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1 Recap

Last time we have covered regularity lemma.

Lemma 1 (Regularity Lemma). Any polynomial p that takes input from {−1,+1}n can be written as a
decision tree of depth O( 1

τ (ln 1
τε )

O(d)), with leaves as polynomials pρ, such that the following holds. With
probability 1 − ε over a random leaf, the associated polynomial pρ is either (1) τ -regular, or (2) var(pρ) ≤
ε‖pρ‖22.

Remark. In the latter case, pρ can be thought of as a large constant plus small variations, where its sign
stays constant (-1 or +1).

We have also de�ned pseudorandom generators(PRGs) of PTFs, which will be the main focus of this
lecture. Formally, our goal is to explicitly construct a simple (low entropy) random variable Y , so that for
any degree-d PTF over n variables,

|Ef(Y )− EB∈U{±1}nf(B)| ≤ ε (1)

As we have seen, there is an implicit construction with seedlength as small as O(d lnn + ln 1
ε ), but this

requires a computationally ine�cient random sampling.

2 The Construction of Meka-Zuckerman PRG

The main tool we will be using is k-wise independence.

De�nition 1. A sequence of random variables (W1, . . . ,Wn) are k-wise independent if any k of them are
independent.

Note that d-wise independent random variables fools in expectation all degree-d polynomials. But fooling
degree-d PTFs appears to be a harder task. We begin with a standard fact.

Fact 1. We can generate a set of k-wise independent random variables (W1, . . . ,Wn), withWi ∈U {1, 2, . . . ,m},
from a seed of length O(k ln(nm)).

The construction is as follows. We �rst use Fact 1 to build F : [n] → [t] where (F (1), . . . , F (n)) are
2-wise independent, requiring a seedlength of O(2 ln(nt)). Next, we repeatedly use Fact 1 t times, to build
independent random vector Z1, . . . , Zt ∈ {±1}n, where each Zi is a random vector whose n coordinates are
k-wise independent. This step requires a seed length of t ·O(k ln(2n)). We put each Zi as a row vector and
concatenate them vertically to an array: Z1,1, Z1,2, . . . , Z1,n

Z2,1, Z2,2, . . . , Z2,n

Zt,1, Zt,2, . . . , Zt,n


Our pseudorandom number generated is de�ned as:

(Y1, . . . , Yn) = (ZF (1),1, ZF (2),2, . . . , ZF (n),n)

In the next section, we claim that with decent size of k and t, Equation (1) can be established.



3 Idea of Analysis

Step 1: Replacement Method Conditioned on F . First we �x F . For any degree-d polynomial p,
without loss of generality, assume ‖p‖2 = 1, since scaling does not change the sign. p(Y1, . . . , Yn) can be
written as a degree-d polynomial pF of Z1, . . . Zt (therefore there are nt − n dummy variables). Consider
f(·) = sign(pF (·)). The high level idea is to use replacement method, as we have seen in the invariance
principle. In particular, we are going to show

Ef(Z1, . . . , Zt) ≈ Ef(G1, . . . , Gt) (2)

Ef(B1, . . . , Bt) ≈ Ef(G1, . . . , Gt) (3)

where (G1, . . . , Gt) are independent standard Gaussians, and (B1, . . . , Bt) are independent uniform Bernoullis.
We start with Equation (2).

For notational simplicity, Let Z = (Z1, . . . , Zi−1), B = (B1, . . . , Bi−1) and G = (Gi+1, . . . , Gt). With
foresight, we �nd smooth functions ρ+, ρ− : R → [−1,+1] such that ρ+(x) = ρ−(x) = sign(x) except for
a small interval of length O((ε/d)d) and ρ−(x) ≤ sign(x) ≤ ρ+(x), with ‖ρ(4)‖∞ ≤ O((ε/d)−4d). Consider
ρ ∈ {ρ+, ρ−}. Our goal now comes down to bounding

