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Abstract

In the problem of active learning, we are given a set of unlabelled examples and the ability to query

the labels of a subset of them, in an adaptive manner. The goal is to find a classifier with a target excess

error, while querying as few labels as possible. In this report, we review several existing solutions to this

problem: generalized binary search, disagreement-based active learning and margin-based active learning.

These solutions are based on different notions of uncertainty of unlabelled examples. Furthermore, we

give a novel characterization of uncertainty based on confidence-rated prediction with guaranteed error.

In light of this characterization, we propose a new aggressive agnostic active learning algorithm that has

superior label complexity over disagreement-based approaches.

1 Introduction

Active learning, a model that lies in the middle of supervised learning and unsupervised learning, has been
fruitful over the past two decades, both in theory and in practice. In supervised learning (aka passive
learning), the learning algorithm receive labelled examples drawn at random. On the other hand, in active
learning, the learning algorithm is first provided with a large set of unlabelled examples, then it is allowed
to interact with labelling experts, i.e. asking the labels of an unlabelled example. A typical active learning
algorithm may follow the paradigm of alternating between picking the “most informative” unlabelled exam-
ples to query, and updating its belief on the data distribution based on this feedback. It has been shown
empirically that active learning can significantly reduce labelling effort (often done by human labellers),
while achieve the same accuracy compared to passive learning [SC08].

There has been a variety of applications of active learning to different domains. For instance, in sequence
tagging problem(e.g. Named Entity Recognition or Part-of-Speech tagging), a tagger is supposed to assign
labels to each words in a given sentence. (e.g. in Part-of-Speech tagging, given the sentence “I see a car”, a
tagger is supposed to assign labels (Pronoun, Verb, Determiner, Noun) to the sentence.) In passive learning
setting, a labelled dataset with (sentence, tag) pairs is given as input to an offline learning algorithm. In
contrast, in active learning, the algorithm trains a tagger by starting with an untagged corpus, and keep
querying the tags of carefully selected sentences. In particular, the active learning algorithm in [SC08]
keeps a probabilistic model, e.g. a conditional random field, to model the distribution of tagging given a
particular sentence, given the information so far. Then it picks the sentence that it is most uncertain about,
based on its current model parameters and heuristic criteria such as entropy. As another example, in text
classification, [TK01] proposes a support vector machine type algorithm that trains a linear classifier based
on the current labelled dataset, and queries the label of a new example according to its distance to the
current decision boundary. In the experiments it is shown that the trained classifier using carefully selected
queries has better test accuracy than randomly selected queries, given a fixed budget of label requests.

In this report we address this question theoretically: what is the number of label queries needed, if we aim
to learn a classifier that provably has low error? In particular, three lines of existing work will be discussed
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in Section 3, based on different notions of uncertainty, that is, generalized binary search, disagreement-
based active learning, and margin-based active learning. Furthermore, we propose a new characterization
of uncertainty in Section 4, based on a connection with confidence-rated prediction with guaranteed error.
We show how to construct a provably consistent agnostic active learning algorithm using this new notion
of uncertainty. The proposed algorithm can be shown to have superior label complexity over disagreement-
based approaches.

2 The Problem and the Model

2.1 Active Learning and Passive Learning

We consider the problem of PAC learning for binary classification. That is, each example Z = (X,Y ), where
X ∈ X is a vector of feature and Y ∈ Y = {0, 1} is its label. The examples Zi’s are drawn from a fixed data
distribution D over X ×Y independently. In passive learning, each example comes with a complete (Xi, Yi)
pair. In active learning, the algorithm has the freedom to pick whichever unlabelled example to ask for its
label: for each example Zi, initially the feature Xi is presented to the algorithm, and the label Yi is revealed
only if the algorithm makes an explicit query to the labelling oracle O. Let η(x) denote the conditional
probability of Y given X, i.e. P(Y = 1|X = x) induced by D. That is, O(x) returns a Bernoulli random
variable with mean η(x).

We are also given a hypothesis class H of VC dimension d, where each hypothesis h ∈ H is a classification
rule mapping from X to Y. To evaluate the performance of a hypothesis h, we use its generalization error,
defined as the fraction of examples drawn from D that h makes a mistake on: err(h) = P(x,y)∼D(h(x) 6= y).
Denote by h∗ the optimal classifier among H: h∗ = argminh∈Herr(h). The error of the optimal classifier
is defined as ν = err(h∗). Since there can be inherent label noise in the data, we do not expect the error
of the classifier learned going to zero as the number of training examples tends to infinity; instead, the
goal of the learning algorithm is, given a target excess error ǫ > 0 and failure probability δ > 0, output
a hypothesis ĥ ∈ H such that its excess error, err(ĥ) − err(h∗) is at most ǫ, with probability 1 − δ. In
passive learning, the performance is measured by its sample complexity, the number of “passive” examples
needed with respect to ǫ and δ. In contrast, an active learning algorithm’s performance is measured by
its label complexity, that is the number of queries to O, in terms of ǫ and δ. Denote by DX the marginal
distribution of D over X . The distribution DX introduces a pseudometric ρ within hypothesis class H:
ρ(h, h′) = P(h(X) 6= h′(X)). We define the disagreement ball B(h, r) as the subset of classifiers that are
r-close to h, that is, B(h, r) = {h′ ∈ H : ρ(h, h′) ≤ r}.

