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Abstract

We investigate active learning with access to two
distinct oracles: LABEL (which is standard) and
SEARCH (which is not). The SEARCH oracle
models the situation where a human searches a
database to seed or counterexample an existing
solution. SEARCH is stronger than LABEL while
being natural to implement in many situations.
We show that an algorithm using both oracles can
provide exponentially large problem-dependent
improvements over LABEL alone.

Introduction Traditional active learning uses selective
sampling with a LABEL oracle: the learning algorithm pro-
vides an unlabeled example to the oracle, and the oracle
responds with a (possibly noisy) label. Using LABEL in an
active learning algorithm is known to give (possibly expo-
nentially large) problem-dependent improvements in label
complexity, even in agnostic settings when no assumption
is made about the labeling mechanism (e.g., Balcan et al.,
2006; Hanneke, 2007; 2014).

A well-known deficiency of LABEL arises in the presence
of rare classes in classification problems, frequently the
case in practice (Attenberg and Provost, 2010). Class im-
balance may be so extreme that simply finding an exam-
ple from the rare class can exhaust the labeling budget.
A good illustration of this is the problem of learning in-
terval functions in [0, 1]. Any LABEL-only active learner
needs at least Ω(1/ε) LABEL queries to learn an arbitrary
target interval with error at most ε (Dasgupta, 2005). As
soon as any positive example from the interval is found,
the sample complexity of learning intervals collapses to
O(log(1/ε))— we can simply do a binary search for each

of the end points. How can this observation be generalized
and used effectively?

Searching for examples of the rare class to seed active
learning is the way this hurdle is successfully dealt with
in practice (Attenberg and Provost, 2010). Domain experts
are often adept at finding examples of a class by various,
often clever means. When building a hate speech filter, a
simple web search can readily produce several positive ex-
amples. Sending a random batch of unlabeled examples to
LABEL is unlikely to produce any positive examples at all.

In practice, it is also common to have counterexamples to a
learned predictor. When monitoring the content stream fil-
tered by the current hate speech filter, a human editor may
spot an example of hate speech that seeped through the fil-
ter. The editors, using all search tools available to them, can
be tasked with finding such counterexamples, interactively
correcting the learning process.

We define a new oracle, SEARCH, that provides counterex-
amples to version spaces. Given a set of possible classi-
fiersH mapping unlabeled points to labels, a version space
V ⊆ H is the subset of classifiers that are plausibly op-
timal. A counterexample to a version space is a labeled
example which every hypothesis in the version space clas-
sifies incorrectly. When there is no counterexample to the
version space, SEARCH returns ⊥.

Why not counterexample a single classifier? Consider a
learned interval classifier on the real line. A valid coun-
terexample to this classifier may be arbitrarily close to an
interval endpoint, yielding no useful information. SEARCH
formalizes “counterexample away from decision bound-
ary,” avoiding this. Thus the learning algorithm must guide
the search effort to parts of the space where it would be
most effective.
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How can a counterexample to the version space be used?
We consider a nested sequence of hypothesis classes of in-
creasing complexity, akin to Structural Risk Minimization
(SRM) in passive learning (see, e.g., Vapnik, 1982; De-
vroye et al., 1996). When SEARCH produces a counterex-
ample to the version space, it gives a proof that the cur-
rent hypothesis class is too simplistic to solve the problem
effectively. We show that this guided increase in hypothe-
sis complexity results in radically lower LABEL complexity
than directly learning on the complex space.

SEARCH can easily model the practice of seeding, dis-
cussed earlier. If the first hypothesis class in the sequence
has just the constant−1 function, a seed example with label
+1 is a counterexample to the version space.

We require that SEARCH always returns the label of the best
predictor in the nested sequence. For many natural hypoth-
esis sequences, the Bayes optimal classifier is eventually in
the sequence. Unlike with LABEL queries where the labeler
has no choice of what to label, here the labeler chooses a
counterexample. If a human editor spots a piece of content
that seeped through the filter and says that it is unques-
tionably hate speech, it likely is. These counterexamples
should be consistent with the Bayes optimal predictor for
any sensible feature representation.

