l for t≥ 2l, we get

(
t

k + 1
)k+1 ≤ |H|(et

l
)l

Hence,

tk+1−l ≤ |H| (k + 1)k+1

ll

Since (k+1)k+1

ll ≤ (e(k + 1))k+1−l, we get

tk+1−l ≤ |H|(e(k + 1))k+1−l

That is, t≤ e(k + 1)|H| 1
k+1−l .

In summary,

ELdim(Hl,k)≤max(2l,e(k + 1)|H| 1
k+1−l ) = e(k + 1)|H| 1

k+1−l

where the equality uses the fact that k ≥ l.

Proof of Lemma 7.6. Note that by Lemmas 7.4 and 7.17,

S(Hl, t)≤ S(Cl, t) · S(H, t) =

(

t

≤ l

)

· S(H, t)≤
(

t

≤ d

)(

t

≤ l

)

Hence,

ELdim(Hl,k)≤max

{

t :

(

t

≤ k + 1

)

≤
(

t

≤ d

)(

t

≤ l

)

}

Now, consider any t such that t≥ 2l, t≥ 2d and

(

t

≤ k + 1

)

≤
(

t

≤ d

)(

t

≤ l

)

Since
(

t
≤k+1

)

≥
(

t
k+1

)

≥ ( t
k+1 )k+1,

(

t
≤d

)

≤ (et
d )d for t≥ 2d, and

(

t
≤l

)

≤ (et
l )l for t≥ 2l, we get

(
t

k + 1
)k+1 ≤ (

et

d
)d(

et

l
)l

Hence,

tk+1−l−d ≤ el+d (k + 1)k+1

lldd
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Since

(k + 1)k+1

lldl

= (1 +
k + 1− l

l
)l(1 +

k + 1−d

d
)d(k + 1)k+1−l−d

≤ e2k+2−l−d(k + 1)k+1−l−d

we get

t≤ (k + 1) · e
2k+2

k+1−l−d

In summary,

ELdim(Hl,k)≤max(2l,2d,(k + 1) · e
2k+2

k+1−l−d )) = (k + 1) · e
2k+2

k+1−l−d

where the equality uses the fact that k ≥ l + d.

Proof of Theorem 7.9. Let X be an infinite set. x1, x2, . . . is a sequence of distinct elements from

X . Let H be the hypothesis class containing only one hypothesis h ≡ +1. Note that Hl = Cl.

Let ǫ = 1−k/l > 0, thus k = l(1− ǫ). Fix integer m = ⌈2
ǫ (a + l) + 2l⌉. By Lemma 7.16, Cl has a

(l−1,m)-difficult extended mistake tree T .

We define the following strategy by the adversary based on T . At time t = 1, the

adversary chooses the example x1 corresponding to the root of T , and shows it to the learner.

If p1,+ > 1− ǫ, then it reveals label y1 = −1 and follows the downward solid edge labeled −1

to reach the left child of the root; otherwise it reveals label y1 = +1 and follows the downward

dashed edge labeled +1 to reach the right child of the root. At time t≥ 2, suppose the adversary

reaches a node with example xt, then xt is shown to the learner, and one of the downward edges

adjacent to this node is followed by the same rule. The interaction comes to an end when a leaf

is reached. It can be seen that the realizability assumption is maintained.

Consider an Algorithm A that guarantees a cumulative mistake penalty at most k.

(1) We claim that the interaction between the learner and the adversary lasts for at least m

rounds. To see this, note that A predicts at most l−1 times such that pt,+ > 1− ǫ. Assume

this is not the case, that is,

|
{

t ∈ [m] : pt,+ > 1− ǫ
}

| ≥ l
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Suppose the first l times A predicts pt,+ > 1− ǫ are 1 ≤ t1 < .. . < tl ≤m. Then, according

to the adversary’s strategy, yt1 = . . . = ytl
=−1. Thus, the cumulative mistake penalty made

by A up to time tl is at least
l
∑

i=1

pti,+ > l(1− ǫ) = k

This implies that A has a cumulative mistake penalty > k, contradiction. Therefore through-

out the interaction, the number of solid edges used is at most l− 1. Since T is (l− 1,m)-

difficult, any path that going downward from the root using l− 1 solid edges must be of

length at least m, hence the interaction between the learner and the adversary lasts for at

least m rounds.

(2) We claim that over the first m rounds, there are at most 2l
ǫ rounds such that A predicts

pt,− > ǫ/2 and pt,+ ≤ 1− ǫ. Assume this is not the case, that is,

|
{

t ∈ [m] : pt,− > ǫ/2∧pt,+ ≤ 1− ǫ
}

| ≥ 2l

ǫ

Suppose the first g = ⌈2l
ǫ ⌉ times A predicts −1 are 1 ≤ s1 < .. . < sg ≤m. Then, according

to the adversary’s strategy, ys1 = . . . = ysg = +1. Thus the cumulative mistake penalty made

by A up to time sg is at least

g
∑

i=1

psi,− > g · ǫ
2
≥ l(1− ǫ) = k

This implies that A has a cumulative mistake penalty > k over time, contradiction.

Therefore, among the first m rounds, there are at most l +(l + 2l
ǫ ) = 2l + 2l

ǫ rounds such

that pt,+ > 1− ǫ or pt,− > ǫ/2. Thus there are at least (m− 2l
ǫ −2l) rounds such that pt,+ ≤ 1− ǫ

and pt,− ≤ ǫ/2, implying 1− pt,+− pt,− ≥ ǫ/2. Thus, the cumulative abstention penalty up to

time m is at least

(m− 2l

ǫ
−2l) · ǫ

2
≥ a.

Proof of Theorem 7.10. Let X be an infinite set. Let H be the Cd, the class of unions of at most

d singletons. Note that Hl = Cl+d. Hence l-bias assumption with respect to H is equivalent to

Cl+d-realizability. The rest of the proof is analogous to the proof of Theorem 7.9.
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Chapter 8

Confidence-based Active Learning

8.1 Introduction

In this chapter, we study active learning of classifiers in the agnostic setting. The primary

algorithm for agnostic active learning is called disagreement-based active learning. The main idea

is as follows. A set Vk of possible risk minimizers is maintained with time, and the label of an

example x is queried if there exist two hypotheses h1 and h2 in Vk such that h1(x) 6= h2(x). This

algorithm is consistent in the agnostic setting [CAL94, BBL09, DHM07, Han07, BDL09, Han09,

BHLZ10, Kol10]; however, due to the conservative label query policy, its label requirement is

high. A line of work due to [BBZ07, BL13, ABL14] have provided algorithms that achieve better

label complexity for linear classification on the uniform distribution over the unit sphere as well

as log-concave distributions; however, their algorithms are limited to these specific cases, and it

is unclear how to apply them more generally.

Thus, a major challenge in the agnostic active learning literature has been to find a

general active learning strategy that applies to any hypothesis class and data distribution, is

consistent in the agnostic case, and has a better label requirement than disagreement based

active learning. This has been mentioned as an open problem by several works, such as [BBL09,

Das11, BL13].

We provide such an algorithm in this chapter. Interestingly, the algorithm is inspired by

batch confidence-rated prediction studied in Chapter 6 - we call it confidence-based active learning.

While a line of work [EYW12, WHEY15] establishes connections between disagreement-based
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active learning and confidence-rated prediction with zero error guarantee, this chapter takes a

step further, establishing connections between active learning and confidence-rated predictors

with nonzero error guarantees. Combining our algorithmic framework with our novel confidence-

rated predictor (Algorithm 6.1), we get a general active learning algorithm consistent in the

agnostic setting. We provide a characterization of the label complexity of our algorithm, and

show that this is better than disagreement-based active learning in general. Finally, we show that

for linear classification with respect to the uniform distribution and log-concave distributions, our

bounds reduce to those of [BBZ07, BL13].

8.2 Active Learning via Confidence-rated Prediction

We present our algorithmic framework in this section. Our active learning algorithm

proceeds in epochs, where the goal of epoch k is to achieve excess generalization error ǫk = 2−k,

by querying a fresh batch of labels. The algorithm maintains a candidate set Vk that is guaranteed

to contain the true risk minimizer.

The critical decision at each epoch is how to select a subset of unlabeled examples whose

labels should be queried. We make this decision using a confidence-rated predictor P . At epoch

k, we run P with candidate hypothesis set V = Vk and error guarantee η = O(ǫk). Whenever P

abstains, we query the label of the example. The number of labels mk queried is adjusted so

that it is enough to achieve excess generalization error ǫk+1.

An outline is described in Algorithm 8.1; we next discuss each individual component in

detail.

8.2.1 Candidate Sets

At epoch k, we maintain a set Vk of candidate hypotheses guaranteed to contain the true

risk minimizer h∗(D) (with high probability). In the realizable case, we use a version space (See

Definition 3.4) as our candidate set.

Lemma 8.1. Suppose we run Algorithm 8.1 in the realizable case with inputs example oracle

EX, labeling oracle Label, hypothesis class H, confidence-rated predictor P , target excess error

ǫ and target confidence δ. Then, with probability 1, h∗(D) ∈ Vk, for all k = 1,2, . . . ,k0 + 1.

In the non-realizable case, the version space is usually empty; we use instead a (1− δ)-
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Algorithm 8.1 Active Learning Algorithm: Outline

1: Inputs: Example oracle EX, labeling oracle Label, hypothesis class H of VC dimension d,
confidence-rated predictor P , target excess error ǫ and target confidence δ.

2: Set k0 = ⌈log1/ǫ⌉. Initialize candidate set V1 =H.
3: for k = 1,2, ..k0 do
4: Set ǫk = ǫ2k0−k+1, δk = δ

2(k0−k+1)2 .

5: Call U to generate a fresh unlabeled sample Uk = {zk,1, ...,zk,nk
} of size nk =

192(256
ǫk

)2
(

d ln 256
ǫk

+ ln 288
δk

)

.

6: Run confidence-rated predictor P with inputs V = Vk, U = Uk and error guarantee η = ǫk/64
to get abstention probabilities γk,1, . . . ,γk,nk

on the examples in Uk. These probabilities

induce a distribution Γk on Uk. Let φk = Px∼Uk
[P (x) =⊥] = 1

nk

∑nk
i=1 γk,i.

7: if in the Realizable Case then
8: Let mk = 768φk

ǫk

(

d ln 768φk
ǫk

+ ln 48
δk

)

. Draw mk i.i.d examples from Γk and query O for

labels of these examples to get a labeled data set Sk. Update Vk+1 using Sk: Vk+1 :=
{h ∈ Vk : h(x) = y, for all (x,y) ∈ Sk}.

9: else
10: In the non-realizable case, use Algorithm 8.2 with inputs hypothesis set Vk, distribution

Γk, target excess error ǫk
8φk

, target confidence δk
2 , and the labeling oracle O to get a new

hypothesis set Vk+1.
11: end if
12: end for
13: return an arbitrary ĥ ∈ Vk0+1.

confidence set (see Definition 3.5) for the true risk minimizer. In the non-realizable case, our

candidate sets are (1− δ)-confidence sets for h∗(D). The precise setting of Vk is explained in

Algorithm 8.2.

Lemma 8.2. Suppose we run Algorithm 8.1 in the non-realizable case with inputs example oracle

EX, labeling oracle Label, hypothesis class H, confidence-rated predictor P , target excess error

ǫ and target confidence δ. Then with probability 1− δ, h∗(D) ∈ Vk, for all k = 1,2, . . . ,k0 + 1.

8.2.2 Label Query

We next discuss our label query procedure – which examples should we query labels for,

and how many labels should we query at each epoch?