For a sample S = {(X1, Y1), . . . , (Xn, Yn)}, the empirical error of h ∈ H on S is defined as errS(h) =
1
n

∑n
i=1 I(h(Xi) 6= Yi). The empirical distance of two classifiers h, h′ ∈ H on S is defined as ρS(h, h

′) =
1
n

∑n
i=1 I(h(Xi) 6= h′(Xi)).

2.2 Query Models

There are three popular concrete query models of active learning in literature: stream-based active learning,
pool-based active learning and membership queries.

Stream-based Active Learning. This model is sometimes referred to as selective sampling in litera-
ture [CAL94, FSST97, CGZ04, DHM07, CCG11, DGS12]. We are given a sequence of examples (X1, Y1),
. . ., (Xn, Yn), . . ., drawn iid from D. At time t initially the feature of example Xt is presented, the algorithm
has to make a decision to query the label Yt or not. The algorithm is not allowed to revisit examples it has
seen before, that is to query Ys, s < t at time t. This “one-pass” nature of the model is somewhat restrictive
compared to pool-based active learning, as will be discussed in the next paragraph.

Pool-based Active Learning. An alternative model is pool-based active learning [Das05, BBL09, BBZ07,
Han07, Kol10] – the algorithm is first presented with a (possibly) huge set of unlabelled examples U , namely
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the pool, drawn iid from DX . Then the algorithm queries a subset of the unlabelled examples in an adaptive
manner; for instance, at time t the algorithm is allowed to query the label of an arbitrary example in U ,
based on its current belief of the informativeness of labels for each example. This is more flexible compared
to stream-based active learning, in the sense that the algorithm can “postpone” the decision of making label
queries after seeing the whole set of unlabelled exmaples. On the other hand, designing stream-based active
learning algorithm may have the advantage that it is conceptually clean and advocates easy implementation.

Membership Queries. A stronger model, namely membership query, has been considered in computa-
tional learning theory and information theory community [Ang87, KMT93, Ang04, CN07, Now11]. Instead
of only allowed to query examples from U drawn iid from DX , the algorithm has the freedom to query
the label of an arbitrary example in X . This can be thought of as having the added power of synthesizing
examples to query the labelling oracle O.

2.3 Noise Models

Let us focus on subclasses of (H, D) that may be of interest. For each subclass, we will compare the sample
complexity upper bounds achieved by active learning to that achieved by passive learning in the next two
sections.

Realizable. A widely used assumption is realizability, that is, there exists an (unknown) classifier h ∈ H
that perfectly classifies all examples drawn from D, formally, ν = 0. An immediate corollary is that the
labels of the examples are deterministic, that is Y is equal to h∗(X) almost surely.

Agnostic with a Given Optimal Error Rate. In general the data may not be separable. Recall that
ν = err(h∗) is the error of the optimal classifier. There can be two sources of errors contributing to ν. One is
the approximation error – the Bayes classifier lies outside H, the other being inherent noise – η(x) is bounded
away from 0 and 1. As we shall see in Lemma 1, there is a smooth transition of the sample complexity upper
bound from ν bounded away from zero to ν = 0.

Random Classification Noise. The following noise model is also a natural generalization of realizability.
Consider a distribution D0 over X × Y and a hypothesis class H where we are in realizable case. Then for
each example (X,Y ) drawn from D0, flip the label Y with a fixed probability γ, where 0 ≤ γ ≤ 1/2, to get
Ỹ . We call the resulting distribution of (X, Ỹ ), D, satisfies random classification noise with parameter γ.

Tsybakov Noise Condition. Modern sample complexity analysis crucially depends on the variance of
the random variable I(h(X) 6= Y )− I(h∗(X) 6= Y ), which is upper bounded by ρ(h, h∗) [MT99, Tsy04]. We
call a labelled distribution D and a hypothesis H satisfies (C, κ)-Tsybakov Noise Condition for C > 0 and
κ ≥ 1, if and only if for all h ∈ H,

ρ(h, h∗) ≤ C(err(h)− err(h∗))
1
κ

Note that random classification noise with parameter γ is a special case with κ = 1 and C = 1
1−2γ .

2.4 Sample Complexity Results in Passive Learning

In this section, we provide a brief review of the number of examples sufficient or necessary to learn a classifier
with excess error ǫ in passive learning. These results are intended to be compared with the results of active
learning below as a baseline.
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2.4.1 Upper Bounds on Sample Complexity

Agnostic with a Given Optimal Error Rate. The following is an immediate corollary of normalized
VC bound [VC71]. This gives the number of examples needed to get a classifier with excess error ǫ, when a

particular learning algorithm, namely empirical risk minimization is used. Denote by ĥm the empirical risk
minimizer argminh∈HerrS(h). For refinements of logarithmic factors, please refer to [Han13].

Lemma 1. There is an absolute constant c > 0 such that for any ǫ, δ, ν ∈ (0, 1), for any distribution D
satisfying infh∈H err(h) = ν, any hypothesis class H of VC dimension d, if the sample size

m ≥ c
ν + ǫ

ǫ2
(d ln

1

ǫ
+ ln

1

δ
)

then with probability 1− δ over the random draw of a training sample S ∼ Dm, err(ĥm)− err(h∗) ≤ ǫ.

Tsybakov Noise Condition. The following is also an immediate corollary of normalized VC bound.