Balcan and Hanneke (Balcan and Hanneke, 2012) define
the Class Conditional Query (CCQ) oracle. Here, a query
specifies a subset of unlabeled examples and a label, with
the oracle returning one of the examples in the subset with
the specified label, if one exists. While the definition of the
CCQ oracle doesn’t require the subset to be explicitly enu-
merated and finite, the motivation and the algorithms pro-
posed in the paper do. In contrast, SEARCH has an implicit
domain of all examples satisfying some filter, so search can
more plausibly discover relevant counterexamples. The use
of SEARCH in this paper is substantially different from the
use of CCQ in (Balcan and Hanneke, 2012). Our moti-
vation is to use SEARCH to assist LABEL, as opposed to
using SEARCH alone. This is especially useful in the set-
ting where the cost of SEARCH is significantly higher than
the cost of LABEL (and class skew is only moderate)—we
hope to avoid using SEARCH queries whenever it is possi-
ble to make progress using LABEL queries.

The Relative Power of Oracles As given by the inter-
vals example, SEARCH can be exponentially more power-
ful than LABEL. Does it dominate LABEL?

Although SEARCH cannot always implement LABEL, we
show that it is at least as effective in reducing the region
of disagreement of the current version space. The clear-
est example is learning threshold classifiers H := {hw :
w ∈ [0, 1]} in the realizable case, where hw(x) = +1 if
w ≤ x ≤ 1, and −1 if 0 ≤ x < w. A simple binary

search with LABEL achieves an exponential improvement
in query complexity over passive learning. The agreement
region of any set of threshold classifiers with thresholds
in [wmin, wmax] is [0, wmin) ∪ [wmax, 1]. Since SEARCH
is allowed to return any counterexample in the agreement
region, there is no mechanism for forcing SEARCH to re-
turn the label of a particular point we want. However,
this is not needed to achieve logarithmic query complex-
ity with SEARCH: If binary search starts with querying
the label of x ∈ [0, 1], we can query SEARCH(Vx), where
Vx := {hw ∈ H : w < x} instead.

If SEARCH returns ⊥, we know that the target w∗ ≤ x and
can safely reduce the region of disagreement to [0, x). If
SEARCH returns a counterexample (x0,−1) with x0 ≥ x,
we know that w∗ > x0 and can reduce the region of dis-
agreement to (x0, 1]. This observation holds more gener-
ally: For any call to LABEL, we can always construct a call
to SEARCH that achieves a no lesser reduction in the region
of disagreement.

In the realizable setting where a zero-error classifier exists
in the nested sequence, any call to SEARCH can be simu-
lated with at most two calls to CCQ. Thus CCQ is at least
as powerful and at least as difficult to implement in the re-
alizable setting.

Our Results We propose and analyze a general purpose
agnostic algorithm, LARCH, that uses SEARCH and LABEL
(see (Beygelzimer et al., 2016) for details). As an impli-
cation of our general theorem in the case when the target
hypothesis is a union of k∗ non-trivial intervals in [0, 1],
LARCH makes at most k∗ + log(1/ε) queries to SEARCH
and at most Õ((k∗)3 log(1/ε) + (k∗)2 log3(1/ε)) queries
to LABEL, with high probability—an exponential improve-
ment over any LABEL-based active learner.

In practical applications, it is critical to consider the relative
cost of implementing the two oracles. We show that an
amortized approach to explicitly trading off using LABEL
and SEARCH yields an algorithm with a good guarantee on
the total cost (Beygelzimer et al., 2016).

Discussion Our results demonstrate that SEARCH can
significantly benefit LABEL-based active learning algo-
rithms. Are there less powerful oracles that are as benefitial
and still plausible to implement?

Another key question is computational efficiency. Can the
benefits of SEARCH be provided in a computationally ef-
ficient general purpose manner? Attenberg and Provost
showed that simply finding a set of examples of the rare
class to seed supervised learning or LABEL-based active
learning is already very powerful empirically (Attenberg
and Provost, 2010). Can we do better with a truly interac-
tive yet efficient algorithm?
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