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Abstract

This paper studies the problem of online selective classification, where for each
new example, the algorithm has the option to predict Don’t Know (abstain). The
goal is to make as few abstention as possible, subject to that the number of mistakes
made is bounded over time.
Previous work has left a major open challenge, that is, to design tractable algorithms
that works in nonrealizable case. In this paper, we provide such an algorithm. We
develop an algorithmic framework for designing online learning algorithms with
mistakes and abstentions, utilizing a notion called admissible potential functions.
This framework immediately yields natural generalizations of existing algorithms
(e.g. Binomial Weight [CFHW96] or Weighted Majority [LW94, Vov95]) onto
online learning with abstentions.

1 Introduction

In many applications of machine learning, misclassification may be costly, but the learning algorithm
has the option to occassionally abstain from prediction. For example, in an online credit card fraud
detection system, classifying an arriving transaction as fraudulent can result in asset losses of the
customers; however the system has the option to predict “Don’t know”(⊥) and pass the transaction
on to a human expert. Another example is a medical diagnosis system. When the system is in doubt
about a patient’s symptom, it has to option to say “Don’t Know" to ask for more examinations on the
patient [TS13], or ask a physician for assistance.

To ensure reliable learning in these applications, it is therefore essential to develop good algorithms
that can trade off classification mistakes for abstention. The performance of the learning algorithm
is measured by two quantities: mistakes, the total number of times when the algorithm outputs a
wrong label, and abstentions, the total number of Don’t Know’s (⊥) output. The problem has been
formulated in the context of online learning recently [LLWS11, SZB10].

Previous work has proposed efficient algorithms that work for finite hypothesis class and realizable
setting [SZB10, DZ13], but it is unclear how to extend it to nonrealizable case. Recently, [ZC16]
provides an algorithm that works in nonrealizable case. However the algorithm requires computing the
Extended Littlestone’s Dimension, which, similar to computing the Littlestone’s Dimension [Lit87],
is believed to be intractable. Thus, a major open question is to design tractable algorithms that works
in nonrealizable case.

In this paper, we provide such an algorithm. It is based on our two key contributions, which we outline
as follows. We first develop an algorithmic framework for designing online learning algorithms
with mistakes and abstentions, utilizing a notion called potential function. A potential function
quantifies the complexity of the learning problem. We show that if the potential function satisfies an
admissibility condition, then the algorithm has the desired performance guarantees.
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Secondly, we provide examples of admissible potential functions, e.g. binomial weight potential, expo-
nential potential, etc. These potentials, when combined with our algorithmic framework, yields gener-
alizations of existing efficient online binary prediction algorithms (e.g. Binomial Weight [CFHW96],
Weighted Majority [LW94, Vov95]) to online prediction with abstentions.

Related Work. The problem of online prediction with abstention has not received attention until
recently. [LLWS11] proposes the KWIK model, where the goal is to make online prediction with
⊥ option while no mistakes are allowed. [SZB10] proposes an extension of this model, where the
goal is to make as few abstentions as possible, subject to the number of mistakes is at most k. It also
gives an algorithm in this model, which only works for finite hypothesis class and realizable setting.
[DZ13] studies efficient algorithms for learning disjunctions in the above setup. Recently, [ZC16]
provides a minimax analysis that exploits structures in hypothesis classes, giving optimal algorithms
for the realizable case and mistake-abstention traedeoff upper bounds in non-realizable case, but the
algorithm is computationally inefficient.

In the batch setting, the problem is commonly referred to as selective classification or confidence-rated
prediction. The pioneering work of [Cho70] studies the setting when the conditional probability of
label y given the instance x is known. [BW08, YW10] considers surrogate risk minimization and
provide threshold-based abstention rules consistent with the loss functions proposed. [EYW10]
studies perfect selective classification, where the goal is to find a selective classifier that minimizes
the abstention rate, subject to the error rate being zero. [ZC14] proposes an algorithm for imperfect
selective classification, and shows its tight connection to active learning. [Bal16] gives a trasductive
selective classification algorithm by incoroprating constraints on the labels associated with the
unlabeled examples.

2 Algorithm

2.1 Setting

We study binary classification in online setting. At each round t = 1, 2, . . ., the algorithm is presented
with an example xt chosen from instance domain X . Then, it is asked to make a prediction ŷt, which
can be −1, +1, or ⊥. Subsequently, the true label of the example yt ∈ {−1,+1}, is revealed.