Which Labels to Query? Our goal is to query the labels of the most informative

examples. To choose these examples while still maintaining consistency, we use a confidence-rated

predictor P with guaranteed error. The inputs to the predictor are our candidate hypothesis set

Vk which contains (w.h.p) the true risk minimizer, a fresh set Uk of unlabeled examples, and an

error guarantee η = ǫk/64. For notation simplicity, assume the elements in Uk are distinct. The

output is a sequence of abstention probabilities {γk,1,γk,2, . . . ,γk,nk
}, for each example in Uk. It
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induces a distribution Γk over Uk, from which we independently draw examples for label queries.

How Many Labels to Query? The goal of epoch k is to achieve excess generalization

error ǫk. To achieve this, passive learning requires Õ(d/ǫk) labeled examples in the realizable

case, and Õ(d(ν∗(D) + ǫk)/ǫ2
k) examples in the agnostic case. A key observation is that in

order to achieve excess generalization error ǫk on D, it suffices to achieve a much larger excess

generalization error O(ǫk/φk) on the data distribution induced by Γk and DY |X , where φk is the

fraction of examples on which the confidence-rated predictor abstains.

In the realizable case, we achieve this by sampling mk = 768φk
ǫk

(

d ln 768φk
ǫk

+ ln 48
δk

)

i.i.d

examples from Γk, and querying their labels to get a labeled dataset Sk. Observe that as φk is

the abstention probability of P with guaranteed error ≤ O(ǫk), it is generally smaller than the

measure of the disagreement region of the version space; this key fact results in improved label

complexity over disagreement-based active learning. This sampling procedure has the following

property:

Lemma 8.3. Suppose we run Algorithm 8.1 in the realizable case with inputs example oracle

U , labeling oracle O, hypothesis class H, confidence-rated predictor P , target excess error ǫ and

target confidence δ. Then with probability 1− δ, for all k = 1,2, . . . ,k0 + 1, and for all h ∈ Vk,

errD(h)≤ ǫk. In particular, the ĥ returned at the end of the algorithm satisfies errD(ĥ)≤ ǫ.

The agnostic case has an added complication – in practice, the value of ν∗ is not known

ahead of time. Inspired by [Kol10], we use a doubling procedure similar to Algorithm 4.4(stated

in Algorithm 8.2) which adaptively finds the number mk of labeled examples to be queried and

queries them. The following two lemmas illustrate its properties – that it is consistent, and that

it does not use too many label queries.

Lemma 8.4. Suppose we run Algorithm 8.2 with inputs hypothesis set V , distribution ∆, labeling

oracle O, target excess error ǫ̃ and target confidence δ̃. Let ∆̃ be the joint distribution on X ×Y

induced by ∆ and DY |X . Then there exists an event Ẽ, P(Ẽ) ≥ 1− δ̃, such that on Ẽ, (1)

Algorithm 8.2 halts and (2) the set Vj0 has the following properties:

1. If for h ∈H, err∆̃(h)− err∆̃(h∗(∆̃))≤ ǫ̃/2, then h ∈ Vj0 .

2. On the other hand, if h ∈ Vj0 , then err∆̃(h)− err∆̃(h∗(∆̃))≤ ǫ̃.

When event Ẽ happens, we say Algorithm 8.2 succeeds.
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Lemma 8.5. Suppose we run Algorithm 8.2 with inputs hypothesis set V , distribution ∆, labeling

oracle O, target excess error ǫ̃ and target confidence δ̃. There exists some absolute constant c1 > 0,

such that on the event that Algorithm 8.2 succeeds, nj0 ≤ c1

(

(d ln 1
ǫ̃ + ln 1

δ̃
)ν∗(∆̃)+ǫ̃

ǫ̃2

)

. Thus the

total number of labels queried is
∑j0

j=1 nj ≤ 2nj0 ≤ 2c1

(

(d ln 1
ǫ̃ + ln 1

δ̃
)

ν∗(∆̃)+ǫ̃
ǫ̃2

)

.

The following lemma is a consequence of our label query procedure in the non-realizable

case.

Lemma 8.6. Suppose we run Algorithm 8.1 in the non-realizable case with inputs example oracle

U , labeling oracle O, hypothesis class H, confidence-rated predictor P , target excess error ǫ and

target confidence δ. Then with probability 1− δ, for all k = 1,2, . . . ,k0 + 1, and for all h ∈ Vk,

errD(h) ≤ errD(h∗(D)) + ǫk. In particular, the ĥ returned at the end of the algorithm satisfies

errD(ĥ)≤ errD(h∗(D)) + ǫ.

Algorithm 8.2 An Adaptive Algorithm for Label Query Given Target Excess Error

1: Inputs: Hypothesis set V of VC dimension d, Distribution ∆, Labeling oracle O, target
excess error ǫ̃, target confidence δ̃.

2: for j = 1,2, . . . do
3: Draw nj = 2j i.i.d examples from ∆; query their labels from O to get a labeled dataset Sj .

Denote δ̃j := δ̃/(j(j + 1)).

4: Train an ERM classifier ĥj ∈ V over Sj .
5: Define the set Vj as follows:

Vj =
{

h ∈ V : errSj
(h)≤ errSj

(ĥj) +
ǫ̃

2
+ σ(nj , δ̃j) +

√

σ(nj , δ̃j)ρSj
(h, ĥj)

}

6: if suph∈Vj
(σ(nj , δ̃j) +

√

σ(nj , δ̃j)ρSj
(h, ĥj))≤ ǫ̃

6 then

7: j0 = j, break
8: end if
9: end for

10: return Vj0 .

8.3 Performance Guarantees

An essential property of any active learning algorithm is statistical consistency – that

it converges to the true risk minimizer given enough labeled examples. We observe that our

algorithm is consistent provided we use any confidence-rated predictor P with guaranteed error

as a subroutine. The consistency of our algorithm is a consequence of Lemmas 8.3 and 8.6 and

is shown in Theorem 8.1.
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Theorem 8.1 (Statistical Consistency). Suppose we run Algorithm 8.1 with inputs example

oracle U , labeling oracle O, hypothesis class H, confidence-rated predictor P , target excess error

ǫ and target confidence δ. Then with probability 1− δ, the classifier ĥ returned by Algorithm 8.1

satisfies errD(ĥ)− errD(h∗(D)) ≤ ǫ.

We now establish a label complexity bound for our algorithm; however, this label com-

plexity bound applies only if we use the predictor described in Algorithm 6.1 as a subroutine.

For any hypothesis set V , data distribution D, and η, define ΦD(V,η) to be the minimum

abstention probability of a confidence-rated predictor which guarantees that the disagreement

between its predicted labels and any h ∈ V under DX is at most η.

Formally, ΦD(V,η) = min{EDγ(x) : ED[1(h(x) = +1)β(x)+1(h(x) =−1)α(x)]≤ η,∀h ∈

V,γ(x) + α(x) + β(x) ≡ 1,γ(x),α(x),β(x) ≥ 0}. Define φ(r,η) := ΦD(BD(h∗,r),η). The label

complexity of our active learning algorithm can be stated as follows.

Theorem 8.2 (Label Complexity). Suppose we run Algorithm 8.1 with inputs example oracle U ,

labeling oracle O, hypothesis class H, confidence-rated predictor P of Algorithm 6.1, target excess

error ǫ and target confidence δ. Then there exist constants c3, c4 > 0 such that with probability

1− δ:

(1) In the realizable case, the total number of labels queried by Algorithm 8.1 is at most:

c3

⌈log 1
ǫ ⌉

∑

k=1

(

d ln
φ(ǫk, ǫk/256)

ǫk
+ ln

(⌈log(1/ǫ)⌉−k + 1

δ

)

)

φ(ǫk, ǫk/256)

ǫk

(2) In the agnostic case, the total number of labels queried by Algorithm 8.1 is at most:

c4

⌈log 1
ǫ ⌉

∑

k=1

(

d ln
φ(2ν∗(D) + ǫk, ǫk/256)

ǫk
+ ln

(⌈log(1/ǫ)⌉−k + 1

δ

)

)

·φ(2ν∗(D) + ǫk, ǫk/256)

ǫk

(

1 +
ν∗(D)

ǫk

)

Comparison. The label complexity of disagreement-based active learning is character-

ized in terms of the disagreement coefficient. As P(Dis(BD(h∗,r))) ≤ φ(r,0) [EYW10], in our

notation, θ(r) ≤ supr′≥r
φ(r′,0)

r′ .

In the realizable case, the label complexity of disagreement-based active learning is

Õ(θ(ǫ) · ln(1/ǫ) · (d lnθ(ǫ) + ln ln(1/ǫ))) [Han14]. Our label complexity bound may be simplified
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to:

Õ






ln

1

ǫ
· sup

k≤⌈log(1/ǫ)⌉

φ(ǫk, ǫk/256)

ǫk
·



d ln

(

sup
k≤⌈log(1/ǫ)⌉

φ(ǫk, ǫk/256)

ǫk

)

+ lnln
1

ǫ










,

which is essentially the bound of [Han14] with θ(ǫ) replaced by supk≤⌈log(1/ǫ)⌉
φ(ǫk,ǫk/256)

ǫk
. As

enforcing a lower error guarantee requires more abstention, φ(r,η) is a decreasing function of η;

as a result,

sup
k≤⌈log(1/ǫ)⌉

φ(ǫk, ǫk/256)

ǫk
≤ θ(ǫ),

and our label complexity is better.

In the agnostic case, for disagreement-based active-learning, [DHM07] provides a label

complexity bound of Õ(θ(2ν∗(D) + ǫ) · (dν∗(D)2

ǫ2 ln(1/ǫ) + d ln2(1/ǫ))) . In contrast, by Proposi-

tion 8.1 our label complexity is at most:

Õ



 sup
k≤⌈log(1/ǫ)⌉

φ(2ν∗(D) + ǫk, ǫk/256)

2ν∗(D) + ǫk
·
(

d
ν∗(D)2

ǫ2
ln(1/ǫ) + d ln2(1/ǫ)

)





Again, this is essentially the bound of [DHM07] with θ(2ν∗(D) + ǫ) replaced by the smaller

quantity

sup
k≤⌈log(1/ǫ)⌉

φ(2ν∗(D) + ǫk, ǫk/256)

2ν∗(D) + ǫk
,

[Han14] has provided a more refined analysis of disagreement-based active learning that

gives a label complexity of Õ(θ(ν∗(D)+ǫ)(ν∗(D)2

ǫ2 +ln 1
ǫ )(d lnθ(ν∗(D)+ǫ)+lnln 1

ǫ )); observe that

their dependence is still on θ(ν∗(D) + ǫ). We leave a more refined label complexity analysis of

our algorithm for future work.

8.3.1 Tsybakov Noise Conditions

An important sub-case of learning from noisy data is learning under the Tsybakov noise

conditions [Tsy04].

Definition 8.1. (Tsybakov Noise Condition) Let κ≥ 1. A labeled data distribution D over X ×Y

satisfies (C0,κ)-Tsybakov Noise Condition with respect to a hypothesis class H for some constant

C0 > 0, if for all h ∈H, ρD(h,h∗(D))≤ C0(errD(h)− errD(h∗(D)))
1
κ .
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The following theorem shows the performance guarantees achieved by Algorithm 8.1

under the Tsybakov noise conditions.

