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1 Overview

In this lecture, we wish to prove Carbery-Wright's Theorem on anticoncentration of polynomials with respect
to an arbitrary log-concave distribution. We start with some basic properties of log-concave distributions.
Then, we reduce the proof to 1-dimensional case, which will be looked in more details in the next lecture.

Theorem 1 (Carbery-Wright). Let F be a log-concave probability distribution, p a degree-d polynomial.

Then for ε > 0,
PX∼F (|p(X)| ≤ ε‖p‖2,F ) = O(dε1/d)

When it is clear from the context, we write P instead of PX∼F and ‖p‖2 instead of ‖p‖2,F for notational
simplicity.

2 Properties of Log-concave Distributions

We start with some basic properties of log-concave distributions(and functions), which will be useful through-
out the lecture.

Fact 1. Marginals of log-concave distribution is log-concave. Consequently, any projection of log-concave

distribution is log-concave.

Fact 2. Pointwise product of log-concave functions is log-concave.

Fact 3. If ν(dx) = F (x) dx is a log-concave probability distribution on R, then for some µ, σ, F (x) =

O( 1
σ e
− |x−µ|σ ).

Proof of Fact 1. Consider a log-concave probability measure ν(dx) = F (x) dx de�ned on Rd. We begin with
the d = 2 case, that is, if (X,Y ) ∼ ν, then the marginal distribution of X is log-concave. The marginal
density of X is

FX(x) =

∫
R
F (x, y) dy

To prove that FX(x) is log-concave, it su�ces to show that for all x1, x2 ∈ R,

F 2
X(
x1 + x2

2
) ≥ FX(x1)FX(x2)

This is implied by Lemma 1 below by taking f(·) = F (x1, ·), g(·) = F (x2, ·), h(·) = F ((x1 + x2)/2, ·),
concluding the d = 2 case.

For general d, by similar argument, we get ν's every (d− 1)-dimensional marginal density is log-concave.
By applying the same logic repeatedly, we �nd out that the marginal distribution of any subset of variables
is still log-concave.



Lemma 1 (Prekopa-Leindler). Suppose functions f, g, h : R→ R+ satis�es for all x, y ∈ R,

h2(
x+ y

2
) ≥ f(x)g(y)

Then

‖h‖21 ≥ ‖f‖1‖g‖1

Proof. Note that if we multiply f, g and h by a, b and
√
ab for some positive real numbers a and b, it does

not a�ect the problem. Therefore, we may assume that supx f(x) = supx g(x) = 1. For any given function
φ : R→ R, t > 0, de�ne φ's superlevel set as

φt := {x : φ(x) ≥ t}

By assumption, if x ∈ ft, y ∈ gt, then (x + y)/2 ∈ ht. Utilizing this fact, we claim that m(ht) ≥ (m(ft) +
m(gt))/2. To see this, observe

ht ⊆
min(gt) + ft

2
∪ gt + max(ft)

2

where the intersection of two sets on the right hand side has only one point {min(gt) + max(ft)} which is of
zero Lebesgue measure.

Meanwhile, note that for any function φ : R→ R+,∫
R
φ(x) dx =

∫
R

∫
R
I(0 ≤ t ≤ φ(x)) dtdx =

∫
R+

m(φt) dt

Therefore,

‖h‖1 =

∫
R+

m(ht) dt

≥
∫
R+

m(ft) +m(gt)

2
dt

=
‖f‖1 + ‖g‖1

2

≥
√
‖f‖1‖g‖1

The lemma follows.

Proof of Fact 3. We only consider the case where lnF (x) is di�erentiable.(when lnF (x) is not di�erentiable,
we can replace gradient with subgradient in Equation (1).) Let µ be the maximizer of F (·). Without loss of
generality, assume µ = 0. Let σ+ be the minimum value of σ > 0 such that

− d

dx
(lnF (x))

∣∣∣∣
x=σ

≥ 1

σ
(1)

De�ne σ− similarly on the left hand side. Let σ = max(σ+, σ−). Without loss of generality, suppose σ = σ+.
Now, by concavity of lnF (x), we know that for all x,

lnF (x) ≤ lnF (σ+)− 1

σ+
(x− σ+)

In the meantime, since F (x) is monotonically decreasing in [0,+∞), F (σ) is a probability density function,
we have

∫ σ+

0
F (x) dx ≤ 1, hence F (σ+) ≤ 1

σ+
. Thus, F (σ+) ≤ F (0) ≤ F (σ+)e ≤ e

σ+
. We conclude that for

x > 0,
F (x) ≤ F (σ+)e−(x−σ+)/σ+ ≤ eF (0)e−|x|/σ+



Similarly, by de�nition of σ−, for x < 0

F (x) ≤ eF (0)e−|x|/σ− ≤ eF (0)e−|x|/σ+

Hence, for all x ∈ R,

F (x) ≤ eF (0)e−|x|/σ+ ≤ e2

σ+
e−|x|/σ+ = O(

1

σ
e−|x−µ|/σ)