The performance of the algorithm is measured by two quantities: the number of mistakes
∑

t I(ŷt =
−yt), and the number of abstentions

∑
t I(ŷt = ⊥). We say that an algorithm achieves a (k, d)-SZB

bound, if throughout the learning process, it makes at most k mistakes, and at most d abstentions. A
round t is called nontrivial if the algorithm incurs a mistake or abstention on that round.

Some constraints need to be imposed on adversary for the proposed algorithm to have nontrivial
guarantees. Throughout we make the l-mistake assumption, studied by [CFHW96, ALW06]. When
l = 0, this degrades to realizability.

Assumption 1 (l-Mistake). There is a hypothesis h inH that makes at most l mistakes throughout,
that is,

∑
t I(h(xt) 6= yt) ≤ l.

2.2 Algorithmic Framework

We present Algorithm 1 below, called the Generalized Weighted Majority Algorithm. It resembles
the Halving Algorithm [Ang87, Lit87], but with a threshold Φt set adaptively, inspired by [SZB10].
First, is conservative, that is, it only makes state updates in nontrivial rounds. The algorithm keeps a
counter c, the number of nontrivial rounds incurred so far.

Second, given a set of examples Sc of size c, Φc,T0+1(Sc) represents the total potential remaining
given the examples Sc seen. When a new example xt arrives, the potential is split into two parts,
Φc+1,T0+1(Sc ∪

{
(xt,−1)

}
) and Φc+1,T0+1(Sc ∪

{
(xt,+1)

}
), representing the weight voting for

−1 (resp. +1). The algorithm takes a majority vote over the weights. If the majority only beats the
minority by a small margin, then it predicts ⊥. 1 This guarantees that when a mistake or an abstention
happens, the potential drops by a large fraction.

1If the algorithm always output a weighted majority label (with no abstentions), then it degrades to an
algorithm in the classic Mistake Bound model [Lit87, Ang87].
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Algorithm 1 Generalized Weighted Majority Algorithm

1: Input: admissible potential function
{

Φc,T (·), 0 ≤ c ≤ T
}

, mistake budget k.

2: Precompute horizon T0 := min
{
T :
(

T+1
≤k+1

)
> Φ0,T+1(∅)

}
.

3: Initialization: set of examples S0 ← ∅, nontrivial round counter c← 0, mistake budget m← k.
4: for t = 1, 2, . . . , do
5: Set threshold Φt =

(
T0−c
≤m−1

)
. # Make Prediction (lines 5 – 11)

6: if Φc+1,T0+1(Sc ∪
{

(xt,−1)
}

) < Φt then
7: predict ŷt = +1.
8: else if Φc+1,T0+1(Sc ∪

{
(xt,+1)

}
) < Φt then

9: predict ŷt = −1.
10: else
11: predict ŷt = ⊥.
12: Receive feedback yt. # State Update (lines 13 – 17)
13: if ŷt = −yt then
14: Mistake budget m← m− 1.
15: if ŷt = −yt or ⊥ then
16: Examples seen Sc+1 ← Sc ∪

{
(xt, yt)

}
.

17: Nontrivial round counter c← c+ 1.

2.3 Admissible Potential Functions

Algorithm 1 works if the potential function {Φc,T (·)} has desirable properties, formalized in the
definition below.
Definition 1. A family of potential functions

{
Φc,T (S), 0 ≤ c ≤ T

}
is called admissible, if the

following holds:

1. Uniform Lower Bound. For any S of size c, Φc,T (S) ≥ 1.2

2. Divisibility. For any T0, set S of size c ≤ T0 − 1, and example x ∈ X ,

Φc,T (S) ≥ Φc+1,T (S ∪
{

(x,−1)
}

) + Φc+1,T (S ∪
{

(x,+1)
}

).

We give canonical examples of admissible potential functions below.

Example 1: Binomial Potential. Given a finite hypothesis classH, define

Φbin
c,T (S) :=

∑
h∈H

(
T − c

≤ l − e(h, S)

)
,

where e(h, S) =
∑

(x,y)∈S I(h(x) 6= y) is the number of mistakes made by h on S and
(

n
≤k
)

:=∑k
i=0

(
n
i

)
. It can be verified that

{
Φbin

c,T (S)
}

is admissible under l-Mistake Assuption.

