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Abstract

We study confidence-rated prediction in a binary classification setting, where the
goal is to design a predictor that can choose to abstain from prediction on test
examples. Such predictors can be used to determine which data points are easy to
classify. The performance of a confidence-rated predictor is measured by its error,
or misclassification rate, and its coverage, or the fraction of examples on which it
does not abstain. Typically, there is a tradeoff between these two metrics, and the
goal is to design predictors that have good error-coverage tradeoffs. We provide an
algorithm in the transductive setting that gives a predictor with guaranteed upper
bound on the error. Our algorithm has optimal coverage in the realizable case, and
can be extended to the agnostic setting. While our algorithm is computationally
inefficient in general, we show how to implement an approximate version, and
evaluate its performance on several real datasets.

1 Introduction

We study confidence-rated prediction in a binary classification setting. In this problem, we are
given training examples labelled −1 or 1, and our goal is to design a classifier, which, given a test
example, can either choose to predict a label in {−1, 1}, or to abstain from prediction by outputting
0. Such predictors can be used to determine which data points are easy to classify, and are useful in
applications such as medical diagnosis and credit card fraud detection where classification mistakes
are costly.

The performance of a confidence-rated predictor is measured by two parameters – the error, or
the fraction of examples on which the predictor outputs the wrong label, and the coverage, or the
fraction of examples on which the predictor does not abstain. As the error of a predictor typically
grows with growing coverage, there is a tradeoff between the error and the coverage, and the goal in
confidence-rated prediction is to develop predictors that have improved error-coverage tradeoffs.

In this paper, we address the task of designing confidence-rated predictors which provide a guaran-
teed upper bound on the error. In the realizable case, it is possible to provide error guarantees with
respect to the true labels based on training data. In the non-realizable case, errors may arise due to
inherent label noise, and it is impossible to provide strong error guarantees with respect to the true
labels without strong assumptions. Following [1], we therefore consider a different kind of error
guarantee – error with respect to the best hypothesis in a hypothesis classH.

While there are several existing models of confidence in prediction [2, 3, 4], we consider the recent
learning-theoretic formalization due to [5]. The state-of-the-art in this framework is due to [5]
and [1]. [5] provides a predictor which achieves zero error in the realizable case by abstaining in the
disagreement region of the version space; to guarantee an error δ > 0, it predicts with an arbitrary
classifier in the version space with some probability, and abstains otherwise. [1] extends the results

1



of [5] to the non-realizable case by providing an algorithm which has guaranteed zero error with
respect to the best hypothesis in the hypothesis class. It can be shown that the algorithm of [5]
has suboptimal coverage for a number of classification problems, and a natural question is whether
one can achieve higher coverage while still ensuring a guaranteed upper bound on the error of the
classifier, and what kind of algorithms will result in such high coverage.

In this paper, we provide an algorithm in the transductive setting, which given a set of labelled and
unlabelled samples drawn from a data distribution, finds a confidence-rated predictor with guaran-
teed error δ on the unlabelled samples. We show that in the realizable case, our algorithm is optimal,
in the sense that any other algorithm that guarantees error δ given the input labelled samples will
necessarily have equal or lower coverage. We then show how to apply our algorithm in the agnostic
setting, when its error with respect to the best hypothesis in the classH is at most δ.

While our algorithm is computationally inefficient in general, we show how to implement an ap-
proximate version of our algorithm, and one of its variants efficiently through bootstrap sampling
from the version space. The approximate version has error guarantees with respect to the boot-
strapped subsample. We evaluate these algorithms through two tasks – comparing the coverage as
a function of the error guarantee, and measuring the actual risk (or error to coverage ratio) with
respect to the test labels. We show that our algorithm outperforms the algorithm in [5], and achieves
error-coverage tradeoff competitive with that of the algorithms in [1] and [6, 7], which do not have
error guarantees.

2 Algorithms

We study binary classification in the transductive setting. We are given a set S of labelled examples
{(x1, y1), . . . , (xn, yn)}, where each xi ∈ X and each yi ∈ {−1, 1}. We are also given a set
U = {xn+1, . . . , xn+m} of m unlabelled examples.

Confidence-Rated Predictors and Selective Classifiers. A confidence-rated predictor P is a map-
ping from U to a set of m distributions over {−1, 0, 1}. If the j-th distribution is [p−1, p0, p1], then
P (xn+j) = −1 wp p−1, 0 wp p0 and 1 wp p1. A selective classifier C is a tuple (h, (γ1, . . . , γm)),
where h lies in a hypothesis class H, and 0 ≤ γi ≤ 1 for all i = 1, . . . ,m. For any xn+j ∈ U ,
C(xn+j) = h(xn+j) wp γj and 0 wp 1− γj .