Theorem 8.3. Suppose (C0,κ)-Tsybakov Noise Condition holds for D with respect to H. Then

Algorithm 8.1 with inputs example oracle U , labeling oracle O, hypothesis class H, confidence-

rated predictor P of Algorithm 6.1, target excess error ǫ and target confidence δ satisfies the

following properties. There exists a constant c5 > 0 such that with probability 1− δ, the total

number of labels queried by Algorithm 8.1 is at most:

c5

⌈log 1
ǫ ⌉

∑

k=1



d ln

(

φ(C0ǫ
1
κ
k , ǫk/256)ǫ

1
κ −2

k

)

+ ln

(

⌈log 1
ǫ ⌉−k + 1

δ

)



φ(C0ǫ
1
κ
k , ǫk/256)ǫ

1
κ −2

k

Comparison. For disagreement-based active learning, [Han14] provides a label com-

plexity bound of Õ(θ(C0ǫ
1
κ )ǫ

2
κ −2 ln 1

ǫ (d lnθ(C0ǫ
1
κ ) + lnln 1

ǫ )). For κ > 1, by Proposition 8.2, our

label complexity is at most:

Õ



 sup
k≤⌈log(1/ǫ)⌉

φ(C0ǫ
1/κ
k , ǫk/256)

ǫ
1/κ
k

· ǫ2/κ−2
k ·d ln(1/ǫ)



 ,

For κ = 1, our label complexity is at most

Õ






ln

1

ǫ
· sup

k≤⌈log(1/ǫ)⌉

φ(C0ǫk, ǫk/256)

ǫk
·



d ln

(

sup
k≤⌈log(1/ǫ)⌉

φ(C0ǫk, ǫk/256)

ǫk

)

+ lnln
1

ǫ










.

In both cases, our bounds are better, as supk≤⌈log(1/ǫ)⌉ ·
φ(C0ǫ

1/κ
k

,ǫk/256)

C0ǫ
1/κ
k

≤ θ(C0ǫ1/κ). In further

work, [HY12] provides a refined analysis with a bound of Õ(θ(C0ǫ
1
κ )ǫ

2
κ −2 d lnθ(C0ǫ

1
κ )); however,

this work is not directly comparable to ours, as they need prior knowledge of C0 and κ.

8.3.2 Case Study: Linear Classification under the Log-concave Distri-

bution

We now consider learning linear classifiers with respect to log-concave data distribution

on R
d. In this case, for any r, the disagreement coefficient θ(r)≤O(

√
d ln(1/r)) [BL13]; however,

for any η > 0, φ(r,η)
r ≤O(ln(r/η)) (see Lemma 8.12), which is much smaller so long as η/r is not

too small. This leads to the following label complexity bounds.
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Corollary 8.1. Suppose DX is isotropic and log-concave on R
d, and H is the set of homogeneous

linear classifiers on R
d. Then Algorithm 8.1 with inputs example oracle U , labeling oracle O,

hypothesis class H, confidence-rated predictor P of Algorithm 6.1, target excess error ǫ and target

confidence δ satisfies the following properties. With probability 1− δ:

(1) In the realizable case, there exists some constant c8 > 0 such that the total number of labels

queried is at most O

(

ln 1
ǫ

(

d + lnln 1
ǫ + ln 1

δ

)

)

.

(2) In the agnostic case, there exists some constant c9 > 0 such that the total number of labels

queried is at most O

(

(

ν∗(D)2
)

ǫ2+ln 1
ǫ

· ln ǫ+ν∗(D)
ǫ ·

(

d ln ǫ+ν∗(D)
ǫ + ln 1

δ

)

+ ln ǫ+ν∗(D)
ǫ · ln 1

ǫ ln ln 1
ǫ

)

.

(3) If (C0,κ)-Tsybakov Noise condition holds for D with respect to H, then there exists some

constant c10 > 0 (that depends on C0,κ) such that the total number of labels queried is at most

O

(

ǫ
2
κ −2 ln 1

ǫ ·
(

d ln 1
ǫ + ln 1

δ

)

)

.

In the realizable case, our bound matches [BL13]. For disagreement-based algorithms,

the bound is Õ
(

d
3
2 ln2 1

ǫ (lnd + lnln 1
ǫ )
)

, which is worse by a factor of O(
√

d ln(1/ǫ)). [BL13]

does not address the fully agnostic case directly; however, if ν∗(D) is known a-priori, then their

algorithm can achieve roughly the same label complexity as ours.

For the Tsybakov Noise Condition with κ > 1, [BBZ07, BL13] provides a label complexity

bound of Õ
(

ǫ
2
κ −2 ln2 1

ǫ (d + lnln 1
ǫ )
)

with an algorithm that has a-priori knowledge of C0 and κ.

We get a slightly better bound. On the other hand, a disagreement based algorithm [Han14]

gives a label complexity of Õ
(

d
3
2 ln2 1

ǫ ǫ
2
κ −2(lnd + lnln 1

ǫ )
)

. Again our bound is better by factor

of Ω(
√

d) over disagreement-based algorithms. For κ = 1, we can tighten our label complexity to

get a Õ
(

ln 1
ǫ (d + lnln 1

ǫ + ln 1
δ )
)

bound, which again matches [BL13], and is better than the ones

provided by disagreement-based algorithm – Õ
(

d
3
2 ln2 1

ǫ (lnd + lnln 1
ǫ )
)

[Han14].

8.4 Additional Notations and Concentration Lemmas

For an unlabeled sample Uk drawn iid from unlabeled distribution DX , we use Ũk to

denote the joint distribution over X ×Y induced by uniform distribution over Uk and DY |X . We

have the following concentration result, whose proof is deferred to Section 8.8.

Lemma 8.7. If the size of nk of the unlabeled dataset Uk is at least 192(256
ǫk

)2(d ln 256
ǫk

+ln 288
δk

),

then with probability 1− δk/4, the following conditions hold for all h,h′ ∈ Vk:
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|errD(h)− errŨk
(h)| ≤ ǫk

64
(8.1)

|(errD(h)− errD(h′))− (errŨk
(h)− errŨk

(h′))| ≤ ǫk

32
(8.2)

|ρD(h,h′)−ρŨk
(h,h′)| ≤ ǫk

64
(8.3)

Lemma 8.8. If the size of nk of the unlabeled dataset Uk is at least 192(256
ǫk

)2(d ln 256
ǫk

+ln 288
δk

),

then with probability 1− δk/4, the following hold:

(1) The outputs {(αk,i,βk,i,γk,i)}nk
i=1 of any confidence-rated predictor with inputs hypothesis set

Vk, unlabeled data Uk, and error bound ǫk/64 satisfy:

1

nk

nk
∑

i=1

[1(h(xi) 6= h′(xi))(1−γk,i)]≤
ǫk

32
; (8.4)

(2) The outputs {(αk,i,βk,i,γk,i)}nk
i=1 of the confidence-rated predictor of Algorithm 6.1 with inputs

hypothesis set Vk, unlabeled data Uk, and error bound ǫk/64 satisfy:

φk ≤ΦD(Vk,
ǫk

128
) +

ǫk

256
(8.5)

We use Γ̃k to denote the joint distribution over X ×Y induced by Γk and DY |X . Denote

γk(x) :X → [0,1], where γk(xi) = γk,i, and 0 elsewhere. It can be seen that Γk({x}) = γk(x)
nkφk

and

Γ̃k({(x,y)}) =
Ũk({(x,y)})γk(x)

φk
. Also, Equations (8.4) and (8.5) of Lemma 8.8 can be restated as

∀h,h′ ∈ Vk,EŨk
[(1−γk(x))1(h(x) 6= h′(x))] ≤ ǫk

32

EŨk
[γk(x)] = φk ≤ΦD(Vk,

ǫk

128
) +

ǫk

256

In the realizable case, define event

Er = {For all k = 1,2, . . . ,k0: Equations (8.1), (8.2), (8.3), (8.4), (8.5) hold for Ũk

and all classifiers consistent with Sk have error at most
ǫk

8φk
with respect to Γ̃k }.

Fact 8.1. P(Er)≥ 1− δ.

Proof. By Equation (A.3) of Lemma A.5, with probability 1− δk/2, if h ∈ Vk is consistent with
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Sk, then

errΓ̃k
(h)≤ σ(mk,δk/2)

Because mk = 768φk
ǫk

(d ln 768φk
ǫk

+ ln 48
δk

), we have errΓ̃k
(h) ≤ ǫk/8φk. The fact follows from com-

bining the fact above with Lemma 8.7 and Lemma 8.8, and the union bound.

In the non-realizable case, define event

Ea = {For all k = 1,2, . . . ,k0: Equations (8.1), (8.2), (8.3), (8.4), (8.5) hold for Ũk,

and Algorithm 8.2 succeeds with inputs hypothesis set V = Vk, distribution ∆ = Γk,

labeling oracle O, target excess error ǫ̃ =
ǫk

8φk
and target confidence δ̃ =

δk

2
}.

Fact 8.2. P(Ea)≥ 1− δ.

Proof. This is an immediate consequence of Lemma 8.7, Lemma 8.8, Lemma 8.4 and union

bound.

8.5 Proofs related to the properties of Algorithm 8.2

We first establish some properties of Algorithm 8.2. The inputs to Algorithm 8.2 are a

set V of hypotheses of VC dimension d, a distribution ∆, a labeling oracle O, a target excess

error ǫ̃ and a target confidence δ̃.

We define the event

Ẽ = {For all j = 1,2, . . . : Equations (A.2)-(A.5) hold for sample Sj with n = nj and δ = δ̃j }

By union bound, P(Ẽ)≥ 1−∑j δ̃j ≥ 1− δ̃.

Proof of Lemma 8.4. Assume Ẽ happens. For the proof of (1), define jmax as the smallest integer

j such that σ(nj , δ̃j)≤ ǫ̃2/144. Since njmax is a power of 2,

njmax ≤ 2min







n = 1,2, . . . :
8(2d ln 2en

d + ln 24logn(logn+1)
δ )

n
≤ ǫ2

144






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Thus, njmax ≤ 192 144
ǫ̃2

{

d ln 144
ǫ̃ + ln 24

δ̃

}

. Then in round jmax, the stopping criterion (6) of Algo-

rithm 8.2 is satisified; thus, Algorithm 8.2 halts with j0 ≤ jmax.

To prove (2.1), we observe that as h∗(∆̃) is the risk minimizer in V , if h satisfies err∆̃(h)−

err∆̃(h∗(∆̃))≤ ǫ̃
2 , then err∆̃(h)− err∆̃(ĥj0)≤ ǫ̃

2 . By Equation (A.4) of Lemma A.5,

(errSj0
(h)− errSj0

(ĥj0)) ≤ (err∆̃(h)− err∆̃(ĥj0)) + σ(nj0 , δ̃j0) +
√

σ(nj0 , δ̃j0)ρSj0
(h, ĥj0)

≤ ǫ̃

2
+ σ(nj0 , δ̃j0) +

√

σ(nj0 , δ̃j0)ρSj0
(h, ĥj0)

Hence h ∈ Vj0 .

