CSE 291: Analysis of Polynomial Threshold Functions Spring 2015

Lecture 8: Pseudorandom Generators for PTFs; Noise Sensitivity
Instructor: Danie Kane Date: Apr. 28

1 Recap

Last time we have covered regularity lemma.

Lemma 1 (Regularity Lemma). Any polynomial p that takes input from {—1,+1}" can be written as a
decision tree of depth O(%(ln i)o(d)), with leaves as polynomials p,, such that the following holds. With
probability 1 — € over a random leaf, the associated polynomial p, is either (1) T-regular, or (2) var(p,) <

GHPPH%-

Remark. In the latter case, p, can be thought of as a large constant plus small variations, where its sign
stays constant (-1 or +1).

We have also defined pseudorandom generators(PRGs) of PTFs, which will be the main focus of this
lecture. Formally, our goal is to explicitly construct a simple (low entropy) random variable Y, so that for
any degree-d PTF over n variables,

[Ef(Y) = Epeyqzyn f(B)| <€ (1)

As we have seen, there is an implicit construction with seedlength as small as O(dlnn + ln%), but this
requires a computationally inefficient random sampling.

2 The Construction of Meka-Zuckerman PRG

The main tool we will be using is k-wise independence.

Definition 1. A sequence of random variables (Wh,...,W,,) are k-wise independent if any k of them are
independent.

Note that d-wise independent random variables fools in expectation all degree-d polynomials. But fooling
degree-d PTFs appears to be a harder task. We begin with a standard fact.

Fact 1. We can generate a set of k-wise independent random variables (W1, ..., W,,), with W; €y {1,2,...,m},
from a seed of length O(kIn(nm)).

The construction is as follows. We first use Fact 1 to build F : [n] — [t] where (F(1),...,F(n)) are
2-wise independent, requiring a seedlength of O(21n(nt)). Next, we repeatedly use Fact 1 ¢ times, to build
independent random vector Z1,...,Z; € {£1}", where each Z; is a random vector whose n coordinates are
k-wise independent. This step requires a seed length of ¢t - O(k1n(2n)). We put each Z; as a row vector and
concatenate them vertically to an array:

Ziy, Zi2, ..y Zin
Za1, Za2, .., Zon
Zt,17 Zt,?v ) Zt n

Our pseudorandom number generated is defined as:

(Y1,....Y0) = (Zr),1, Zr@2),2: - s ZF(n),n)

In the next section, we claim that with decent size of k and ¢, Equation (1) can be established.



3 Idea of Analysis

Step 1: Replacement Method Conditioned on F. First we fix F. For any degree-d polynomial p,
without loss of generality, assume ||p|l2 = 1, since scaling does not change the sign. p(Y3,...,Y,) can be
written as a degree-d polynomial pg of Zi,...Z; (therefore there are nt — n dummy variables). Consider
f(-) = sign(pr(+)). The high level idea is to use replacement method, as we have seen in the invariance
principle. In particular, we are going to show

Ef(Z1,...,2:) = Ef(Gy,...,Gt) (2)
Ef(By,...,B) ~Ef(Gr,...,Gy) 3)
where (G, ..., G}) are independent standard Gaussians, and (By, . .., B;) are independent uniform Bernoullis.

We start with Equation (2).

For notational simplicity, Let Z = (Z1,...,Z;—1), B = (B1,...,Bi—1) and G = (Gi41,...,G¢). With
foresight, we find smooth functions p;,p— : R — [—1,41] such that p;(z) = p_(z) = sign(x) except for
a small interval of length O((¢/d)?) and p_(z) < sign(z) < py(x), with |[p®]s < O((e/d)~*%). Consider
p € {p+, p—}. Our goal now comes down to bounding

Elp(p(Z, G, Zi)) — p(p(Z, G, G)))]

Now consider W = Z; or W = G;. Let po(Z,G, W) = Ewp(Z, G, W). Since p is multilinear, the conditional
expectation is the same in either case and W simply become a dummy variable in pg. A Taylor expansion
of p yields

Ep(p(Z, G, W)) = E[ polynomial of degree 3 in p(Z, G, W) ]+ O(|lp™ | E(p(Z, G, W) — po(Z, G, W))*)

If we set k = 4d, then and the variables among the set (Z, G, W) are 4d-wise independent. Consequently the
first terms are the same in both cases, since the variables among the set (Z, G, W) are 3d-wise independent.
Now consider the second term. Since (p(Z,G, W) — po(Z,G,W))* is a polynoimal of degree 4d, Z;’s can be
safely replaced with B;’s when computing the expectation.