Lemma 2. There is an absolute constant c > 0 such that for any ǫ, δ ∈ (0, 1), C > 0, κ ≥ 1, for any
distribution D and hypothesis class H with VC dimension d satisfying (C, κ)-Tsybakov Noise Condition, if
the sample size

m ≥ cmax(Cǫ
1
κ
−2(d lnCǫ

1
κ
−2 + ln

1

δ
), ǫ−1(d ln ǫ−1 + ln

1

δ
))

then with probability 1− δ over the random draw of a training sample S ∼ Dm, err(ĥm)− err(h∗) ≤ ǫ.

Realizable. An immediate corollary of the two lemmas above is the sample complexity upper bound in
realizable case. Plugging in ν = 0 in Lemma 1, or C = 1, κ = 1 in Lemma 2, we get the following result.

Corollary 1. There is an absolute constant c > 0 such that for any ǫ, δ ∈ (0, 1), for any distribution D
satisfying infh∈H err(h) = 0, if the sample size

m ≥ c

ǫ
(d ln

1

ǫ
+ ln

1

δ
)

then with probability 1− δ over the random draw of a training sample S ∼ Dm, err(ĥm)− err(h∗) ≤ ǫ.

2.4.2 Lower Bounds on Sample Complexity

To complement the upper bounds above, let us review some results on lower bounds of the sample complexity.
These results essentially shows that the empirical risk minimization approach is minimax optimal, modulo
a logarithmic factor of 1/ǫ. In conjunction with label complexity upper bounds in active learning discussed
in the next section, they show that active learning has asymptotically lower label complexity compared to
passive learning under certain assumptions.

Agnostic with a Given Optimal Error Rate.

Lemma 3 (see e.g. [Han13]). There is an absolute constant c > 0 such that for any ǫ, δ, ν ∈ (0, 1), there
exists a distribution D satisfying err(h∗) = ν, for any (randomized) learning algorithm A taking a sample
as input and a classifier in H as output, if the sample size

m ≤ c
ν + ǫ

ǫ2
(d+ ln

1

δ
)

Then with probability at least δ over the draw of a training sample S ∼ Dm (and the randomness in A),
err(A(S))− err(h∗) ≥ ǫ.
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Tsybakov Noise Condition.

Lemma 4 (see e.g. [Han13]). There is an absolute constant c > 0 such that for any ǫ, δ ∈ (0, 1), C > 0,

κ ≥ 1, there exists a distribution D satisfying ρ(h, h∗) ≤ C(err(h)−err(h∗))
1
κ , ∀h ∈ H, for any (randomized)

learning algorithm A taking a sample as input and a classifier in H as output, if the sample size

m ≤ c · Cǫ
1
κ
−2(d+ ln

1

δ
)

Then with probability at least δ over the draw of a training sample S ∼ Dm (and the randomness in A),
err(A(S))− err(h∗) ≥ ǫ.

We summarize the results above in Table 1.

Table 1: A Comparison of the Sample Complexity Bounds in Passive Learning
Noise Model Sample Complexity Upper Bound Sample Complexity Lower Bound
Agnostic
with Given ν

O( ν+ǫ
ǫ2
· d ln 1

ǫ
) Ω( ν+ǫ

ǫ2
· d)

Tsybakov
Noise Condi-
tion

O(max( C

ǫ
2− 1

κ

· d ln C

ǫ
2− 1

κ

, 1
ǫ
· d ln 1

ǫ
)) Ω(ǫ2−

1
κ · d)

Random
Classifica-
tion Noise

O( 1
(1−2γ)ǫ · d ln 1

(1−2γ)ǫ ) Ω( 1
(1−2γ)ǫ · d)

Realizable O( 1
ǫ
· d ln 1

ǫ
) Ω( 1

ǫ
· d)

3 Existing Solutions

In this section, we review several previous approaches to active learning. An intuitive family of algorithm is
a generalization of binary search, but such algorithm may not be consistent in general. To ensure consistency
in agnostic setting, a second line of work, namely disagreement-based active learning, has been proposed.
A third line of research, namely margin-based active learning, which has sharper label complexity than
disagreement-based algorithms, works only when the hypothesis space H is the set of homogeneous linear
classifiers and underlying distribution DX is isotropic log-concave in R

d.

3.1 Generalized Binary Search

Let us consider the following simple but illustrative example. Suppose we are in the realizable case. DX

is uniform over the interval [0, 1], and the hypothesis class contains all threshold classifiers, namely H =
{I(x > t), t ∈ (0, 1)}. There is an unknown threshold t∗ ∈ (0, 1) such that the examples lying in the right
hand side of t is labelled 1 and vice versa. How many examples are needed for passive learning to get a
classifier with error rate ǫ? Intuitively, if no examples are within, say 10ǫ of the threshold t∗, we might make
a rather inaccurate guess of t∗, the generalization error thus exceeding ǫ. By making the argument rigorous,
it can be shown that the sample complexity of passive learning is at least Ω( 1

ǫ
).

On the other hand, consider the following binary-search style algorithm. First we randomly draw O(1/ǫ)
unlabelled examples. Then we start with querying the example farthest to the left and the one farthest to the
right. If they are of the same label, stop. If their labels are different, it must be the case where the leftmost
example is negative labelled and the rightmost one is positive labelled. Then we keep querying the label of
the median of the remaining examples; the key observation is that once the label of the median is revealed,
we can significantly refine our search space for the threshold t∗. If it is positive then we search within the
left half, otherwise we search within the right half. By performing this search recursively, eventually we have
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two consequtive points in the dataset where their labels are different. Thus we only need O(ln 1
ǫ
) queries to

the labelling oracle, achieving an exponentially label saving.