For the proof of (2.2), note first that by (2.1), in particular, h∗(∆̃) ∈ Vj0 . Hence by

Equation (A.4) of Lemma A.5, and the stopping criterion Equation (6),

(err∆̃(ĥj0)− err∆̃(h∗(∆̃)))− (errSj0
(ĥj0)− errSj0

(h∗(∆̃)))

≤ σ(nj0 , δ̃j0) +
√

σ(nj0 , δ̃j0)ρSj0
(ĥj0 ,h∗(∆̃))

≤ ǫ̃

6

Thus,

err∆̃(ĥj0)− err∆̃(h∗(∆̃))≤ ǫ̃

6
(8.6)

On the other hand, if h ∈ Vj0 , then

(err∆̃(h)− err∆̃(ĥj0))− (errSj0
(h)− errSj0

(ĥj0))≤ σ(nj0 , δ̃j0) +
√

σ(nj0 , δ̃j0)ρSj0
(h, ĥj0)≤ ǫ̃

6

By definition of Vj0 ,

(errSj0
(h)− errSj0

(ĥj0))≤ σ(nj0 , δ̃j0) +
√

σ(nj0 , δ̃j0)ρSj0
(h, ĥj0) +

ǫ̃

2
≤ 2ǫ̃

3

Hence,

err∆̃(h)− err∆̃(ĥj0)≤ 5ǫ̃

6
(8.7)

Combining Equations (8.6) and (8.7), we have

err∆̃(h)− err∆̃(h∗(∆̃))≤ ǫ̃
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Proof of Lemma 8.5. Assume Ẽ happens. For each j, by triangle inequality, we have that

ρSj
(ĥj ,h)≤ errSj

(ĥj) + errSj
(h). If h ∈ Vj , then, by defintion of Vj ,

errSj
(h)− errSj

(ĥj)≤ ǫ̃

2
+ σ(nj , δ̃j) +

√

σ(nj , δ̃j)errSj
(ĥj) +

√

σ(nj , δ̃j)errSj
(h)

Using the fact that A≤B + C
√

A⇒A≤ 2B + C2,

errSj
(h)≤ ǫ̃+ 2errSj

(ĥj) + 2
√

σ(nj , δ̃j)errSj
(ĥj) + 3σ(nj , δ̃j)≤ 3errSj

(ĥj) + 4σ(nj, δ̃j) + ǫ̃

Since

errSj
(ĥj)≤ errSj

(h∗(∆̃))≤ ν∗(∆̃) +

√

σ(nj , δ̃j)ν∗(∆̃) + σ(nj , δ̃j)≤ 2ν∗(∆̃) + 2σ(nj , δ̃j),

by the triangle inequality, we get that for all h ∈ Vj ,

ρSj
(h, ĥj)≤ errSj

(h) + errSj
(ĥj)≤ 8ν∗(∆̃) + 12σ(nj, δ̃j) + ǫ̃ (8.8)

Now observe that for any j,

sup
h∈Vj

√

σ(nj , δ̃j)ρSj
(h, ĥj) + σ(nj , δ̃j)

≤ sup
h∈Vj

maxdet2
√

σ(nj , δ̃j)ρSj
(h, ĥj),2σ(nj , δ̃j)

≤ max

(

2

√

(8ν∗(∆̃) + 12σ(nj, δ̃j) + ǫ̃)σ(nj , δ̃j),2σ(nj , δ̃j)

)

≤ max

(

12

√

2ν∗(∆̃)σ(nj , δ̃j), ǫ̃/6,216σ(nj, δ̃j)

)

,

Where the first inequality follows from A + B ≤ 2max(A,B), the second inequality follows from

Equation (8.8), the third inequality follows from
√

A + B≤
√

A+
√

B, A+B +C ≤ 3max(A,B,C)

and
√

AB ≤max(A,B).

It can be easily seen that there exists some constant c1 > 0, such that taking j1 =
⌈

log

(

c1
2 (d ln 1

ǫ̃ + ln 1
δ̃
)(ν∗(∆̃)+ǫ̃

ǫ̃2 )

)

⌉

ensures that nj1 ≥ c1
2

(

d ln 1
ǫ̃ + ln 1

δ̃

)

(

ν∗(∆̃)+ǫ̃
ǫ̃2

)

; this, in turn,
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suffices to make

max

(

12

√

2ν∗(∆̃)σ(nj , δ̃j),216σ(nj , δ̃j)

)

≤ ǫ̃/6

Hence the stopping criterion suph∈Vj

√

σ(nj , δ̃j)ρSj
(h, ĥj)+σ(nj , δ̃j)≤ ǫ̃/6 is satisfied in iteration

j1, and Algorithm 8.2 exits at iteration j0 ≤ j1, which ensures that

nj0 ≤ nj1 ≤ c1

(

d ln
1

ǫ̃
+ ln

1

δ̃

)

(

ν∗(∆̃) + ǫ̃

ǫ̃2

)

.

The following lemma examines the behavior of Algorithm 8.2 under the Tsybakov Noise

Condition and is crucial in the proof of Theorem 8.3. We observe that even if the (C0,κ)-Tsybakov

Noise Conditions hold with respect to D, they do not necessarily hold with respect to Γk. In

particular, it is not necessarily true that:

ρΓ̃k
(h,h∗(D))≤ C0(errΓ̃k

(h)− errΓ̃k
(h∗(D)))

1
κ ,∀h ∈ Vk

However, we show that an “approximate” Tsybakov Noise Condition with a significantly larger

“C0”, namely Condition (8.9) is met by Γ̃k and Vk, with C = max(8C0,4)φ
1
κ −1

k and h̃ = h∗(D).

In the Lemma below, we carefully track the dependence of the number of our label queries on C,

since C = max(8C0,4)φ
1
κ −1

k can be ω(1) in our particular application.

Lemma 8.9. Suppose we run Algorithm 8.2 with inputs hypothesis set V , distribution ∆̃, labeling

oracle O, excess generalization error ǫ̃ and confidence δ̃. Then there exists some absolute constant

c2 > 0 (independent of C) such that the following holds. Suppose there exist C > 0 and a classifier

h̃ ∈ V , such that

∀h ∈ V,ρ∆̃(h, h̃)≤ C max(ǫ̃,err∆̃(h)− err∆̃(h̃))
1
κ , (8.9)

where ǫ̃ is the target excess error parameter in Algorithm 8.2. Then, on the event that Algo-

rithm 8.2 succeeds,

nj0 ≤ c2 max

(

(d ln
1

ǫ̃
+ ln

1

δ̃
)ǫ̃−1,(d ln(Cǫ̃

1
κ −2) + ln

1

δ̃
)Cǫ̃

1
κ −2

)

Observe that Condition (8.9), the approximate Tsybakov Noise Condition in the state-

ment of Lemma 8.9, is with respect to h̃, which is not necessarily the true risk minimizer in V
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with respect to ∆̃. We therefore prove Lemma 8.9 in three steps; first, in Lemma 8.10, we analyze

the difference err∆̃(ĥ)− err∆̃(h̃), where ĥ is the empirical risk minimizer. Then, in Lemma 8.11,

we bound the difference err∆̃(h)− err∆̃(h̃) for any h ∈ Vj for some j. Finally, we combine these

two lemmas to provide sample complexity bounds for the Vj0 output by Algorithm 8.2.

Proof of Lemma 8.9. Assume the event Ẽ happens. Then,

Consider iteration j, by Lemma 8.11, if h ∈ Vj , then

ρ∆̃(h, ĥj)≤ ρ∆̃(h, h̃) + ρ∆̃(ĥj , h̃)≤max
(

2C(36ǫ̃)
1
κ ,2C(52σ(nj , δ̃j))

1
κ ,2C(6400Cσ(nj , δ̃j))

1
2κ−1

)

.

(8.10)

We can write:

sup
h∈Vj

σ(nj , δ̃j) +
√

σ(nj , δ̃j)ρSj
(h, ĥj) ≤ sup

h∈Vj

3σ(nj , δ̃j) +

√

2σ(nj , δ̃j)ρ∆̃(h, ĥj)

≤ sup
h∈Vj

max(6σ(nj , δ̃j),2

√

2σ(nj , δ̃j)ρ∆̃(h, ĥj)),

where the first inequality follows from Equation (8.13) and the second inequality follows A+B≤

2max(A,B). We can further use Equation (8.10) to show that this is at most:

≤ max
(

6σ(nj , δ̃j),(16Cσ(nj , δ̃j))
1
2 (36ǫ̃)

1
2κ ,(16Cσ(nj , δ̃j))

1
2 (52σ(nj , δ̃j))

1
2κ ,

(6400Cσ(nj , δ̃j))
κ

2κ−1

)

≤ max
(

6σ(nj , δ̃j), ǫ̃/6,(6400Cσ(nj, δ̃j))
κ

2κ−1

)

Here the last inequality follows from that (16Cσ(nj , δ̃j))
1
2 (36ǫ̃)

1
2κ ≤max((3456Cσ(nj , δ̃j))

κ
2κ−1 , ǫ̃

6 )

and (16Cσ(nj , δ̃j))
1
2 (52σ(nj , δ̃j))

1
2κ ≤ max((144Cσ(nj , δ̃j))

κ
2κ−1 ,6σ(nj , δ̃j)), since A

2κ−1
2κ B

1
2κ ≤

max(A,B).

It can be easily seen that there exists c2 > 0, such that taking j1 = ⌈log c2
2 (d ln max(C,1)

ǫ̃ +

ln 1
δ̃
)(Cǫ̃

1
κ −2 + ǫ̃−1)⌉, so that nj ≥ c2

2 (d ln max(C,1)
ǫ̃ + ln 1

δ̃
)(Cǫ̃

1
κ −2 + ǫ̃−1) suffices to make

max
(

6σ(nj , δ̃j),(6400Cσ(nj , δ̃j))
κ

2κ−1

)

≤ ǫ̃/6

Hence the stopping criterion suph∈Vj

√

σ(nj , δ̃j)ρSj
(h, ĥj) + σ(nj , δ̃j) ≤ ǫ̃/6 is satisfied
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in iteration j1. Thus the number of the exit iteration j0 satisfies j0 ≤ j1, and nj0 ≤ nj1 ≤

c2 max
(

(d ln 1
ǫ̃ + ln 1

δ̃
)ǫ̃−1,(d ln(Cǫ̃

1
κ −2) + ln 1

δ̃
)Cǫ̃

1
κ −2

)

.

Lemma 8.10. Suppose there exist C > 0 and a classifier h̃ ∈ V , such that Equation (8.9) holds.

Suppose we draw a set S of n examples, denote the empirical risk minimizer over S as ĥ, then

with probability 1− δ:

err∆̃(ĥ)− err∆̃(h̃)≤max
(

2σ(n,δ),(4Cσ(n,δ))
κ

2κ−1 ,2ǫ̃
)

ρ∆̃(ĥ, h̃)≤max
(

C(2σ(n,δ))
1
κ ,C(4Cσ(n,δ))

1
2κ−1 ,C(2ǫ̃)

1
κ

)

Proof. By Lemma A.5, with probability 1− δ, Equation (A.4) holds. Assume this happens.

err∆̃(ĥ)− err∆̃(h̃)

≤ σ(n,δ) +

√

σ(n,δ)ρ∆̃(ĥ, h̃)

≤ 2max

(

σ(n,δ),

√

σ(n,δ)C(err∆̃(h)− err∆̃(h̃))
1
κ ,

√

σ(n,δ)Cǫ̃
1
κ

)

≤ max
(

2σ(n,δ),(4Cσ(n,δ))
κ

2κ−1 ,2ǫ̃
)

Where the first inequality is by Equation (A.4) of Lemma A.5; the second inequality follow from

Equation (8.9) and A + B ≤ 2max(A,B). The third inequality follows from 2

√

σ(n,δ)Cǫ̃
1
κ ≤

max
(

2(Cσ(n,δ))
κ

2κ−1 ,2ǫ̃
)

, since A
2κ−1

2κ B
1

2κ ≤max(A,B). As a consequence, by Equation (8.9),

ρ∆̃(ĥ, h̃)≤max
(

C(2σ(n,δ))
1
κ ,C(4Cσ(n,δ))

1
2κ−1 ,C(2ǫ̃)

1
κ

)

Lemma 8.11. Suppose there exist a C > 0 and a classifier h̃ ∈ V such that Equation (8.9) holds.