E[ρ(p(Z,G,Zi))− ρ(p(Z,G,Gi))]

Now consider W = Zi or W = Gi. Let p0(Z,G,W ) = EW p(Z,G,W ). Since p is multilinear, the conditional
expectation is the same in either case and W simply become a dummy variable in p0. A Taylor expansion
of ρ yields

Eρ(p(Z,G,W )) = E[ polynomial of degree 3 in p(Z,G,W ) ] +O(‖ρ(4)‖∞E(p(Z,G,W )− p0(Z,G,W ))4)

If we set k = 4d, then and the variables among the set (Z,G,W ) are 4d-wise independent. Consequently the
�rst terms are the same in both cases, since the variables among the set (Z,G,W ) are 3d-wise independent.
Now consider the second term. Since (p(Z,G,W )− p0(Z,G,W ))4 is a polynoimal of degree 4d, Zi's can be
safely replaced with Bi's when computing the expectation.

In either case, by hypercontractivity (over a hybrid of Gaussians and Bernoullis),

E(p(B,G,W )− p0(B,G,W ))4 ≤ 2O(d)(E(p(B,G,W )− p0(B,G,W ))2)2

We expand p in Fourier domain:

p(x) =
∑
S⊆[n]

p̂(S)xS

Note that F determines a partition of [n]; for example, if we replace Zi with Gi, only a subset of arguments
of p are a�ected. We call The set of variable the ith bucket with respect to F , abbreviated as B(i). Using
this notation, it can be seen that

p0(x) =
∑

S⊆[n]:S∩B(i)=∅

p̂(S)xS

Therefore,

E|p(X)− p0(X)|2

=
∑

S⊆[n]:S∩B(i)6=∅

p̂(S)2

≤
∑
S⊆[n]

∑
j∈S∩B(i)

p̂(S)2

=
∑
j∈B(i)

∑
S∈[n]:j∈S

p̂(S)2

=
∑
j∈B(i)

Infj(p)



As a result, the total sum of each individual term in (??) can be bounded as

E[f(Z1, . . . , Zt)− f(G1, . . . , Gt)]| ≤ O(ε) +O((ε/d)−4d)

t∑
i=1

2O(d)(
∑
j∈B(i)

Infj(p))
2

where the �rst term comes from replacing ρ+(·) (ρ−(·)) with sign(·) using Carbery-Wright, the second term
comes from the bound of E[ρ(p(Z,G,Zi))− ρ(p(Z,G,Gi))], as we have just shown above.
Similarly,

E[f(B1, . . . , Bt)− f(G1, . . . , Gt)]| ≤ O(ε) +O((ε/d)−4d)

t∑
i=1

2O(d)(
∑
j∈B(i)

Infj(p))
2

Therefore:

E[f(B1, . . . , Bt)− f(Z1, . . . , Zt)]| ≤ O(ε) +O((ε/d)−4d)

t∑
i=1

2O(d)(
∑
j∈B(i)

Infj(p))
2 (4)

Step 2: Averaging Over F . Now, taking the expectation over the random choice of F on Equation (4),
the second term can be bounded as follows:

O
(

(ε/d)−4d · EF [

t∑
i=1

2O(d)(
∑
j∈B(i)

Infj(p))
2]
)

≤ O
(

(ε/d)−4d2O(d) · EF [
∑

j,k∈[n]:F (j)=F (k)

Infj(p)Infk(p)]
)

≤ O
(

(ε/d)−4d2O(d) · EF [

n∑
j=1

Infj(p)
2 +

1

t

n∑
j,k=1

Infj(p)Infk(p)]
)

where the �rst inequality follows from the de�nition of B(·), the second inequality is by the 2-wise indepen-
dence in each of F 's coordinates. To summarize, the error is bounded by

O(ε) +O
(

(ε/d)−4d2O(d) · EF [

n∑
j=1

Infj(p)
2 +

1

t

n∑
j,k=1

Infj(p)Infk(p)]
)