0 1

− +− +− +
b b b b b b b b b b b b b b b

t

Figure 1: An example of binary search style active learning to (approximately) find the underlying threshold,
which queries O(ln 1

ǫ
) examples compared to O( 1

ǫ
) examples in passive learning.

Conceptually, the above procedure can be thought of as follows: first draw n = O( 1
ǫ
) examples so that

they split H into n + 1 equivalence classes C1, . . . , Cn ⊆ H, where within each class all the classifiers label
the examples drawn unanimously. By realizability, there is exactly one equivalence class Ci∗ that contains
h∗. Meanwhile by standard VC theory, for all h ∈ Ci∗ , err(h) ≤ ǫ. Our problem thus reduces to identifying
i∗ through actively querying the labels of the examples drawn. In particular, in the above example, the
algorithm keeps track of all the “alive” equivalence classes with respect to queries it has made, and queries
the example that “bisects” the set of alive equivalence classes as much as possible in a greedy fashion.
Abstracting from this procedure, we get a binary search style algorithm on general hypothesis class H and
data distribution D.

Algorithm 1 A Generalized Binary Search, based on ideas of [FSST97, Now11]

Inputs: Target excess error ǫ, failure probability δ.
Draw m = O(d

ǫ
(ln 1

ǫ
+ ln 1

δ
)) unlabelled examples x1, . . . , xm from DX to form a set S. S partitions H

into n equivalence classes C = {C1, . . . Cn}.
while |C| > 1 do

Find j = argminmj=1 max(|{C ∈ C : C(xj) = 1}|, |{C ∈ C : C(xj) = 0}|), i.e. an example xj ∈ S that
maximally bisects C.

Query the label of xj to get yj .
Update the set of “alive” equivalence classes C ← {C ∈ C : C(xj) = yj}.

Return an arbitrary hypothesis in the only equivalence class in C.

Although this algorithm is intuitive, it is not clear how to analyze it in general. However a conceptually
similar algorithm, named Splitting in [Das05] that aims to reduce the number of disagreement “edges”,
achieves exponentially label savings in several canonical examples.

Theorem 1. Let DX be the uniform distribution over [0, 1], H be the class of threshold classifiers H = {I(x >
t), t ∈ (0, 1)}. Suppose the Splitting Algorithm in [Das05] is run with H and D. Then with probability 1− δ,

(1) err(ĥ) ≤ ǫ. (2) The number of queries is at most

Õ(ln
1

ǫ
)1

Theorem 2. Let DX be the uniform distribution over Sd−1, H be the class of homogeneous linear classifiers
H = {I(w · x ≥ 0), w ∈ S

d−1}. Suppose the Splitting Algorithm in [Das05] is run with H and D. Then with

probability 1− δ, (1) err(ĥ) ≤ ǫ. (2) The number of queries is at most

Õ(d ln
1

ǫ
)

3.1.1 Pros and Cons

On the positive side, the generalized binary search formulation provides sharp label complexity results.
In the cases of homogeneous linear classifier with uniform distribution in S

d−1, and threshold classifier

1Õ(·) hides multiplicative factors of ln ln 1

ǫ
, ln 1

δ
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with uniform distribution in [0, 1], matching lower bounds(Ω(d ln 1
ǫ
) and Ω(ln 1

ǫ
), respectively) have been

established [KMT93].
On the negative side, the algorithms often works only in realizable case. Although there has been attempts

on extending the algorithm to noisy case [CN07, Kää06, BZ74], relative little progress has been made – it
is not clear how to extend these results to the agnostic case (where the algorithm has no knowledge of data
distribution D except for having access to the examples drawn from it). For instance, in [CN07], the analysis
of active learning a threshold function under geometric Tsybakov noise condition crucially relies upon a
reduction to random classification noise case and then applying the Burnashev-Zigangirov Algorithm [BZ74].
As another example, the algorithm of active learning a d-dimensional α-smoooth boundary fragment class

under (C, κ)-Tsybakov noise condition in [CN07] reduces the problem to O(n
d−1

α(2κ−2)+d−1 ) 1-dimensional noisy
binary searches. Then a Lagrange interpolation is performed to get the learned decision boundary. Such
algorithms are brittle, in the sense that: 1. they rely on strong assumptions on the geometry of the data.
2. the parameters of data distributions, e.g. the Tsybakov noise condition parameter κ, or the random
classification noise parameter γ, have to be the input of the algorithms. It is not clear whether the algorithm
will still be consistent, if the model parameters is misspecified(See [DH08] for a informal argument). We
review a line of work providing algorithms that overcome these disadvantages in the next subsection.

3.2 Disagreement-Based Active Learning

Is there any active learning algorithm that works without any knowledge of underlying distribution, achieves
consistency, and still provides label complexity superior to passive learning in certain scenarios? Below we
review an important line of work, namely disagreement-based active learning, which gives a positive answer
to this question. It maintains a set of hypotheses, and alternates between two steps: pruning the hypothesis
set given the labelled examples we have queried so far, and querying the labels on a carefully sampled set of
examples, based on a notion of disagreement of the candidate hypothesis set.