Suppose we draw a set S of n iid examples, and let ĥ denote the empirical risk minimizer over

S. Moreover, we define:

Ṽ =

(

h ∈ V : errS(h)≤ errS(ĥ) +
ǫ̃

2
+ σ(n,δ) +

√

σ(n,δ)ρS(h, ĥ)

)



169

then with probability 1− δ, for all h ∈ Ṽ ,

err∆̃(h)− err∆̃(h̃)≤max
(

52σ(n,δ),36ǫ̃,(6400Cσ(n,δ))
κ

2κ−1

)

ρ∆̃(h, h̃)≤maxC(36ǫ̃)
1
κ ,C(52σ(n,δ))

1
κ ,C(6400Cσ(n,δ))

1
2κ−1

Proof. First, by Lemma 8.10,

err∆̃(ĥ)− err∆̃(h̃)≤max
(

2σ(n,δ),(4Cσ(n,δ))
κ

2κ−1 ,2ǫ̃
)

(8.11)

ρ∆̃(ĥ, h̃)≤max
(

C(2σ(n,δ))
1
κ ,C(4Cσ(n,δ))

1
2κ−1 ,C(2ǫ̃)

1
κ

)

(8.12)

Next, if h ∈ Ṽ , then

errS(h)− errS(ĥ)≤ σ(n,δ) +

√

σ(n,δ)ρS(h, ĥ) +
ǫ̃

2

Combining it with Equation (A.4) of Lemma A.5, that is: err∆̃(h)−err∆̃(ĥ)≤ errS(h)−errS(ĥ)+
√

σ(n,δ)ρS(h, ĥ) + σ(n,δ), we get

err∆̃(h)− err∆̃(ĥ)≤ 2σ(n,δ) + 2

√

σ(n,δ)ρS(h, ĥ) +
ǫ̃

2

By Equation (A.5) of Lemma A.5,

ρS(h, ĥ)≤ ρ∆̃(h, ĥ) +

√

σ(n,δ)ρ∆̃(h, ĥ) + σ(n,δ)≤ 2ρ∆̃(h, ĥ) + 2σ(n,δ) (8.13)

Therefore,

err∆̃(h)− err∆̃(ĥ)≤ 5σ(n,δ) + 3

√

σ(n,δ)ρ∆̃(h, ĥ)+
ǫ̃

2
(8.14)

Hence

err∆̃(h)− err∆̃(h̃)

= (err∆̃(h)− err∆̃(ĥ)) + (err∆̃(ĥ)− err∆̃(h̃))

≤ (4Cσ(n,δ))
κ

2κ−1 + 7σ(n,δ) + 3ǫ̃+ 3

√

σ(n,δ)ρ∆̃(h, ĥ)

≤ (4Cσ(n,δ))
κ

2κ−1 + 7σ(n,δ) + 3ǫ̃+ 3
√

σ(n,δ)ρ∆̃(h, h̃) + 3

√

σ(n,δ)ρ∆̃(h̃, ĥ)
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Here the first inequality follows from Equations (8.11) and (8.14) and max(A,B,C)≤A+B +C,

and the second inequality follows from triangle inequality and
√

A + B ≤
√

A +
√

B.

From Equation (8.12), σ(n,δ)ρ∆̃(ĥ, h̃) is at most:

≤ Cσ(n,δ) · ((2ǫ̃)1/κ + (2σ(n,δ))1/κ + (4Cσ(n,δ))1/(2κ−1))

≤ (4Cσ(n,δ))2κ/(2κ−1) + Cσ(n,δ)((2ǫ̃)1/κ + (2σ(n,δ))1/κ)

≤ (4Cσ(n,δ))2κ/(2κ−1) + max
(

4ǫ̃2,(Cσ(n,δ))2κ/(2κ−1)
)

+max
(

4σ(n,δ)2,(Cσ(n,δ))2κ/(2κ−1)
)

,

where the first step follows from Equation (8.12), the second step from algebra, and the third

step from using the fact that A
2κ−1

κ B
1
κ ≤max(A2,B2). Plugging this in to the previous equation,

and using max(A,B)≤A + B and
√

A + B ≤
√

A +
√

B, we get that:

err∆̃(h)− err∆̃(h̃) ≤ 10(4Cσ(n,δ))κ/(2κ−1) + 9ǫ̃+ 13σ(n,δ) + 3
√

σ(n,δ)ρ∆̃(h, h̃)

Combining this with the fact that A+B +C +D≤ 4max(A,B,C,D), we get that this is at most:

≤ max(40(4Cσ(n,δ))κ/(2κ−1),36ǫ̃,52σ(n,δ),12
√

σ(n,δ)ρ∆̃(h, h̃))

Combining this with Condition (8.9), we get that this is at most:

max(40(4Cσ(n,δ))κ/(2κ−1),36ǫ̃,52σ(n,δ),12

√

Cσ(n,δ)ǫ̃1/κ,12
√

Cσ(n,δ)(err∆̃(h)− err∆̃(h̃))1/κ)

Using the elementary inequality that A(2κ−1)/2κB1/2κ ≤ max(A,B), we conclude that
√

Cσ(n,δ)ǫ̃1/κ≤max
(

ǫ̃,(Cσ(n,δ))κ/(2κ−1)
)

. Also, we note that the inequality err∆̃(h)−err∆̃(h̃)≤

12
√

Cσ(n,δ)(err∆̃(h)− err∆̃(h̃))1/κ implies err∆̃(h)−err∆̃(h̃)≤ (144Cσ(n,δ))κ/(2κ−1). Thus we

have

err∆̃(h)− err∆̃(h̃)≤max
(

36ǫ̃,52σ(n,δ),(6400Cσ(n,δ))
κ

2κ−1

)

Invoking (8.9) again, we have that:

ρ∆̃(h, h̃)≤max
(

C(36ǫ̃)
1
κ ,C(52σ(n,δ))

1
κ ,C(6400Cσ(n,δ))

1
2κ−1

)
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8.6 Remaining Proofs from Section 8.2

Proof of Lemma 8.1. Assuming Er happens, we prove the lemma by induction.

Base Case: For k = 1, clearly h∗(D) ∈ V1 =H.

Inductive Case: Assume h∗(D) ∈ Vk. As we are in the realizable case, h∗(D) is consistent with

the examples Sk drawn in Step 8 of Algorithm 8.1; thus h∗(D) ∈ Vk+1. The lemma follows.

Proof Of Lemma 8.2. We use h̃k = argminh∈Vk
errΓ̃k

(h) to denote the optimal classifier in Vk

with respect to the distribution Γ̃k. Assuming Ea happens, we prove the lemma by induction.

Base Case: For k = 1, clearly h∗(D) ∈ V1 =H.

Inductive Case: Assume h∗ ∈ Vk. In order to show the inductive case, our goal is to show that:

PΓ̃k
[h∗(D)(x) 6= y]−PΓ̃k

[h̃k(x) 6= y]≤ ǫk

16φk
(8.15)

If (8.15) holds, then, by (2.1) of Lemma 8.4, we know that if Algorithm 8.2 succeeds when called

in iteration k of Algorithm 8.1, then, it is guaranteed that h∗ ∈ Vk+1.

We therefore focus on showing (8.15). First, from Equation (8.2) of Lemma 8.7, we have:

(errŨk
(h∗(D))− errŨk

(h̃k))− (errD(h∗(D))− errD(h̃k))≤ ǫk

32

As errD(h∗(D))≤ errD(h̃k), we get:

errŨk
(h∗(D)) ≤ errŨk

(h̃k) +
ǫk

32
(8.16)

On the other hand, by Equation (8.4) of Lemma 8.8 and triangle inequality,

EŨk
[1(h̃k(x) 6= y)(1−γk(x))]−EŨk

[1(h∗(D)(x) 6= y)(1−γk(x))] (8.17)

≤ EŨk
[1(h∗(D)(x) 6= h̃k(x))(1−γk(x))]≤ ǫk

32
(8.18)
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Combining Equations (8.16) and (8.17), we get:

EŨk
[1(h∗(D)(x) 6= y)γk(x)] = errŨk

(h∗(D)(x))−EŨk
[1(h∗(D)(x) 6= y)(1−γk(x))]

≤ errŨk
(h̃k(x)) + ǫk/32−EŨk

[1(h∗(D)(x) 6= y)(1−γk(x))]

≤ EŨk
[1(h̃k(x) 6= y)γk(x)] +EŨk

[1(h̃(x) 6= y)(1−γk(x))] + ǫk/32

−EŨk
[1(h∗(D)(x) 6= y)(1−γk(x))]

≤ EŨk
[1(h̃k(x) 6= y)γk(x)] + ǫk/16

Dividing both sides by φk, we get:

PΓ̃k
[h∗(D)(x) 6= y]−PΓ̃k

[h̃k(x) 6= y]≤ ǫk

16φk
,

from which the lemma follows.

Proof of Lemma 8.3. Assuming Er happens, we prove the lemma by induction.

Base Case: For k = 1, clearly errD(h)≤ 1≤ ǫ1 = ǫ2k0 ,∀h ∈ V1 =H.

Inductive Case: Note that ∀h,h′ ∈ Vk+1 ⊆ Vk, by Equation (8.4) of Lemma 8.8, we have:

EŨk
[1(h(x) 6= h′(x))(1−γk(x))] ≤ ǫk

8

By the proof of Lemma 8.1, h∗(D) ∈ Vk+1 on event Er, thus ∀h ∈ Vk+1,

EŨk
[1(h(x) 6= h∗(D)(x))(1−γk(x))]≤ ǫk

8
(8.19)

Since any h ∈ Vk+1, h is consistent with Sk of size mk = 768φk
ǫk

(

d ln 768φk
ǫk

+ ln 48
δk

)

, we have that

for all h ∈ Vk+1,

PΓ̃k
[h(x) 6= h∗(D)(x)] ≤ ǫk

8φk

That is,

EŨk
[1(h(x) 6= h∗(D)(x))γk(x)] ≤ ǫk

8

Combining this with Equation (8.19) above,

PŨk
[h(x) 6= h∗(D)(x)] ≤ ǫk

4
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By Equation (8.1) of Lemma 8.7,

PD[h(x) 6= h∗(D)(x)] ≤ ǫk

2
= ǫk+1

The lemma follows.

Proof of Lemma 8.6. Assuming Ea happens, we prove the lemma by induction.

Base Case: For k = 1, clearly errD(h)− errD(h∗(D))≤ 1≤ ǫ1 = ǫ2k0 ,∀h ∈ V1 =H.

Inductive Case: Note that ∀h,h′ ∈ Vk+1 ⊆ Vk, by Equation (8.4) of Lemma 8.8,

EŨk
[1(h(x) 6= y)(1−γk(x))]−EŨk

[1(h′(D)(x) 6= y)(1−γk(x))]

≤ EŨk
[1(h(x) 6= h′(D)(x))(1−γk(x))] ≤ ǫk

8

From Lemma 8.2, h∗(D) ∈ Vk whenever the event Ea happens. Thus ∀h ∈ Vk+1,

EŨk
[1(h(x) 6= y)(1−γk(x))]−EŨk

[1(h∗(D)(x) 6= y)(1−γk(x))] ≤ ǫk

8
(8.20)

On the other hand, if Algorithm 8.2 succeeds with target excess error ǫk
8φk

, by item(2.2) of

Lemma 8.4, for any h ∈ Vk+1,

PΓ̃k
[h(x) 6= y]− min

h∈Vk

PΓ̃k
[h(x) 6= y]≤ ǫk

8φk

Moreover, as h∗(D) ∈ Vk from Lemma 8.2,

PΓ̃k
[h(x) 6= y]−PΓ̃k

[h∗(D)(x) 6= y]≤ ǫk

8φk

In other words,

EŨk
[1(h(x) 6= y)γk(x)]−EŨk

[1(h∗(D)(x) 6= y)γk(x)]≤ ǫk

8

Combining this with Equation (8.20), we get that for all h ∈ Vk+1,

PŨk
[h(x) 6= y]−PŨk

[h∗(D)(x) 6= y]≤ ǫk

4
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Finally, combining this with Equation (8.2) of Lemma 8.7, we have that:

PD[h(x) 6= y]−PD[h∗(D)(x) 6= y]≤ ǫk

2
= ǫk+1

The lemma follows.