Example 2: Exponential Potential. Given a finite hypothesis classH, define

Φexp
c,T (S) :=

∑
h∈H

(1 + β)T−cβe(h,S)−l.

It can be verified that
{

Φexp
c,T (S)

}
is admissible under l-Mistake Assuption.

Example 3: Potential Functions for Infinite Hypothesis Classes. Given a possibly infinite hy-
pothesis classH with Littlestone’s dimension Ldim(H), define

Φbin
c,T (S) :=

∑
(ỹ1,...,ỹc)∈{−1,+1}c

(
T − c

≤ Ldim(H[(x1, ỹ1), . . . , (xc, ỹc)])

)(
T − c

≤ l − e(ỹ1, . . . , ỹc, S)

)
,

2We lose no generality in setting the potential lower bound as 1, as one can scale the potential by a constant.
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where for a labeled dataset S,H[S] is defined as the set of hypotheses inH that agrees with the labeled
examples in S, i.e. H[S] :=

{
h ∈ H : h(x) = y for all (x, y) ∈ S

}
. Meanwhile, e(ỹ1, . . . , ỹc, S) =∑c

i=1 I(ỹi 6= yi) is the number of mistakes made by labeling ỹ1, . . . , ỹc. It can be verified that{
Φbin

c,T (S)
}

is admissible under l-Mistake Assuption.

Alternatively, define

Φexp
c,T (S) :=

∑
(ỹ1,...,ỹc)∈{−1,+1}c

(1 + β)T−cβ−Ldim(H[(x1,ỹ1),...,(xc,ỹc)])(1 + γ)T−cγe(ỹ1,...,ỹc,S)−l,

which is also admissible under l-Mistake Assuption.

2.4 Performance Guarantees

We formally provide performance guarantees of Algorithm 1.
Theorem 1. Suppose Algorithm 1 is run over admissible potential function family

{
Φc,T (·)

}
with mis-

take budget k. Then it has a (k, T0)-SZB bound, where T0 := min
{
T ∈ N :

(
T+1
≤k+1

)
> Φ0,T+1(∅)

}
.

Plugging into specific potential functions, we get the following corollaries.

Finite Classes. Define T ∗1 as the real-valued solution of the equation
(

T
≤k+1

)
= |H|( eT

l )l. 3 It can

be checked by algebra that T ∗1 ≤ e(k + 1)|H|
1

k−l+1 .
Corollary 1. Given a finite hypothesis classH, suppose the l-Mistake Assuption holds.

1. Algorithm 1, over
{

Φbin
c,T (·)

}
with mistake budget k, has a (k, (k+ 1)|H|

1
k−l+1 )-SZB bound.

2. Algorithm 1, over
{

Φexp
c,T (·)

}
with mistake budget k and β = l

T∗
1−l

. has a (k, (k +

1)|H|
1

k−l+1 )-SZB bound.

Infinite Classes. Define T ∗2 as the real-valued solution of the equation
(

T
≤k+1

)
= ( eT

d )d( eT
l )l. It

can be checked by algebra that T ∗2 ≤ (k + 1)e
k+1

k+1−l−d .
Corollary 2. Given a hypothesis classH of Littlestone’s dimension d, suppose the l-Mistake Assup-
tion holds.

1. Algorithm 1, over
{

Φbin
c,T (·)

}
with mistake budget k, has a (k, (k+ 1)e

k+1
k+1−l−d )-SZB bound.

2. Algorithm 1, over
{

Φexp
c,T (·)

}
with mistake budget k and β = l

T∗
2−l

, γ = d
T∗
2−d

, has a

(k, (k + 1)e
k+1

k+1−l−d )-SZB bound.

3 Conclusions and Future Work

In this paper, we have developed a general potential-based framework for designing online learning
algorithms with an abstenion option. This yields tractable prediction algorithms which naturally
generalizes existing ones. Several directions are well worth exploration:

1. Can this framework be generalized to analyze multiclass online learning, with perhaps
bandit feedback [DH13]? More generally, can this be used to analyze online KWIK regres-
sion [SS11]?

2. Can one design other natural potential functions that yield parameter-free algorithms?
3. Our proposed algorithm is deterministic. Can this framework be used to analyze randomized

prediction?
3The combination number

(
a
b

)
:= a(a−1)...(a−b+1)

b(b−1)...1
is still well-defined.
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