3 Reducing the Problem to One Dimensional Case

We observe that Theorem 1 is homogeneous in the polynomial p, that is, scaling p by a factor of c > 0 does
not change the its statement. It therefore su�ces to show that for an arbitrary polynomial p, for all ε > 0,

either ‖p‖2 ≤ 1 or P(|p(X)| < ε) ≤ O(dε1/d) (2)

To see why, note that consider an arbitrary polynomial p, if ‖p‖2 = 0, then the theorem is vacuously true.
Otherwise consider normalized polynomial p̄ = 2 p

‖p‖2 , ‖p̄‖2 = 2 > 1. Thus, by Equation (2), for all ε > 0,

P(|p̄(X)| < ε) ≤ O(dε1/d)

Therefore for the original polynomial p,

P(|p(X)| < ε‖p‖2) ≤ O(dε1/d)

Our problem now reduces to showing that there exists a numerical constant C > 0, such that for any log-
concave probability measure ν, for all ε > 0 and all degree-d polynomial p, the following two inequalities
cannot both hold: ∫

(p2(x)− 1)ν(dx) > 0 and

∫
(I(|p(x)| < ε)− Cdε1/d)ν(dx) > 0 (3)

It is di�cult to reason with high dimensional integrals in general. Thankfully, there is a generic tool that
can reduce such problem to its 1-dimensional counterpart. First we need some notations.

De�nition 1. A needle in Rn is a pair (l, ν), where l ⊆ Rn is a line segment, ν is a log-concave measure

on l.

Theorem 2 (Localization, (Lovasz-Simonovits)). Suppose f, g : Rn → R are continuous functions, µ is a

log-concave measure on Rn, then if∫
R
f(x)µ(dx) > 0 and

∫
R
g(x)µ(dx) > 0 (4)

then there exists a needle (l, ν) such that∫
l

f(x)ν(dx) > 0 and

∫
l

g(x)ν(dx) > 0 (5)

We remark that the measure ν on the needle (l, ν) we �nd does not have to be equal to the marginal of µ
on l. In fact, as we will see in the proof, their densities typically di�er by a factor of a log-concave function.

Before getting into the proof of Theorem 2, we see how it relates to our problem. Fix ε > 0. Note that
there is a small technicality that prevents us from directly applying this result to Equation (3) � the function
I(|p(x)| < ε) is not continuous. Nevertheless, we can de�ne a new function hε(·) such that hε is continuous



and I(|y| < ε/2) ≤ hε(y) ≤ I(|y| < ε). Now, it su�ces to prove that for any log-concave probability measure
µ, the following two inequalities cannot both hold:∫

(p2(x)− 1)µ(dx) > 0 and

∫
(hε(p(x))− Cdε1/d)µ(dx) > 0 (6)

Invoking Theorem 2, we only need to show for any needle (l, ν), the following two inequalities cannot both
hold: ∫

l

(p2(x)− 1)ν(dx) > 0 and

∫
l

(hε(p(x))− Cdε1/d)ν(dx) > 0 (7)

Since hε(y) ≤ I(|y| < ε/2), it is enough to show that there exists a numerical constant C > 0, such that for
any needle (l, ν), for all ε > 0 and all degree-d polynomial p, the following two inequalities cannot both hold:∫

l

(p2(x)− 1)ν(dx) > 0 and

∫
l

(I(|p(x)| < ε)− Cdε1/d)ν(dx) > 0 (8)

Since a needle is essentially a log-concave measure on an interval in R (up to linear transformation), it is
thus equivalent to the 1-dimensional case of Equation (3). The �nal statement follows from 1-dimensional
Carbery-Wright Theorem, letting us conclude that the �real work" lies in the 1-dimensional proof, which will
be discussed in the next lecture.

4 Proof Idea of Theorem 2

For simplicity, we consider the case of n = 2. Our plan is to progressively build nested convex sets {Ki}∞i=1 of
rapidly decreasing volume, such that the sequence �nally converges to a needle, and maintains the invariant∫

Ki

f(x)µ(dx) > 0 and

∫
Ki

g(x)µ(dx) > 0 (9)

We start with de�ning K0 to be a large enough ball such that
∫
K0
f(x)dµ(x) > 0 and

∫
K0
g(x)dµ(x) > 0.

(the existence is guaranteed by Dominated Convergence Theorem.) Taking

δ =
1

2
min

(∫
K0

f(x)dµ(x),

∫
K0

g(x)dµ(x)

)
> 0,

de�ne fδ(x) := f(x)− δ, gδ(x) := g(x)− δ. One has
∫
K0
fδ(x)µ(dx) > 0 and

∫
K0
gδ(x)µ(dx) > 0.