8.7 Proofs from Section 8.3

Proof of Theorem 8.2. (1) In the realizable case, suppose that event Er happens. Then from

Equation (8.5) of Lemma 8.8, while running Algorithm 6.1, we have that:

φk ≤ΦD(Vk,
ǫk

128
) +

ǫk

256
≤ΦD

(

BD(h∗, ǫk),
ǫk

128

)

+
ǫk

256
≤ΦD

(

BD(h∗, ǫk),
ǫk

256

)

= φ(ǫk,
ǫk

256
)

where the second inequality follows from the fact that Vk ⊆ BD(h∗(D), ǫk), and third inequality

follows from Lemma 8.15 and denseness assuption.

Thus, there exists c3 > 0 such that, in round k,

mk =

(

d ln
768φk

ǫk
+ ln

48

δk

)

768φk

ǫk
≤ c3

(

d ln
φ(ǫk, ǫk/256)

ǫk
+ ln(

k0−k + 1

δ
)

)

φ(ǫk, ǫk/256)

ǫk

Hence the total number of labels queried by Algorithm 8.1 can be bounded as follows:

⌈log 1
ǫ ⌉

∑

k=1

mk

≤ c3

⌈log 1
ǫ ⌉

∑

k=1

(

d ln
φ(ǫk, ǫk/256)

ǫk
+ ln(

k0−k + 1

δ
)

)

φ(ǫk, ǫk/256)

ǫk

(2) In the agnostic case, suppose the event Ea happens.

First, given Ea, from Equation (8.5) of Lemma 8.8 when running Algorithm 6.1,

φk ≤ΦD(Vk,
ǫk

128
) +

ǫk

256
≤ΦD

(

BD(h∗,2ν∗(D) + ǫk),
ǫk

256

)

= φ(2ν∗(D) + ǫk,
ǫk

256
) (8.21)

where the second inequality follows from the fact that Vk ⊆BD(h∗(D),2ν∗(D)+ǫk) and the third

inequality follows from Lemma 8.15 and denseness assumption.
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Second, recall that h̃k = argminh∈Vk
errΓ̃k

(h),

errΓ̃k
(h̃k) = min

h∈Vk

errΓ̃k
(h)

≤ errΓ̃k
(h∗(D))

=
EŨk

[1(h∗(D)(x) 6= y)γk(x)]

φk

≤
PŨk

[h∗(D)(x) 6= y]

φk

≤ ν∗(D) + ǫk/64

φk

Here the first inequality follows from the suboptimality of h∗(D) under distribution Γ̃k, the

second inequality follows from γk(x)≤ 1, and the third inequality follows from Equation (8.1).

Thus, conditioned on Ea, in iteration k, Algorithm 8.2 succeeds by Lemma 8.5, and there exists

a constant c4 > 0 such that the number of labels queried is

mk ≤ c1

ǫk
8φk

+ errΓ̃k
(h̃k)

( ǫk
8φk

)2

(

d ln
1
ǫk

8φk

+ ln
2

δk

)

≤ c4

(

d ln
φ(2ν∗(D) + ǫk, ǫk/256)

ǫk
+ ln(

k0−k + 1

δ
)

)

φ(2ν∗(D) + ǫk, ǫk/256)

ǫk
(1 +

ν∗(D)

ǫk
)

Here the last line follows from Equation (8.21). Hence the total number of examples queried can

be bounded as follows:

⌈log 1
ǫ ⌉

∑

k=1

mk

≤ c4

⌈log 1
ǫ ⌉

∑

k=1

(

d ln
φ(2ν∗(D) + ǫk, ǫk/256)

ǫk
+ ln(

k0−k + 1

δ
)

)

φ(2ν∗(D) + ǫk, ǫk/256)

ǫk
(1 +

ν∗(D)

ǫk
)

Proof of Theorem 8.3. Assume Ea happens.
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First, from Equation (8.5) of Lemma 8.8 when running Algorithm 6.1,

φk ≤ ΦD(Vk,
ǫk

128
) +

ǫk

256
≤ΦD

(

BD(h∗,C0ǫ
1
κ
k ),

ǫk

128

)

+
ǫk

256

≤ ΦD

(

BD(h∗,C0ǫ
1
κ
k ),

ǫk

256

)

= φ(C0ǫ
1
κ
k ,

ǫk

256
) (8.22)

where the second inequality follows from the fact that Vk ⊆ BD(h∗(D),C0ǫ
1
κ
k ), and the third

inequality follows from Lemma 8.15 and denseness assumption.

Second, for all h ∈ Vk,

φkρΓ̃k
(h,h∗(D))

= EŨk
[1(h(x) 6= h∗(D)(x))γk(x)]

≤ ρŨk
(h,h∗(D))

≤ ρD(h,h∗(D)) + ǫk/32

≤ C0(errD(h)− errD(h∗(D)))
1
κ + ǫk/32

≤ C0(errŨk
(h)− errŨk

(h∗(D)) + ǫk/64)
1
κ + ǫk/32

= C0(EŨk
[1(h(x) 6= y)γk(x)]−EŨk

[1(h∗(D)(x) 6= y)γk(x)]

+EŨk
[1(h(x) 6= y)(1−γk(x))]−EŨk

[1(h∗(D)(x) 6= y)(1−γk(x))] + ǫk/16)
1
κ + ǫk/32

Here the first inequality follows from γk(x)≤ 1, the second inequality follows from Equation (8.3)

of Lemma 8.7, the third inequality follows from Definition 8.1 and the fourth inequality follows

from Equation (8.2) of Lemma 8.7. The above can be upper bounded by:

≤ C0(EŨk
[1(h(x) 6= y)γk(x)]−EŨk

[1(h∗(D)(x) 6= y)γk(x)] + ǫk/16)
1
κ + ǫk/32

≤ 2C0(EŨk
[1(h(x) 6= y)γk(x)]−EŨk

[1(h∗(D)(x) 6= y)γk(x)])
1
κ + 2C0(ǫk/16)

1
κ + ǫk/32

≤ max(8C0,4)max

(

(EŨk
[1(h(x) 6= y)γk(x)]−EŨk

[1(h∗(D)(x) 6= y)γk(x)]),
ǫk

16

)
1
κ

= max(8C0,4)(φk)
1
κ max

(

PΓ̃k
[h(x) 6= y]−PΓ̃k

[h∗(D)(x) 6= y],
ǫk

8φk

)
1
κ
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Here the first inequality follows from Equation (8.4) of Lemma 8.8 and triangle inequality

EŨk
[1(h(x) 6= y)γk(x)]−EŨk

[1(h∗(D)(x) 6= y)γk(x)] ≤ EŨk
[1(h(x) 6= h∗(D)(x))γk(x)] ≤ ǫk/32,

and the last two inequalities follow from simple algebra.

Dividing both sides by φk, we get:

ρΓ̃k
(h,h∗(D))≤ C1(φk)

1
κ −1 max

(

errΓ̃k
(h)− errΓ̃k

(h∗(D)),
ǫk

8φk

)
1
κ

where C1 = max(8C0,4). Thus in iteration k, Condition (8.9) in Lemma 8.9 holds with C :=

C1(φk)
1
κ −1 and h̃ := h∗(D). Thus, from Lemma 8.9, Algorithm 8.2 succeeds, and there exists a

constant c5 > 0, such that the number of labels queried is

mk ≤ c2 max

(

(d ln(C1(φk)
1
κ −1(

ǫk

8φk
)

1
κ −2) + ln

2

δk
)(C1(φk)

1
κ −1(

ǫk

8φk
)

1
κ −2),

(d ln(
ǫk

8φk
)−1 + ln

2

δk
)(

ǫk

8φk
)−1

)

≤ c5

(

d ln(φkǫ
1
κ −2

k ) + ln(
k0−k + 1

δ
)

)

φkǫ
1
κ −2

k

≤ c5

(

d ln(φ(C0ǫ
1
κ
k ,

ǫk

256
)ǫ

1
κ −2

k ) + ln(
k0−k + 1

δ
)

)

φ(C0ǫ
1
κ
k ,

ǫk

256
)ǫ

1
κ −2

k

Where the last line follows from Equation (8.21). Hence the total number of examples queried is

at most

⌈log 1
ǫ ⌉

∑

k=1

mk ≤ c5

⌈log 1
ǫ ⌉

∑

k=1

(

d ln(φ(C0ǫ
1
κ
k ,

ǫk

256
)ǫ

1
κ −2

k ) + ln(
k0−k + 1

δ
)

)

φ(C0ǫ
1
κ
k ,

ǫk

256
)ǫ

1
κ −2

k

The following lemma is an immediate corollary of Theorem 21, item (a) of Lemma 2 and

Lemma 3 of [BL13]:

Lemma 8.12. Suppose D is isotropic and log-concave on R
d, and H is the set of homogeneous

linear classifiers on R
d, then there exist absolute constants c6, c7 > 0 such that φ(r,η)≤ c6r ln c7r

η .

Proof of Lemma 8.12. Denote wh as the unit vector w such that h(x) = sign(w ·x), and θ(w,w′)

to be the angle between vectors w and w′. If h ∈ BD(h∗,r), then by Lemma 3 of [BL13], there

exists some constant c11 > 0 such that θ(wh,wh∗) ≤ r
c11

. Also, by Lemma 21 of [BL13], there
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exists some constants c12, c13 > 0, such that, if θ(w,w′) = α then

PD(sign(w ·x) 6= sign(w′ ·x), |w ·x| ≥ b)≤ c12αexp(−c13
b

α
)

We define a special solution (α,β,γ) as follows:

α(x) := 1(wh∗ ·x≥ r

c11c13
ln

c12r

c11η
)

β(x) := 1(wh∗ ·x≤− r

c11c13
ln

c12r

c11η
)

γ(x) := 1(|wh∗ ·x| ≤ r

c11c13
ln

c12r

c11η
)

Then it can be checked that for all h ∈ BD(h∗,r),

E[1(h(x) = +1)β(x) +1(h(x) =−1)α(x)]

= PD[sign(wh∗ ·x) 6= sign(wh ·x), |wh∗ ·x| ≥ r

c11c13
ln

c12r

c11η
]≤ η

And by item (a) of Lemma 2 of [BL13], we have

Eγ(x) = PD(|wh∗ ·x| ≤ r

c11c13
ln

c12r

c11η
)≤ r

c11c13
ln

c12r

c11η

Hence,

φ(r,η) ≤ r

c11c13
ln

c12r

c11η

Proof of Corollary 8.1. This is an immediate consequence of Lemma 8.12 and Theorems 4.2

and 8.3 and algebra.

8.8 Proofs of Concentration Lemmas

Proof of Lemma 8.7. We begin by observing that:

errŨk
(h) =

1

nk

nk
∑

i=1

[PD[Y = +1|X = xi]1(h(xi) =−1) +PD[Y =−1|X = xi]1(h(xi) = +1)]
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Moreover, max(S({1(h(x) = 1,h∈H)},n),S({1(h(x) =−1,h∈H)},n))≤ (en
d )d. Combining this

fact with Lemma 8.13, the following equations hold simultaneously with probability 1− δk/6:

∣

∣

∣

1

nk

nk
∑

i=1

PD[Y = +1|X = xi]1(h(xi) =−1)−PD[h(x) =−1,y = +1]
∣

∣

∣≤

√

8(d ln enk
d + ln 24

δk
)

nk
≤ ǫk

128

∣

∣

∣

1

nk

nk
∑

i=1

PD[Y =−1|X = xi]1(h(xi) = +1)−PD[h(x) = +1,y =−1]
∣

∣

∣≤

√

8(d ln enk
d + ln 24

δk
)

nk
≤ ǫk

128

Thus Equation (8.1) holds with probability 1− δk/6. Moreover, we observe that Equation (8.1)

implies Equation (8.2). To show Equation (8.3), we observe that by Lemma A.6, with probability

1− δk/12,

|ρD(h,h′)−ρŨk
(h,h′)|= |ρD(h,h′)−ρSk

(h,h′)| ≤ 2
√

σ(nk,δk/12)≤ ǫk

64

Thus, Equation (8.3) holds with probability ≥ 1− δk/12. By union bound, with probability

1− δk/4, Equations (8.1), (8.2), and (8.3) hold simultaneously.