3.2.1 Realizable Case: CAL

It is instructive to consider the realizable case as a starting point. The following algorithm, CAL, named after
its authors [CAL94], works on a stream-based setting. It keeps a set of hypotheses Vt which may potentially
be h∗ based the information we have so far, namely a version space. In particular, Vt is defined as all
classifiers consistent with all examples {(xs, ys)}t−1

s=1(See Figure 2 for an illustration). It is guaranteed that
h∗ ∈ Vt for all t. For each new example xt, if it lies on the disagreement region DIS(Vt−1) = {x : ∃h1, h2 ∈
Vt−1, h1(x) 6= h2(x)}, we simply query the label yt and prune the version space accordingly. Otherwise,
its label yt can be directly “inferred”, thus uninformative, since all the hypotheses in Vt−1(including h∗)
classifies xt unanimously.

Algorithm 2 The CAL Active Learning Algorithm

Inputs: Target excess error ǫ, failure probability δ.
V0 ← H, t0 ← ⌈ 96ǫ (d ln 96

ǫ
+ ln 24

δ
)⌉.

for t = 1, 2, . . . , t0 do

Get a new unlabelled example xt.
if xt ∈ DIS(Vt−1) then

Query the label yt of xt and set Qt ← 1.
Update version space Vt ← {h ∈ Vt−1 : h(xt) = yt}.

else

Set Qt ← 0.

Return an arbitrary classifer ĥ ∈ Vt0 .

It can be readily seen that the output of the algorithm will be equivalent to a classifier consistent on
the t0 examples as if we have seen the all the labels. Thus, the algorithm achieves the target error ǫ with
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Figure 2: In linear classification and realizable case, the version space Vt is the set of hypotheses that are
consistent with the examples in St−1.

probability 1− δ, by the choice of t0 and standard VC bounds.
What does the number of label requests result in? It turns out that a quantity that depends on the

structure of the hypothesis space H and underlying distibution D, namely disagreement coefficient [Han07],
is key to the analysis of CAL’s label complexity.

Definition 1 ( [Han07]). Given a hypothesis space H, data distribution D, the disagreement coefficient of
h with respect to H and D is defined as:

θh(ǫ) = sup
r>ǫ

PD(DIS(B(h, r)))

r

See Figure 3 for an example illustrating the related concepts. Under nondegenerate assumptions, 1 ≤
θh(ǫ) ≤ 1/ǫ. Roughly speaking, the disagreement coefficient captures how fast the disagreement region
shrinks with the radius of version space shrinking. If supǫ>0 = θh(ǫ) ≤ C where C is a constant independent
of ǫ, then we may expect the disagreement region to shrink relatively fast as the algorithm proceeds. Some
canonical examples are presented below.

Fact 1. Let DX be the uniform distribution over [0, 1], H be the class of threshold classifiers H = {I(x >
t), t ∈ (0, 1)}. The disagreement coefficient of any h ∈ H satisfies θh(ǫ) ≤ 2.

Fact 2. Let DX be the uniform distribution over [0, 1], H be the class of interval classifiers H = {I(a <
x < b), a, b ∈ (0, 1)}. The disagreement coefficient of any h = I(a < x < b) ∈ H, a < b satisfies θh(ǫ) ≤
max(4, 1

b−a
).

Fact 3. Let DX be the uniform distribution over unit sphere S
d−1, H be the class of homogeneous linear

classifiers H = {I(w · x ≥ 0), w ∈ S
d−1}. The disagreement coefficient of any h ∈ H satisfies θh(ǫ) ≤

√
d.

However, there are certain settings of (H, D) where there exists classifier in H that has disagreement
coefficient growing unbounded as ǫ ↓ 0:

Fact 4. Let DX be the uniform distribution on [0, 1], H be the class of interval classifiers I(a < x < b), a, b ∈
(0, 1). The disagreement coefficient of h ∈ H, where h = I(a < x < a) ≡ 0 satisfies θh(ǫ) =

1
ǫ
.

To see how the disagreement coefficient affects the label complexity of CAL, let us review the following
crucial result.

Theorem 3 ( [Han09]). Suppose Algorithm 2 is run for some certain hypothesis space H and distribution D,

with target error ǫ and failure probability δ. Then with probability 1−δ, (1) The output ĥ satisfies err(ĥ) ≤ ǫ.
(2) The number of labels queried is

Õ(θh∗(ǫ)d ln
1

ǫ
)
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B(h, r)

r

h

B(h, r)

DIS(B(h, r))

h

Figure 3: An illutration of the disagreement ball B(h, r) and its disagreement region in the case where H is
the set of homogeneous linear classifiers and D is the uniform distribution over Sd−1, where d = 3.

3.2.2 Agnostic Case

Note now in agnostic case, the definition of a version space is no longer valid: there might be no classifier
consistent with the example so far due to the inherent noise of the model! Instead, a notion of candidiate set
will be used(see [BBL09, Kol10] or implicitly [DHM07, Han09]). The idea is that we first want to guarantee
with high probability, h∗ is kept in the version space, other than this constraint, the version space is as
“tight” as possible.