In either case, by hypercontractivity (over a hybrid of Gaussians and Bernoullis),

E(p(B,G,W) — po(B,G,W))* < 20)(E(p(B, G, W) — po(B, G, W))?)?

We expand p in Fourier domain:

SCn]

Note that F' determines a partition of [n]; for example, if we replace Z; with G;, only a subset of arguments
of p are affected. We call The set of variable the ith bucket with respect to F, abbreviated as B(i). Using
this notation, it can be seen that

p@ = S p(S)®

SC[n]:SNB(i)=0
Therefore,
E[p(X) — po(X)[*
= > B(s)
SC[n]:SNB(i)#0

< > > ey

SC[n] j€SNB(i)

= > > ey

JjEB(i) SE[n]:j€S

= Z Inf; (p)

JEB(3)



As a result, the total sum of each individual term in (??) can be bounded as

E[f(Z1,...,2%) — F(G1,...,G)]| < O(e) + O((e/d)~ Z I Infi(p)

JEB(U

where the first term comes from replacing p4(-) (p—(-)) with sign(-) using Carbery-Wright, the second term
comes from the bound of E[p(p(Z, G, Z;)) — p(p(Z, G, G;))], as we have just shown above.
Similarly,
E[f(B1,...,By) = f(G1,....G)]| < O(e) + O((e/d)~* Z DD fy(
i=1 JEB(i)
Therefore:
E[f(By,...,B) = f(Z1,..., Z)]] < O(e) + O((e/d)~** Z D Infy( (4)
=1 JEB(i)

Step 2: Averaging Over F. Now, taking the expectation over the random choice of F' on Equation (4),
the second term can be bounded as follows:

O((e/a)™* - Ep[Y_ 200 (" Inf;(»))?))
i=1

jEB()
< O((¢/ay 20D Bp[ > Inf;(p)nfy(p)])
Q=
< O((e/d) 4d90(d) ]EFZInf Zlnf )nf( )])
]k 1

where the first inequality follows from the definition of B(-), the second inequality is by the 2-wise indepen-
dence in each of F’s coordinates. To summarize, the error is bounded by

O(e) + O((e/d)‘4d20(d) ‘Ep[ Inf;(p)? Z Inf; (p) Infy ( )]) (5)
j=1 iy
Let 7 = (max; Inf;(p))/(3_; Inf;(p)) be the regularity parameter of p. Then

Zlnfj(p)2 < TZInfj(p) < 7d-var(p) < 7d

In the meantime,

+—‘

(d-var(p))? _ d?
- Inf; (p)Infy - Inf;( 7<—
]kgln nfy(p E n <5

~

Step 3: Applying the Regularity Lemma. At this point, it may be tempting to set 7 = 79 =
O((5)**1) and t = O(1(5)~*%), which lets us conclude the total expected error (5) is bounded by O(e).
But in general this bound on 7 may not be true.

Fortunately there is a quick fix: apply regularity lemma on p. Essentially, p can be written as a decision
tree of depth D = O(7; ') such that with probability 1 — ¢, a random leaf is either (1) 7o-regular, or (2)



a constant plus small variation term. Now we modify our setting of k from 4d to D + 4d, ensuring even
after D levels of variable conditioning along the path of the tree, the remaining variables are still 4d-wise
independent. In case (1), the previous result now can be applied to ensure the expected error on each leaf is
at most €. In case (2), the sign of p over this leaf is a constant, thus has constant sign (-1 or +1). Applying
the previous result to every leaf and averaging let us conclude the result.

Seedlength. In summary, ¢ = O(1(5)7*!) and k = O((5)~(“4tV)). Therefore the total number of
seedlength is

O(tk1n(2n)) + O(2In(nt)) = o(%(‘g)w(m %)0@ In n) - O((%)OW) In n)

We emphasize that this is still a nontrivial PRG, since its seedlength is O(lnn).

Remark. The state of the art right now is O4(e 12 Inn) for PTFs, although for LTFs, a construction with
seedlengh O(In % Inln 2) has been shown. As of PRG for Gaussians, we can do a lot better: the best results

so far are Oq(€~¢Inn) for arbitrary ¢ > 0 and O(29De~>Inn). A recent result of seedlength polylog(Z)
for d = 2 has been shown.