(5)

Let τ = (maxj Infj(p))/(
∑
j Infj(p)) be the regularity parameter of p. Then

n∑
j=1

Infj(p)
2 ≤ τ

n∑
j=1

Infj(p) ≤ τd · var(p) ≤ τd

In the meantime,

1

t

n∑
j,k=1

Infj(p)Infk(p) ≤ 1

t
(

n∑
j=1

Infj(p))
2 ≤ (d · var(p))2

t
≤ d2

t

Step 3: Applying the Regularity Lemma. At this point, it may be tempting to set τ = τ0 =
O(( εd )4d+1) and t = O( 1

ε ( εd )−4d), which lets us conclude the total expected error (5) is bounded by O(ε).
But in general this bound on τ may not be true.

Fortunately there is a quick �x: apply regularity lemma on p. Essentially, p can be written as a decision
tree of depth D = Õ(τ−10 ) such that with probability 1 − ε, a random leaf is either (1) τ0-regular, or (2)



a constant plus small variation term. Now we modify our setting of k from 4d to D + 4d, ensuring even
after D levels of variable conditioning along the path of the tree, the remaining variables are still 4d-wise
independent. In case (1), the previous result now can be applied to ensure the expected error on each leaf is
at most ε. In case (2), the sign of p over this leaf is a constant, thus has constant sign (-1 or +1). Applying
the previous result to every leaf and averaging let us conclude the result.

Seedlength. In summary, t = O( 1
ε ( εd )−4d) and k = Õ(( εd )−(4d+1)). Therefore the total number of

seedlength is

O(tk ln(2n)) +O(2 ln(nt)) = O
(1

ε
(
d

ε
)8d(ln

1

ε
)O(d) lnn

)
= Õ

(
(
d

ε
)O(d) lnn

)
We emphasize that this is still a nontrivial PRG, since its seedlength is O(lnn).

Remark. The state of the art right now is Od(ε
−12 lnn) for PTFs, although for LTFs, a construction with

seedlengh O(ln n
ε ln ln n

ε ) has been shown. As of PRG for Gaussians, we can do a lot better: the best results

so far are Od,c(ε
−c lnn) for arbitrary c > 0 and O(2O(d)ε−5 lnn). A recent result of seedlength polylog(nε )

for d = 2 has been shown.

4 Noise Sensitivity

Bernoulli and Gaussian Noise Sensitivity. Consider a boolean function f : Rn → {±1}. The noise
sensitivity of f measures how likely small changes with input to f leads to small changes of output. This is
opposite to the notion of stability we have seen.

De�nition 2. NSε(f), the noise sensitivity of f , is de�ned as

NSε(f) = Pr
(X,Y )

(f(X) 6= f(Y ))

where (X,Y ) are (1− ε)-correlated Bernoullis.
GNSε(f), the Gaussian noise sensitivity of f , is de�ned as

GNSε(f) = Pr
(X,Y )

(f(X) 6= f(Y ))

where (X,Y ) are (1− ε)-correlated Gaussians.

It is instructive to look at NSε(f) in Fourier domain. In particular,

NSε(f) =
1− Ef(X)f(Y )

2

=
1− Stab1−ε(f)

2

=
1− Ef(X)(T1−εf)(X)

2

=
1−

∑
S⊆[n] f̂(S)2(1− ε)|S|

2

=
∑
S⊆[n]

f̂(S)2
1− (1− ε)|S|

2



Roughly, if f has large high degree Fourier coe�cients, NSε(f) is likely to be high. Similar to the operator
Tρ we have seen in Bernoulli case, we can de�ne operator Uρ in Gaussian case. Formally, for 0 ≤ ρ ≤ 1, Uρf
is the function from R to R such that

(Uρf)(x) = E[f(Y )|X = x]

where Y is ρ-correlated with X, that is, Y = ρX +
√

1− ρ2Z where Z is a standard Gaussian independent
of X. What does this operator do in the Fourier domain?