Proof of Lemma 8.8. (1) Given a confidence-rated predictor with inputs hypothesis set Vk, un-

labeled data Uk, and error bound ǫk/64, the outputs {(αk,i,βk,i,γk,i)}nk
i=1 must satisfy that for

all h,h′ ∈ Vk,

1

nk

nk
∑

i=1

[1(h(xk,i) =−1)αk,i +1(h(xk,i) = +1)βk,i]≤
ǫk

64

1

nk

nk
∑

i=1

[1(h′(xk,i) =−1)αk,i +1(h′(xk,i) = +1)βk,i]≤
ǫk

64

Since 1(h(x) 6= h′(x))≤min(1(h(x) =−1)+1(h′(x) =−1),1(h(x) = +1)+1(h′(x) = +1)), adding

up the two inequalities above, we get

1

nk

nk
∑

i=1

[1(h(xk,i) 6= h′(xk,i))(αk,i + βk,i)]≤
ǫk

32

That is,

1

nk

nk
∑

i=1

[1(h(xk,i) 6= h′(xk,i))(1−γk,i)]≤
ǫk

32

(2) By definition of ΦD(V,η), there exist nonnegative functions α,β,γ such that α(x) +
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β(x) + γ(x)≡ 1, ED[γ(x)] = ΦD(Vk, ǫk/128) and for all h ∈ Vk,

ED[α(x)1(h(x) =−1) + β(x)1(h(x) = +1)]≤ ǫk

128

Consider the linear program in Algorithm 6.1 with inputs hypothesis set Vk, unlabeled

data Uk, and error bound ǫk/64. We consider the following special (but possibly non-optimal)

solution for this LP: αk,i = α(zk,i),βk,i = β(zk,i),γk,i = γ(zk,i). We will now show that this solu-

tion is feasible and has abstention ΦD(Vk, ǫk/128) plus O(ǫk) with high probability.

Observe that max(S({1(h(x) = 1,h ∈ H)},n),S({1(h(x) = −1,h ∈ H)},n)) ≤ (en
d )d. Therefore,

from Lemma 8.13 and the union bound, with probability 1− δk/4, the following hold simultane-

ously for all h ∈H:
∣

∣

∣

1

nk

nk
∑

i=1

γ(zk,i)−EDγ(x)
∣

∣

∣≤

√

ln 2
δk

2nk
≤ ǫk

256
(8.23)

∣

∣

∣

1

nk

nk
∑

i=1

α(zk,i)1(h(zk,i) =−1)−ED[α(x)1(h(x) =−1)]
∣

∣

∣≤

√

8(d ln enk
d + ln 24

δk
)

nk
≤ ǫk

256
(8.24)

∣

∣

∣

1

nk

nk
∑

i=1

β(zk,i)1(h(zk,i) = +1)−ED[β(x)1(h(x) = +1)]
∣

∣

∣
≤

√

8(d ln enk
d + ln 24

δk
)

nk
≤ ǫk

256
(8.25)

Adding up Equations (8.24) and (8.25), we get that

∣

∣

∣

1

nk

nk
∑

i=1

[β(xi)1(h(xi) = +1)+α(xi)1(h(xi) =−1)]−ED[α(x)1(h(x) =−1)+β(x)1(h(x) = +1))]
∣

∣

∣

is at most ǫk
128 . Thus {(α(zk,i),β(zk,i)}nk

i=1 is a feasible solution of the linear program of Algo-

rithm 6.1. Also, by Equation (8.23), 1
nk

∑nk
i=1 γ(zk,i)≤ΦD(Vk, ǫk

128 )+ ǫk
64 . Thus, by Theorem 6.1,

the outputs {(αk,i,βk,i,γk,i)}nk
i=1 of the linear program in Algorithm 6.1 satisfy

φk =
1

nk

nk
∑

i=1

γk,i ≤
1

nk

nk
∑

i=1

γ(zk,i)≤ΦD(Vk,
ǫk

128
) +

ǫk

256

due to their optimality.

Lemma 8.13. Pick any n≥ 1, δ ∈ (0,1), a family F of functions f :Z →{0,1}, a fixed weighting

function w :Z → [0,1]. Let Sn be a set of n iid copies of Z. The following holds with probability
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at least 1− δ:
∣

∣

∣

1

n

n
∑

i=1

w(zi)f(zi)−E[w(z)f(z)]
∣

∣

∣≤

√

8(lnS(F ,n) + ln 2
δ )

n

where S(F ,n) = maxz1,...,zn∈Z |{(f(z1), . . . ,f(zn)) : f ∈ F}| is the growth function of F .

Proof. The proof is fairly standard, and follows immediately from the proof of additive VC

bounds. With probability 1− δ,

sup
f∈F

∣

∣

∣

1

n

n
∑

i=1

w(zi)f(zi)−Ew(z)f(z)
∣

∣

∣

≤ ES∼Dn sup
f∈F

∣

∣

∣

1

n

n
∑

i=1

w(zi)f(zi)−Ew(z)f(z)
∣

∣

∣+

√

2ln 1
δ

n

≤ ES∼Dn,S′∼Dn sup
f∈F

∣

∣

∣

1

n

n
∑

i=1

(w(zi)f(zi)−w(z′
i)f(z′

i))
∣

∣

∣+

√

2ln 1
δ

n

≤ ES∼Dn,S′∼Dn,σ∼U({−1,+1}n) sup
f∈F

∣

∣

∣

1

n

n
∑

i=1

σi(w(zi)f(zi)−w(z′
i)f(z′

i))
∣

∣

∣+

√

2ln 1
δ

n

≤ 2ES∼Dn,σ∼U({−1,+1}n) sup
f∈F

∣

∣

∣

1

n

n
∑

i=1

σiw(zi)f(zi)
∣

∣

∣+

√

2ln 1
δ

n

≤ 2

√

2ln(2S(F ,n))

n
+

√

2ln 1
δ

n
≤

√

8(lnS(F ,n) + ln 2
δ )

n

Where the first inequality is by McDiarmid’s Lemma; the second inequality follows from Jensen’s

Inequality; the third inequality follows from symmetry; the fourth inequality follows from |A +

B| ≤ |A|+ |B|; the fifth inequality follows from Massart’s Finite Lemma.

Lemma 8.14. Let 0 < 2η≤ r≤ 1. Given a hypothesis set V and data distribution D over X ×Y,

if there exist h1,h2 ∈ V such that ρD(h1,h2)≥ r, then ΦD(V,η)≥ r−2η.

Proof. Let (α,β,γ) be a triple of functions from X to R
3 satisfying the following conditions:

α,β,γ ≥ 0, α + β + γ ≡ 1, and for all h ∈ V ,

ED[α(x)1(h(x) =−1) + β(x)1(h(x) = +1)]≤ η
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Then, in particular, we have:

ED[α(x)1(h1(x) =−1) + β(x)1(h1(x) = +1)]≤ η

ED[α(x)1(h2(x) =−1) + β(x)1(h2(x) = +1)]≤ η

Thus, by 1(h1(x) 6= h2(x)) ≤ min(1(h1(x) = −1) + 1(h2(x) = −1),1(h1(x) = +1) + 1(h2(x) =

+1)), adding the two inequalities up,

ED[(α(x) + β(x))1(h1(x) 6= h2(x))]≤ 2η

Since

ρD(h1,h2) = ED1(h1(x) 6= h2(x)) ≥ r

We have

ED[γ(x)1(h1(x) 6= h2(x))] = ED[(1−α(x)−β(x))1(h1(x) 6= h2(x))] ≥ r−2η

Thus,

ED[γ(x)] ≥ ED[γ(x)1(h1(x) 6= h2(x))] ≥ r−2η

Hence ΦD(V,η) ≥ r−2η.

Lemma 8.15. Given hypothesis set V and data distribution D over X ×Y, 0 < λ < η < 1, if

there exist h1,h2 ∈ V such that ρD(h1,h2)≥ 2η−λ, then ΦD(V,η) + λ≤ΦD(V,η−λ).

Proof. Suppose (α1,β1,γ1) are nonnegative functions satisfying α1 +β1 +γ1≡ 1, and for all h∈ V ,

ED[β1(x)1(h(x) = +1) + α1(x)1(h(x) = −1)] ≤ η−λ, and EDγ1(x) = ΦD(V,η−λ). Notice by

Lemma 8.14,ΦD(V,η−λ)≥ 2η−λ−2(η−λ) = λ.

Then we pick nonnegative functions (α2,β2,γ2) as follows. Let α2 = α1, γ2 = (1−
λ

ΦD(V,η−λ))γ1, and β2 = 1−α2−γ2. It is immediate that (α2,β2,γ2) is a valid confidence rated

predictor and β2 ≥ β1, γ2 ≤ γ1, EDγ2(x) = ΦD(V,η−λ)−λ. It can be readily checked that the
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confidence rated predictor (α2,β2,γ2) has error guarantee η, specifically:

ED[β2(x)1(h(x) = +1) + α2(x)1(h(x) =−1)]

≤ ED[(β2(x)−β1(x))1(h(x) = +1) + (α2(x)−α1(x))1(h(x) =−1)] + η−λ

≤ ED[(β2(x)−β1(x)) + (α2(x)−α1(x))] + η−λ

≤ λ+ η−λ = η

Thus, ΦD(V,η), which is the minimum abstention probability of a confidence-rated predictor

with error guarantee η with respect to hypothesis set V and data distribution D, is at most

ΦD(V,η−λ)−λ.

8.9 Detailed Derivation of Label Complexity Bounds

8.9.1 Agnostic with Fixed ν∗(D)

Proposition 8.1. In agnostic case, the label complexity of Algorithm 8.1 is at most

Õ

(

sup
k≤⌈log(1/ǫ)⌉

φ(2ν∗(D) + ǫk, ǫk/256)

2ν∗(D) + ǫk
(d

ν∗(D)2

ǫ2
ln

1

ǫ
+ d ln2 1

ǫ
)

)

,

where the Õ notation hides factors logarithmic in 1/δ.

Proof. Applying Theorem 8.3, the total number of labels queried is at most:

c4

⌈log 1
ǫ ⌉

∑

k=1

(d ln
φ(2ν∗(D) + ǫk, ǫk/256)

ǫk
+ ln(

⌈log(1/ǫ)⌉−k + 1

δ
))

φ(2ν∗(D) + ǫk, ǫk/256)

ǫk
(1 +

ν∗(D)

ǫk
)
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Using the fact that φ(2ν∗(D) + ǫk, ǫk/256)≤ 1, this is

c4

⌈log 1
ǫ ⌉

∑

k=1

(d ln
φ(2ν∗(D) + ǫk, ǫk/256)

ǫk
+ ln(

⌈log(1/ǫ)⌉−k + 1

δ
))

φ(2ν∗(D) + ǫk, ǫk/256)

ǫk
·

(1 +
ν∗(D)

ǫk
)

= Õ







⌈log 1
ǫ ⌉

∑

k=1

(d ln
φ(2ν∗(D) + ǫk, ǫk/256)

ǫk
+ lnlog(1/ǫ))

φ(2ν∗(D) + ǫk, ǫk/256)

2ν + ǫk
(1 +

ν∗(D)2

ǫ2
k

)







≤ Õ






sup

k≤⌈log(1/ǫ)⌉

φ(2ν∗(D) + ǫk, ǫk/256)

2ν∗(D) + ǫk

⌈log 1
ǫ ⌉

∑

k=1

(1 +
ν∗(D)2

ǫ2
k

)(d ln
1

ǫ
+ lnln

1

ǫ
)







≤ Õ

(

sup
k≤⌈log(1/ǫ)⌉

φ(2ν∗(D) + ǫk, ǫk/256)

2ν∗(D) + ǫk
(d

ν∗(D)2

ǫ2
ln

1

ǫ
+ d ln2 1

ǫ
)

)

,

where the last line follows as ǫk is geometrically decreasing.