4 Noise Sensitivity

Bernoulli and Gaussian Noise Sensitivity. Consider a boolean function f : R™ — {£1}. The noise
sensitivity of f measures how likely small changes with input to f leads to small changes of output. This is
opposite to the notion of stability we have seen.

Definition 2. NS.(f), the noise sensitivity of f, is defined as

NS(f) = Pr (f(X)# f(Y))

(X,Y)

where (X,Y) are (1 — €)-correlated Bernoullis.
GNS.(f), the Gaussian noise sensitivity of f, is defined as

GNS.(f) = ()Eg)(f(X) # f(Y))

where (X,Y) are (1 — €)-correlated Gaussians.

It is instructive to look at NS.(f) in Fourier domain. In particular,

1-Ef(X)f(Y)

NSe(f) = 5
1 —Stab;_(f)
= el
_ 1I-EfXO(T )X
2
_ 1—2 scm F(S)2(1 —e)lS!
B 2
21= (19"

-y sl
5C[n]



Roughly, if f has large high degree Fourier coefficients, NS (f) is likely to be high. Similar to the operator
T, we have seen in Bernoulli case, we can define operator U, in Gaussian case. Formally, for 0 < p <1, U, f
is the function from R to R such that

(Upf)(z) = E[f(V)|X = 2]

where Y is p-correlated with X, that is, Y = pX 4+ /1 — p2Z where Z is a standard Gaussian independent
of X. What does this operator do in the Fourier domain?

Lemma 2. For 0 < p <1, function f that has Fourier expansion f =3 coha, we have
Uﬁf = Zp”alllcaha
a
Specifically,
Ushe = pllalip,
Proof. First we show that ({U.-- : s > 0},0) is a semigroup. To check associativity, it suffices to show
Up—sUp—t = U,—(s41)
This follows from straightforward calculations:
Ue—:[(Ue- f) ()]
= Ues[Eaun(o,nf(e 'z +V1—e2A)]
= Ean(o.0),B~nonfle " o+ e V1 —e2A+\/1 - e 2B)
En~no.nf(e” e 4+ V1 — e 2+ N)
(Ue*<s+t)f)(x)

where in the first equality we introduce a standard Gaussian A, in the second inequality we introduce a
standard Gaussian B independent of A.

Now consider f = caha. We would like to find the representation of g; = U+ f = >, ca(t)ha. Note
that U,—o f = f, thus, in this notation, c,(0) = c,. We take derivative of g; with respect to ¢. First note that

d d d d d
9t = g Vetf = LU d| _ = U Uendf)| _ = T Uemet|
Then
(Ue-sge)(x) = Eygle "z + mY)
= Eyg((1—s+0(s*)x+ /25 + O0(s2)Y)
= Eygi(x—sz+v2sY + 0(s*?))
1 9%g 3/2
= Eygi(z)+ Vgi(z) - (—sz+ V2sY) + 5 2]: duidz,; 25Y;Y; + O(s™7)
= gi(x)+ Vg (x) - (—s2) + sV3g; + 0(33/2)
Therefore,
d
d*Uefsgt‘ =—Vg: + VQgt = Lg;
S s=0

where L is the differential operator we have seen in the alternative definition of Hermite polynomials. Recall
that Lha = —||a||1hs. Hence

d
9t = Lo =— > calt)llalliha



On the other hand,

=Lg = Zc

By uniqueness of Fourier expansion, ¢} (t) = —||al|1ca(t). In conjunction with the initial condition ¢, (0) = ca,
we get ca(t) = cae” 121, Thus for all t > 0,

U f = Z cae tallip,

That is,
U,f = Z cap!?1 hy

Using the above lemma, we see that exactly analogous to the Bernoulli case,

_ (1 — ¢yl
GNS.(f) = + ]Ef(X);J(“ Zf %

Average Sensitivity. The notion of average sensitivity measures the total influence of coordinates. In
particular,

S(f) = Yo fi(f) = n Pr(f(X) # F(X7)

where X is a uniform Bernoulli random variable, X’ differs from X on one single randomly chosen coordinate.

Gaussian Surface Area. Consider f: R™ — {£1}. S = {2z € R": f(z) = +1}. The Gaussian surface
area, I'(f) is defined as:

(f) = lim Pr(X : X is within ¢ Euclidean distance of 95)
e—0 2e

We expect “nice” surfaces of 9S(e.g. f is a PTF). In this case, a equivalent definition is through integral
over the surface area:

where ¢(z) is the Gaussian pdf.