Lemma 2. For 0 < ρ ≤ 1, function f that has Fourier expansion f =
∑

a
caha, we have

Uρf =
∑
a

ρ‖a‖1caha

Speci�cally,
Uρha = ρ‖a‖1ha

Proof. First we show that ({Ue−s : s ≥ 0}, ◦) is a semigroup. To check associativity, it su�ces to show

Ue−sUe−t = Ue−(s+t)

This follows from straightforward calculations:

Ue−s [(Ue−tf)(x)]

= Ue−s [EA∼N(0,I)f(e−tx+
√

1− e−2tA)]

= EA∼N(0,I),B∼N(0,I)f(e−s−tx+ e−s
√

1− e−2tA+
√

1− e−2sB)

= EN∼N(0,I)f(e−(s+t)x+
√

1− e−2(s+t)N)

= (Ue−(s+t)f)(x)

where in the �rst equality we introduce a standard Gaussian A, in the second inequality we introduce a
standard Gaussian B independent of A.

Now consider f =
∑

a
caha. We would like to �nd the representation of gt = Ue−tf =

∑
a
ca(t)ha. Note

that Ue−0f = f , thus, in this notation, ca(0) = ca. We take derivative of gt with respect to t. First note that

d

dt
gt =

d

dt
Ue−tf =

d

ds
Ue−(s+t)f

∣∣∣
s=0

=
d

ds
Ue−s(Ue−tf)

∣∣∣
s=0

=
d

ds
Ue−sgt

∣∣∣
s=0

Then

(Ue−sgt)(x) = EY g(e−sx+
√

1− e−2sY )

= EY gt((1− s+O(s2))x+
√

2s+O(s2)Y )

= EY gt(x− sx+
√

2sY +O(s3/2))

= EY gt(x) +∇gt(x) · (−sx+
√

2sY ) +
1

2

∑
i,j

∂2g

∂xi∂xj
2sYiYj +O(s3/2)

= gt(x) +∇gt(x) · (−sx) + s∇2gt + o(s3/2)

Therefore,
d

ds
Ue−sgt

∣∣∣
s=0

= −∇gt +∇2gt = Lgt

where L is the di�erential operator we have seen in the alternative de�nition of Hermite polynomials. Recall
that Lha = −‖a‖1ha. Hence

d

dt
gt = Lgt = −

∑
a

ca(t)‖a‖1ha



On the other hand,
d

dt
gt = Lgt =

∑
a

c′
a
(t)ha

By uniqueness of Fourier expansion, c′
a
(t) = −‖a‖1ca(t). In conjunction with the initial condition ca(0) = ca,

we get ca(t) = cae
−‖a‖t. Thus for all t ≥ 0,

Ue−tf =
∑
a

cae
−t‖a‖1ha

That is,

Uρf =
∑
a

caρ
‖a‖1ha

Using the above lemma, we see that exactly analogous to the Bernoulli case,

GNSε(f) =
1− Ef(X)U(1−ε)f(X)

2
=
∑
a

f̂(a)
1− (1− ε)‖a‖1

2

Average Sensitivity. The notion of average sensitivity measures the total in�uence of coordinates. In
particular,

AS(f) =

n∑
i=1

Infi(f) = nPr(f(X) 6= f(X ′))

where X is a uniform Bernoulli random variable, X ′ di�ers from X on one single randomly chosen coordinate.

Gaussian Surface Area. Consider f : Rn → {±1}. S = {x ∈ Rn : f(x) = +1}. The Gaussian surface
area, Γ(f) is de�ned as:

Γ(f) = lim
ε→0

Pr(X : X is within ε Euclidean distance of ∂S)

2ε

We expect �nice� surfaces of ∂S(e.g. f is a PTF). In this case, a equivalent de�nition is through integral
over the surface area:

Γ(f) =

∫
∂S

φ(x)dσ

where φ(x) is the Gaussian pdf.