Specifically, if H is the class of homogeneous linear classifiers in R
d, DX is isotropic

log-concave in R
d, then, our label complexity bound can be written as:

O

(

ln
ǫ + ν∗(D)

ǫ
(ln

1

ǫ
+

ν∗(D)2

ǫ2
)(d ln

ǫ + ν∗(D)

ǫ
+ ln

1

δ
) + ln

1

ǫ
ln

ǫ + ν∗(D)

ǫ
ln ln

1

ǫ

)

Indeed, recall by Lemma 8.12, we have φ(2ν∗(D) + ǫk, ǫk/256) ≤ C(ν∗(D) + ǫk) ln ν∗(D)+ǫk
ǫk

for

some constant C > 0. Applying Theorem 8.2, the label complexity is

O







⌈log 1
ǫ ⌉

∑

k=1

(d ln(
2ν∗(D) + ǫk

ǫk
ln

2ν∗(D) + ǫk

ǫk
) + ln(

log(1/ǫ)−k + 1

δ
)) ln

2ν∗(D) + ǫk

ǫk
(1 +

ν∗(D)2

ǫ2
k

)






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This can be simplified to: (dealing with 1 and ν∗(D)2

ǫ2
k

separately)

O







⌈log 1
ǫ ⌉

∑

k=1

ln
ν∗(D) + ǫk

ǫk
(d ln

ν∗(D) + ǫk

ǫk
+ ln

k0−k + 1

δ
)

+

⌈log 1
ǫ ⌉

∑

k=1

ν∗(D)2

ǫ2
k

ln
ν∗(D) + ǫk

ǫk
(d ln

ν∗(D) + ǫk

ǫk
+ ln

k0−k + 1

δ
)







≤ O

(

ln
1

ǫ
ln

ǫ + ν∗(D)

ǫ
(d ln

ǫ + ν∗(D)

ǫ
+ lnln

1

ǫ
+ ln

1

δ
)

+
ν∗(D)2

ǫ2
ln

ǫ + ν∗(D)

ǫ
(d ln

ǫ + ν∗(D)

ǫ
+ ln

1

δ
)

)

≤ O

(

ln
ǫ + ν∗(D)

ǫ
(ln

1

ǫ
+

ν∗(D)2

ǫ2
)(d ln

ǫ + ν∗(D)

ǫ
+ ln

1

δ
) + ln

1

ǫ
ln

ǫ + ν∗(D)

ǫ
ln ln

1

ǫ

)

.

8.9.2 Tsybakov Noise Condition with κ > 1

Proposition 8.2. Suppose the hypothesis class H and the data distribution D satisfies (C0,κ)-

Tsybakov Noise Condition with κ > 1. Then the label complexity of Algorithm 8.1 is at most

Õ



 sup
k≤⌈log(1/ǫ)⌉

φ(C0ǫ
1
κ
k , ǫk

256 )

ǫ
1
κ
k

ǫ
2
κ −2d ln

1

ǫ



 ,

where the Õ notation hides factors logarithmic in 1/δ.

Proof. Applying Theorem 8.3, the total number of labels queried is at most:

c5

⌈log 1
ǫ ⌉

∑

k=1

(d ln(φ(C0ǫ
1
κ
k ,

ǫk

256
)ǫ

1
κ −2

k ) + ln(
k0−k + 1

δ
))φ(C0ǫ

1
κ
k ,

ǫk

256
)ǫ

1
κ −2

k
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Using the fact that φ(C0ǫ
1
κ
k , ǫk

256 )≤ 1, we get

c5

⌈log 1
ǫ ⌉

∑

k=1

(d ln(φ(C0ǫ
1
κ
k ,

ǫk

256
)ǫ

1
κ −2

k ) + ln(
k0−k + 1

δ
))φ(C0ǫ

1
κ
k ,

ǫk

256
)ǫ

1
κ −2

k

≤ Õ






sup

k≤⌈log(1/ǫ)⌉

φ(C0ǫ
1
κ
k , ǫk

256 )

ǫ
1
κ
k

⌈log 1
ǫ ⌉

∑

k=1

ǫ
2
κ −2

k d ln
1

ǫ







≤ Õ



 sup
k≤⌈log(1/ǫ)⌉

φ(C0ǫ
1
κ
k , ǫk

256 )

ǫ
1
κ
k

ǫ
2
κ −2d ln

1

ǫ





Specifically, if H is the class of homogeneous linear classifiers in R
d, and DX is isotropic

log-concave in R
d, our label complexity bound is at most

O

(

ǫ
2
κ −2 ln

1

ǫ
(d ln

1

ǫ
+ ln

1

δ
)

)

Indeed, recall by Lemma 8.12, we haveφ(C0ǫ
1
κ
k , ǫk

256 )≤Cǫ
1
κ
k ln 1

ǫk
for some constant C > 0. Apply-

ing Theorem 8.3, the label complexity is:

O







⌈log 1
ǫ ⌉

∑

k=1

(d ln(φ(C0ǫ
1
κ
k ,

ǫk

256
)ǫ

1
κ −2

k ) + ln(
k0−k + 1

δ
))φ(C0ǫ

1
κ
k ,

ǫk

256
)ǫ

1
κ −2

k







This can be simplified to :

O







⌈log 1
ǫ ⌉

∑

k=1

(d ln(ǫ
2
κ −2

k ln
1

ǫk
) + ln(

k0−k + 1

δ
))ǫ

2
κ −2

k ln
1

ǫk







≤ O






(

⌈log 1
ǫ ⌉

∑

k=1

ǫ
2
κ −2

k ) ln
1

ǫ
(d ln

1

ǫ
+ ln

1

δ
)







≤ O

(

ǫ
2
κ −2 ln

1

ǫ
(d ln

1

ǫ
+ ln

1

δ
)

)

.
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Appendix A

Concentration Inequalities

We collect a few concentration inequalities that will be used throughout this thesis.

Lemma A.1 (Bernstein’s Inequality). Let X1, . . . ,Xn be independent zero-mean random vari-

ables. Suppose that |Xi| ≤M almost surely. Then for all positive t,

Pr





n
∑

i=1

Xi > t



 ≤ exp

(

− t2/2
∑n

j=1E[X2
j ] + Mt/3

)

.

Lemma A.2. Let Z1, . . . ,Zn be independent Bernoulli random variables with mean p. Let Z̄ =

1
n

∑n
i=1 Zi. Then with probability 1− δ,

Z̄ ≤ p +

√

2p ln(1/δ)

n
+

2ln(1/δ)

3n
.

Proof. Let Xi = Zi−p for all i, note that |Xi| ≤ 1. The lemma follows from Bernstein’s Inequality

and algebra.

Lemma A.3 (Freedman’s Inequality). Let X1, . . . ,Xn be a martingale difference sequence, and

|Xi| ≤M almost surely. Let V be the sum of the conditional variances, i.e.

V =

n
∑

i=1

E[X2
i |X1, . . . .Xi−1]

188
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Then, for every t,v > 0,

Pr





n
∑

i=1

Xi > t and V ≤ v



≤ exp

(

− t2/2

v + Mt/3

)

.

Lemma A.4. Let Z1, . . . ,Zn be a sequence of Bernoulli random variables, where E[Zi|Z1, . . . ,Zi−1] =

pi. Then, for every δ > 0, with probability 1− δ:

n
∑

i=1

Zi ≤ 2vn +

√

4vn ln
log4n

δ
+

2

3
ln

log4n

δ
.

where vn = max(
∑n

i=1 pi,1).

Proof. Let Xi = Zi−pi for all i, note that {Xi} is a martingale difference sequence and |Xi| ≤ 1.

From Freedman’s Inequality and algebra, for any v,

Pr







1

n

n
∑

i=1

Zi > v +

√

2v ln log4n
δ

n
+

2ln log4n
δ

3n
and

n
∑

i=1

pi ≤ v






≤ δ

logn + 2
.

The proof follows by taking union bound over v = 2i, i = 0,1, . . . ,⌈logn⌉.

Define:

σ(d,n,δ) =
8

n
(2d ln

2en

d
+ ln

24

δ
), (A.1)

where d is the VC dimension of the hypothesis class H. when it is clear from context, we

sometimes abbreviate the above as σ(n,δ).

Theorem A.1 ([VC71]). Let F be a family of functions f : Z → {0,1} on a domain Z with VC

dimension at most d, and let P be a distribution on Z. Let Pn denote the empirical measure

from an iid sample of size n from P . For any δ ∈ (0,1), with probability at least 1− δ, for all

f ∈ F ,

−min
{

ε +
√

P fε,
√

Pnfε
}

≤ P f −Pnf ≤ min
{

ε +
√

Pnfε,
√

P fε
}

where ε := σ(d,n,δ).

We have the following simple fact about σ(·, ·, ·).
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Fact A.1.

σ

(

d,m,
δ

2logm(logm + 1)

)

≥ ǫ =⇒ m ≤ 64

ǫ

(

d log
512

ǫ
+ log

24

δ

)

.

The following lemma is a corollary of Theorem A.1; we use the version of [Hsu10].

Lemma A.5. Pick any n≥ 1, δ ∈ (0,1). Let Sn be a set of n iid copies of (X,Y ) drawn from a

distribution D over labeled examples. Then, the following hold with probability at least 1−δ over

the choice of Sn:

(1) For all h ∈H,

|errD(h)− errSn(h)| ≤min

(

σ(n,δ) +
√

σ(n,δ)errD(h),σ(n,δ) +
√

σ(n,δ)errSn(h)

)

(A.2)

In particular, all classifiers h in H consistent with Sn satisfies

errD(h)≤ σ(n,δ) (A.3)

(2) For all h,h′ in H,

(errD(h)−errD(h′))−(errSn(h)−errSn(h′))≤ σ(n,δ)+min

(

√

σ(n,δ)ρD(h,h′),
√

σ(n,δ)ρSn (h,h′)

)

(A.4)

|ρD(h,h′)−ρSn(h,h′)| ≤ σ(n,δ) + min

(

√

σ(n,δ)ρD(h,h′),
√

σ(n,δ)ρSn (h,h′)

)

(A.5)

Where σ(n,δ) is defined in Equation (A.1).

We occasionally use the following (weaker) version of Lemma A.5.

Lemma A.6. Pick any n≥ 1, δ ∈ (0,1). Let Sn be a set of n iid copies of (X,Y ). The following

holds with probability at least 1− δ: (1) For all h ∈H,

|errD(h)− errSn(h)| ≤
√

4σ(n,δ) (A.6)

(2) For all h,h′ in H,

(errD(h)− errD(h′))− (errSn(h)− errSn(h′))≤
√

4σ(n,δ) (A.7)
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|ρD(h,h′)−ρSn(h,h′)| ≤
√

4σ(n,δ) (A.8)

Where σ(n,δ) is defined in Equation (A.1).
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