Consider Algorithm 3, which is a straightforward generalization of Algorithm 2. As first sight, it may
not even be clear that it is implementable, since e.g. in time t, errSt

(h) cannot be directly evaluated by the
labelled and unlabelled examples we have. For those examples xt’s that lie in the agreement region of version
space Vt−1, we do not query their labels, (yt can not be inferred exactly, although h∗(xt) can be inferred
exactly) but that whether yt is −1 or +1 does not matter – what we are really interested in is the difference
of empirical error between two classifiers lying in Vt. Meanwhile, since Vt’s are nested, it is guaranteed that
if we do not query the label of example xs for s < t, then xs is in the agreement region of Vs, hence the
agreement region of Vt−1. That said, for h ∈ Vt−1, although errSt

(h) is not observable, errSt
(h)−errSt

(ĥt) is

observable, and equals 1
t

∑

s≤t,Qs=1(I(h(xs) 6= ys)− I(ĥt(xs) 6= ys)). Also note that ρSt
(h, h′) is observable

for any h, h′ ∈ H. Therefore, Algorithm 3 is well-defined.
To give a better illustration of what Algorithm 3 is doing, let us consider removing the active query step.

The algorithm comes down to repeatedly applying the following update rule:

Vt ← {h ∈ Vt−1 : errSt
(h)− errSt

(ĥt) ≤ σ(t, δt) +

√

σ(t, δt)ρSt
(h, ĥt)}

See Figure 4 for a pictorial description. By induction, it is ensured that h∗ ∈ Vt.

+

+

+

+

+

+

-

-

-

-

-

-

-

-

+

Vt

+

-

-

St−1

Figure 4: In linear classification and non-realizable case, the candidate Vt is the set of hypotheses that has
relatively small empirical error with respect to St−1; see Algorithm 3 for its precise definition.

Same as in the realizable case, the number of label queries can be analyzed by bounding the individual
query probability in time t in conjunction with a standard application of Freedman’s Inequality. The proba-
bility of making a query in time t is related to two quantities. The first one is disagreement coefficient θ(ǫ),
and the second is the diameter of Vt. By assumptions of different noise models, the diameter of Vt shrinks

differently, for instance O(
√

νd ln t
t

+ d ln t
t

) if err(h∗) = ν, or O(C(Cd ln t
t

)
1

2κ−1 ) under (C, κ)-Tsybakov noise
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condition. We address the label complexity of Algorithm 3 under two different noise models separately in
the following two theorems.

Algorithm 3 an Agnostic Active Learning Algorithm, based on [DHM07, Han09]

Inputs: Target excess error ǫ, failure probability δ.
Initialize version space V0 = H.
for t = 1, 2, . . . do

Draw a new unlabelled example xt from DX .
if xt ∈ DIS(Vt−1) then

Query the label yt of xt and set Qt ← 1.
else

Set Qt ← 0.

Get the empirical risk minimizer within Vt−1: ĥt ← argminh∈Vt−1
errSt

(h).

Update candidate set of h∗: Vt ← {h ∈ Vt−1 : errSt
(h)− errSt

(ĥt) ≤ σ(t, δt) +

√

σ(t, δt)ρSt
(h, ĥt)}.

if suph∈Vt

√

σ(t, δt)ρSt
(h, ĥt) + σ(t, δt) ≤ ǫ then

t0 ← t, break

Return ĥt0 .

Theorem 4. Suppose Algorithm 3 is run for hypothesis space H and distribution D satisfying err(h∗) = ν,

with target excess error ǫ and failure probability δ. Then with probability 1 − δ, (1) The output ĥ satisfies

err(ĥ)− err(h∗) ≤ ǫ. (2) The number of labels queried is at most

Õ(θh∗(2ν + ǫ)d ln
1

ǫ
(ln

1

ǫ
+

ν2

ǫ2
))

Theorem 5. Suppose Algorithm 3 is run for hypothesis space H and distribution D satisfying (C, κ)-
Tsybakov Noise Condition, with target excess error ǫ and failure probability δ. Then with probability 1 − δ,
(1) The output ĥ satisfies err(ĥ)− err(h∗) ≤ ǫ. (2) The number of labels queried is at most

Õ(θh∗(Cǫ
1
κ )d ln2

1

ǫ
ǫ

2
κ
−2)

Note that in realizable case, by letting ν = 0 in Theorem 4 or letting C = 1 and κ = 1 in Theorem 5,
we essentially recover the same label complexity bound as Theorem 3 by using a different algorithm. Note
that since θ(ǫ) ≤ 1/ǫ, the sample complexity bound achieved is never worse than passive learning, modulo
logarithmic factors.

3.3 Pros and Cons

Compared with generalized binary search, the label query strategy in CAL is quite conservative – for any new
example x, so long as it lies on the disagreement region of the version space, it will be queried. This “mellow”
nature is somehow due to the proof technique – we reduce our active learning problem to passive learning
over t examples without introducing any bias on the training examples, that is, h∗ is optimal with respect
to D|DIS(Vt−1), thus error minimization on D|DIS(Vt−1) is equivalent to error minimization on D. As a result,
its label complexity is sometimes suboptimal – for example, in the case of homogeneous linear classifier with
uniform distribution, CAL achieves Õ(d

3
2 ln 1

ǫ
) in realizable case, while generalized binary search algorithms

such as [Das05, FSST97] achieves a better bound of Õ(d ln 1
ǫ
).