Coverage. The coverage cov(P ) of a confidence-rated predictor P is the probability that P predicts
a label (that is, does not predict 0) wrt the uniform distribution over U .

Error. The error err(P ) of a confidence-rated predictor P wrt the true labels is the probability
that P predicts 1 when the true label is −1 and vice versa, wrt the uniform distribution over U . Let
H be a hypothesis class, and let h∗ be the true error minimizer in H wrt data distribution D. Then,
the error errH(P ) of a confidence-rated predictor P wrt the best hypothesis inH is the probability
that P predicts 1 when h∗(x) = −1 and vice versa. We also define the risk of a confidence-rated
predictor as the ratio err(P )/cov(P ) (in both the realizable and the non-realizable case).

Version Space. In the realizable setting, given a set of labelled examples S, and a hypothesis class
H, the version space of S is the subset of classifiers inH that are consistent with S.

Disagreement Region. Let H ⊆ H be a set of hypotheses. The disagreement region of H , denoted
by DIS(H), is the set of all examples x ∈ X for which there exist two hypotheses h1, h2 ∈ H such
that h1(x) 6= h2(x). More formally, DIS(H) = {x ∈ X : ∃h1, h2 ∈ H such that h1(x) 6= h2(x)}.
We now present two algorithms for confidence-rated prediction in the transductive setting – a
confidence-rated predictor in Algorithm 1, and a selective classifier in Algorithm 2. We state both
algorithms for the realizable case, and then discuss how to translate them to the non-realizable set-
ting.

Given a training set S and an unlabelled dataset U , Algorithm 1 first constructs the version space
V of S with respect to the hypothesis class H. Our key observation is that once this version space
has been constructed, finding the optimal coverage confidence-rated predictor which has guaranteed
error ≤ δ can be expressed as a linear program. A similar observation can be used to construct a
selective classifier; we present this construction in Algorithm 2.
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Algorithm 1 Confidence-rated Predictor

1: Inputs: labelled data S, unlabelled data U ,
error bound δ.

2: Compute version space V with respect to S.
3: Solve the linear program:

max

m∑
i=1

(αi + βi)

subject to:
∀i, αi + βi ≤ 1 (1)

∀h ∈ V,
∑

i:h(xn+i)=1

βi +
∑

i:h(xn+i)=−1

αi ≤ δm

(2)
∀i, αi, βi ≥ 0 (3)

4: Output the confidence-rated predictor:
{[βi, 1− αi − βi, αi], i = 1, . . . ,m}.

Algorithm 2 Selective Classifier

1: Inputs: labelled data S, unlabelled data U ,
error bound δ.

2: Compute version space V with respect to S.
Pick an arbitrary h0 ∈ V .

3: Solve the linear program:

max

m∑
i=1

γi

subject to:
∀i, γi ≤ 1 (4)

∀h ∈ V,
∑

i:h(xn+i)6=h0(xn+i)

γi ≤ δm (5)

∀i, γi ≥ 0 (6)

4: Output the selective classifier:
(h0, (γ1, . . . , γm)).

Performance Guarantees and the Non-Realizable Case Algorithms 1 and 2 have the following
performance guarantees.

Theorem 1 Let P be the confidence-rated predictor output by Algorithm 1 on inputs S, U and δ in
the realizable setting. Then, err(P ) ≤ δ. Moreover, if P ′ is any other confidence-rated predictor
that guarantees err(P ′) ≤ δ given S and U , then cov(P ′) ≤ cov(P ).

Theorem 2 Let C be the selective classifier output by Algorithm 2 on inputs S, U and δ in the
realizable case where h0 is arbitrarily chosen in V . Then, err(C) ≤ δ. Moreover, cov(C) ≥
cov(P )− δ, where P is the predictor output by Algorithm 1 on input S, U and δ.

In the non-realizable case, to ensure guaranteed error, we use instead a subset ofH that is very likely
to include the true error minimizer h∗.

Given a sample set S, a set C(S) ⊆ H is called a level 1− δ0-confidence set if for all data distribu-
tions D, PrS∼Dn [h∗(D) ∈ C(S)] ≥ 1 − δ0, where h∗(D) is a hypothesis in H that minimizes the
expected classification error according toD. If we replace V in Algorithms 1 and 2 by a level 1−δ0-
confidence set C(S), then we can show that the resulting predictor provides an error guarantee with
probability ≥ 1− δ0.