To build Ki from Ki+1, we search for a hyperplane Hi (in n = 2, it is simply a line) that cuts Ki into
two convex bodies Ai and Bi, such that∫

Ai

gδ(x)dµ(x) =

∫
Bi

gδ(x)dµ(x) =
1

2

∫
Ki

gδ(x)dµ(x) > 0∫
Ai

dx =

∫
Bi

dx =
1

2

∫
Ki

dx (10)

(The existence is justi�ed by Lemma 2, as we will see below.) Hence,∫
Ai

f(x)µ(dx) +

∫
Bi

fδ(x)dµ(x) =

∫
Ki

fδ(x)dµ(x) > 0

Therefore, f has positive integration value on at least one of Ai and Bi. Now, we can pick Ki+1 to be the
one on which f has positive integral. This ensures that not only Equation (9) is true for all i, but also
Vol(Ki) ↓ 0.

Now, Let N =
⋂∞
i=1Ki, then Vol(N) = 0, and N is still a bounded convex set. The only possibilities

are: (1) N is a single point x, (2) N is a line segment l. In the �rst case, by continuity, fδ(x) ≥ 0 and



gδ(x) ≥ 0, thus f(x) ≥ δ > 0, g(x) ≥ δ > 0. Taking a su�ciently small line segment along any direction, in
the neighborhood of x (e.g. picking su�ciently small ε such that l = {(t1, t2) : x1− ε ≤ t1 ≤ x1 + ε, t2 = x2})
and ν to be the uniform distribution on l guarantees Equation (5) holds.

In the second case, we construct a measure ν on l so that (l, ν) has the desired property. For each i, de�ne
projection πi : Ki → N , such that πi(x) maps every x to its nearest neighbor in N . Pick i large enough such
that the projection onto N is roughly equal to the perpendicular foot of the line that is perpendicular to I
and passes through x. Also, i is su�ciently large that for all x ∈ Ki, f(πi(x)) ≈ f(x). This implies that∫

Ki

f(πi(x))dµ(x) > 0 and

∫
Ki

g(πi(x))dµ(x) > 0

Roughly, this implies∫
I

f(x)Voln−1(π−1i ({x}))F (x) dx > 0 and

∫
I

g(x)Voln−1(π−1i ({x}))F (x) dx > 0

Note that the term Voln−1(π−1i ({x})) can be thought of as the density of projection of uniform distribution
over Ki onto I, which is log-concave by Fact 1. Also, by Fact 2 we see that Voln−1(π−1i ({x}))F (x) is
log-concave, thus we can use it as ν's density function. This construction guarantees Equation (5) to hold.

For the general n-dimensional case, we construct the Ki's a bit more carefully. Instead of reducing its
volume in each step, we aim to reduce the volume of each of its axis-parallel 2 dimensional projections. We
cycle through all pairs of coordinates (j1, j2), 1 ≤ j1 < j2 ≤ d � in each time step i we only consider �nding
hyperplanes whose normal vector lives in the subspace of corresponding pair and maintains the invariant (9),
which again is guaranteed to exist by Lemma 2. This procedure guarantees that the �nal N is of dimension
at most 1. (Otherwise there must exist a pair of coordinates such that N 's projection on it has nonzero area,
which contradicts our construction.) The construction of ν is essentially the same as the n = 2 case.

We now come back to justify the existence of a hyperplane that simultaneously bisects two functions'
integrals with respect to a given set.

Lemma 2 (Ham-Sandwich Cut). Given a bounded set K ⊂ R2 and two continuous functions f, g : K → R
with f(x) ≥ 0 for all x, there exists a hyperplane H that cuts K into two parts A and B, such that∫

A

f dx =

∫
B

f dx and

∫
A

g dx =

∫
B

g dx

Proof. For simplicity, we assume that K is a ball and that f is strictly positive on K (in general you can
write f as a limit of such functions and use the limiting hyperplane as your H).

Consider any angle θ ∈ (0, 2π], By intermediate value theorem, there exists a unique o�set c(θ) such
that the line x cos θ + y sin θ + c(θ) = 0 bisects the integration of f on K. Note that we can adjust c so
that c(θ + π) = −c(θ) and c is continuous. Formally, de�ne A(θ) = K ∩ {x cos θ + y sin θ + c(θ) ≥ 0} and
B(θ) = K ∩ {x cos θ + y sin θ + c(θ) ≤ 0}, then we have A(θ + π) = B(θ) and B(θ + π) = A(θ), and∫

A(θ)

f dx =

∫
B(θ)

f dx

Now we use the extra degree of freedom in θ to balance the integral of g. De�ne

D(θ) =

∫
A(θ)

g dx−
∫
B(θ)

g dx

which is a continuous function by the continuity of c. Also, D(θ+π) = −D(θ). Again, by simple application
of intermediate value theorem, there exists some θ0 such that D(θ0) = 0, completing the proof.