On the positive side, Algorithm 3 is completely “agnostic”, in the sense that it works for any hypothesis
class of VC dimension d, nor does it need to know the parameters such as ν or the parameters of Tsybakov
noise condition C, κ. Orthogonal to this, the notion of disagreement coefficient [Han07] is a generic tool
for analyzing how much improvement in label complexity can be achieved, if a disagreement-based filter is
employed.
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3.4 Margin-Based Active Learning

A third line of work looks at the problem of learning a homogeneous linear classifier under isotropic log-
concave distribution geometrically [BBZ07, BL13, ABL14, WS14]. It queries labels more aggressively than
disagreement-based approaches. Judging from the algorithmic framework, it is not performing generalized
binary search, in the sense that it does not attempt to reduce the “size” of the version space [FSST97, Now11],
or disagreement “edges” [Das05]. The algorithm proceeds in epochs, where in epoch k a linear classifier wk

with excess error at most ǫk is trained. The name “Margin-Based” comes from the fact that in each epoch,
it only queries the examples that lie within a distance bk of the hyperplane {x : wk−1 · x = 0}.

Algorithm 4 Margin Based Active Learning

Inputs: Target excess error ǫ, failure probability δ.
Initialization: Let w0 be an arbitrary homogeneous linear classifier in H.
for k = 1, 2, . . . , k0 = ⌈log 1

ǫ
⌉ do

Sample a labelled dataset Sk of size mk, from D conditioned on the band Bk = {x : |wk−1 · x| ≤ bk}.
Train a linear classifier wk that minimizes empirical error on Sk over B(wk−1, rk).

2

Return wk0
.

wk−1

w∗

bk = O(rk)

O(ǫk)

B(wk−1, rk)

Figure 5: In margin-based active learning, on epoch k we only need to learn a classifier with excess error
O( ǫk

rk
) with respect to distribution D|Bk

.

The algorithm relies upon two ideas. The first idea is that under realizable assumptions or Tsybakov
noise condition, the structure of the hypothesis space can be well characterized. Conceptually we can keep a
“virtual” version space in a compact representation B(wk−1, rk)(although it is not explicitly used anywhere
in the algorithimic implemetation), for appropriate setting of rk, without sacrificing much loss of tightness,
if err(wk−1)− err(w∗) ≤ ǫk−1. A more important observation is that by a careful choice of bk which makes
P(Bk) = Õ(rk)(cf. O(θh∗(rk)rk), the probability of disagreement region of B(wk−1, rk) ), there is still hope
that the algorithm is consistent when focusing on Bk. More formally, the following lemma guarantees that
we only need to focus on learning a classifier with excess error at most O( ǫk

P(Bk)
) with respect to distribution

D|Bk
, if the goal is to learn a classifier wk which has excess error at most ǫk with respect to D in epoch k.

Lemma 5 ( [BL13]). There exist absolute constants c1, c2 > 0 such that if two linear classifiers w and w′

have angle α between them, then for any ǫ > 0, we have

P(hw1
(x) 6= hw2

(x), |w1 · x| ≥ c1α ln
c2α

ǫ
) ≤ ǫ

We now state the label complexity results of the algorithm, under realizable and Tsybakov Noise Condi-
tion, with appropriate settings of parameters bk and rk respectively.

2If we replace B(wk−1, rk) with H we get a simpler algorithm that requires more involved analysis.
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Theorem 6 ( [BL13]). Suppose Algorithm 4 is run on hypothesis space H consisting all homogeneous linear
classifiers and distribution D satisfying DX is isotropic log-concave and err(h∗) = 0, with target error ǫ and
failure probability δ. Then with settings of parameters ǫk = 2−k, rk = ǫk−1, and bk = c1rk ln

c2rk
ǫk

, with

probability 1− δ, (1) The output ĥ satisfies err(ĥ) ≤ ǫ. (2) The number of labels queried is

Õ(d ln2
1

ǫ
)

Theorem 7 ( [BL13]). Suppose Algorithm 4 is run on hypothesis space H consisting all homogeneous linear
classifiers and distribution D satisfying DX is isotropic log-concave and (H, D) satisfies (C, κ) Tsybakov noise
condition, with target excess error ǫ and failure probability δ. Then with settings of parameters ǫk = 2−k,

rk = Cǫ
1
κ

k−1, and bk = c1rk ln
c2rk
ǫk

, with probability 1− δ, (1) The output ĥ satisfies err(ĥ)− err(h∗) ≤ ǫ. (2)
The number of labels queried is

Õ(d ln2
1

ǫ
ǫ

2
κ
−2)

3.5 Pros and Cons

Algorithm 4 is particularly specific – it works only under the assumption that DX is isotropic log-concave(or
more weakly, admissible distribution defined in [BL13]). Meanwhile, κ and C must be inputs of the algorithm
under Tsybakov noise condition, if we hope to get the tightest label complexity bounds. Some attempts has
been made to make κ and C not being inputs to the algorithm [WS14, BBZ07]. But still, in general agnostic
settings where there can be arbitrary noise, it is not clear how to choose parameters bk and rk to ensure
consistency and enjoy superior label complexity than passive learning.3

Nevertheless, in the setting of homogeneous linear classifier and isotropic log-concave distribution, this
algorithm achieves near optimal label complexity Õ(d ln 1

ǫ
), as is achieved by generalized binary search style

algorithms. Compared to generalized binary search, the algorithm can tolerate a broader family of noise.

Table 2: A comparison of the existing approach and our proposed Algorithm
Algorithms Noise Tolerance? Works under any (H, D)? Label Query Strategy
Generalized Bi-
nary Search

Limited(RCN) Yes Aggressive

Disagreement
Based Active
Learning

Any Noise Yes Not Aggressive

Margin Based
Active Learning

Limited(RCN, TNC) No Somewhat Aggressive

Our Algorithm Any Noise Yes Somewhat Aggressive

4 Confidence-Based Active Learning

In this section we propose a new active learning algorithm that has the following properties: it is con-
sistent, works under general (H, D), and has better label complexity bound than known upper bounds of
disagreement-based algorithms. Our algorithm is based on a reduction from active learning to confidence-
rated prediction with guaranteed error.