If ĥ is the hypothesis that minimizes the empirical error on the training data, then, the following set
V̂(ĥ), used by [1], is a 1− δ0-level confidence set: V̂(ĥ) = {h ∈ H| ˆerr(h) ≤ ˆerr(ĥ)+2σ(n, δ0)}.
Here ˆerr(h) is the empirical error of the hypothesis h on the training set S. σ(n, δ0) is a function of
the training set size n, the hypothesis class H, a parameter δ0, which ensures that with probability
≥ 1−δ0, for all h ∈ H, | ˆerr(h)−err(h)| ≤ σ(n, δ0). The expressions for σ(n, δ0) can be obtained
from standard generalization bounds for classification.

Depending on the hypothesis class, V̂(ĥ) may have complex structure and may even be disconnected.
To address this, active learning literature [8] uses instead the set B̂(ĥ, 2 ˆerr(ĥ) + 2σ(n, δ0)), the
empirical disagreement ball around ĥ of radius 2 ˆerr(ĥ)+2σ(n, δ0). Since V̂(ĥ) ⊆ B̂(ĥ, 2 ˆerr(ĥ)+
2σ(n, δ0)), this process preserves the error guarantees, and results in a smaller coverage.
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3 Implementation and Experiments

Implementation. The LPs in Algorithms 1 and 2 have a constraint for each hypothesis in the
version space; to implement them, we draw samples to approximate the version space by a finite
hypothesis set H , and use constraints corresponding to the hypotheses in H . In the realizable case,
we sample from the convex version space V using the Hit and Run Markov Chain [9, 10]. In non-
realizable case, we set ĥ as the SVM solution and sample from the star-shaped body B̂(ĥ, 2 ˆerr(ĥ)+
Cσ(n, δ0)), C = 0.2 using a ball walk[11]. In each case, we run the Markov Chain until t = 100000,
and randomly select 1000 classifiers from the trajectory.

The linear programs in Algorithms 1 and 2 tend to have multiple optimal solutions for the same
value of δ; we break ties among these solutions by selecting the one which has the best alignment
with the SVM solution. To do this, first we solve the original LP for a given δ to get an optimal
coverage value C(δ). Next, we add an additional linear constraint to the original LP to enforce that
the coverage is equal to C(δ) and select the solution that maximizes, under these constraints, the
quantity

∑m
i=1(αi−βi)〈w0, xi〉 for Algorithm 1 and the quantity

∑m
i=1 γi|〈w0, xi〉| for Algorithm 2,

where w0 is the SVM solution vector.

Risk-Coverage Tradeoffs. We evaluate the actual risk-coverage tradeoffs achieved by Algo-
rithms 1 and 2 on real data. For comparison, we choose the algorithm in [5] (EYW10), the Agnostic
Selective Classification (ASC) algorithm [1] and thresholding based on the distance from the deci-
sion boundary (DDB) of the SVM classifier. ASC sorts unlabelled examples based on a disbelief
index and abstains whenever this index is below a threshold. DDB abstains from prediction when
the distance from the decision boundary of an SVM classifer is below a threshold. Each algorithm
has a parameter which can be varied to control the error-coverage tradeoff; we run several iterations
of each algorithm with different values of these parameters, and plot the corresponding risk (as mea-
sured with respect to the actual test labels) as a function of the coverage. We observe that DDB does
not offer any error guarantees, and ASC only has theoretical guarantees for zero error.

Figures 1 to 6 show the results; the datasets used are KDDCup99 (normal vs. malicious connec-
tions), MNIST, and Breast Cancer from the UCI repository. Each plotted point is an average over
20 rounds of random selection of training and test sets with error bars at one standard deviation.
EYW10 performs the worst, as it treats all points in the disagreement region as equivalent. The per-
formance of Algorithms 1 and 2 are competitive with ASC, which usually performs the same as or
better than DDB. This is to be expected as Algorithms 1 and 2 are more conservative. Interestingly,
Algorithm 2 usually performs better than Algorithm 1 in practice, even though it is worse in theory.
This may be because Algorithm 1 treats all hypotheses in the version space the same way, and gen-
erates the predicted labels by solving an LP; while the labels predicted by Algorithm 2 always agree
with the SVM solution, and as seen from the results on DDB, these predictions work quite well in
practice.
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Figure 3: mnist 6v9
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Figure 5: mnist 2v3
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