3Note that if we are in agnostic case and ν is part of input of the algorithm, it is also possible to develop a version of

Algorithm 4 achieving consistency and having a label complexity of Õ(d( ν
2

ǫ2
+ ln 1

ǫ
)).
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Figure 6: A typical output of a confidence-rated predictor P , where a version space V is computed beforehand.
We use +,−,◦ to represent P predicting 1, 0, ⊥, respectively. Note that in general, a confidence-rated
predictor may randomize rather than deterministically output a label for a given x ∈ U .

4.1 Confidence-Rated Prediction

We give a brief introduction to confidence-rated prediction. Informally, a confidence-rated predictor is a
randomized classifier that not only has the ability to output a label in {0, 1}, but is also allowed to output
“Don’t know”(⊥), for each test example. Intuitively, when a confidence-rated predictor outputs “Don’t
know”, the test example is “difficult” to classify, based on the information we have so far. We use V ⊆ H, a
version space or candidate set of h∗, as a proxy for our current knowledge about h∗. That is, we know h∗ is
in V , and any classifier in V may potentially be h∗. V can be obtained by performing calculations of error
confidence bounds, as is done in e.g. Algorithm 3. A confidence-rated predictor P is a randomized mapping
from X to {0, 1,⊥}. Alternatively, it can be represented as a 3-tuple of functions (ζ(x), ξ(x), γ(x)), where
each coordinate represents the probability of outputting 0, 1 or ⊥ given x(thus ζ(x) + ξ(x) + γ(x) ≡ 1 and
ζ(x), ξ(x), γ(x) ≥ 0). For a given P , we focus on two performance metrics. The first one is its error, the
probability that P outputs a label in {0, 1} that is different from y. Formally,

err(P ) = P(P (x) 6= y, P (x) 6=⊥)

Where the probability is taken over the randomness of the predictor P , and (x, y) ∼ D. Of course, we can
trivially minimize the error of a confidence-rated predictor by outputting ⊥ on all the test examples x. To
avoid such degeneracy, a notion of abstention, the probability that P outputs ⊥(which is 1 minus its coverage
in the notation of [EYW10]) is also considered. Formally,

abs(P ) = P(P (x) =⊥)

Typically, there is a tradeoff between the two metrics. When more errors are allowed to be made, the
abstention may decrease. Equivalently, if we are forced to output a small fraction of “Don’t know”’s, the
error is likely to be high. We would like to get a confidence-rated predictor with guaranteed error, that
is P(P (x) 6= y, P (x) 6=⊥) ≤ η for a given η ≥ 0. However, as also noted by [EYW11], this problem is
difficult. Instead, we focus on those confidence-rated predictors with guaranteed disagreement with h∗,
in the sense that the probability of P (x) outputting a different label from h∗(x) is controlled. That is,
P(P (x) 6= h∗(x), P (x) 6=⊥) ≤ η for a given η ≥ 0. Note in realizable case, this exactly corresponds to error
guarantee η. In agnostic case, this suffice to ensure that P(P (x) 6= y, P (x) 6=⊥)−P(h∗(x) 6= y, P (x) 6=⊥) ≤ η,
which is related to the weakly optimal condition proposed by [EYW11]. Finally, we remark that if we predict
⊥ if x ∈ DIS(V ), and predict h(x) if x /∈ DIS(V ) using an arbitrary classifier h ∈ V , then we essentially
recover the Consistent Selective Strategy of [EYW10, EYW11]. Such strategy guarantees that the probability
of disagreement with h∗ is 0.

Consider the following problem: suppose an adversary is allowed to choose an arbitrary h∗ inside V to
label all the examples in X , can we design a confidence-rated predictor guaranteeing disagreement with h∗

at most η, with small abstention probability? This viewpoint turns out to be crucial in the design of our
new active learning algorithm, as we will see shortly.
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Let us look at the following optimization problem:

minEDγ(x) (1)

s.t. ED[I(h(x) = 1)ζ(x) + I(h(x) = 0)ξ(x)] ≤ η, for all h ∈ V

γ(x) + ξ(x) + ζ(x) ≡ 1

γ(x), ξ(x), ζ(x) ≥ 0

It can be seen that the first group of constraints ensure that P(P (x) 6= h∗(x), P (x) 6=⊥) is at most η, while the
second and the third constraints ensure that the predictor outputs labels according to a proper distribution
on {0, 1,⊥}. Suppose (ζ∗(x), ξ∗(x), γ∗(x)) is an optimal solution, we define a confidence-rated predictor P ∗

as the one that correspond to (ζ∗(x), ξ∗(x), γ∗(x)). We can see from the construction that P ∗(x) is optimal,
i.e. for any other confidence-rated predictors P ′(x) guaranteeing disagreement with h∗ at most η(Recall that
h∗ can be chosen adversarially from V ), abs(P ∗) ≤ abs(P ′). This optimal abstention probability is denoted
by Φ(V, η).

It is not even clear if the optimization problem above is solvable using finite samples drawn from D.
Interestingly, in transductive setting, given an unlabelled set U , it is possible to design a confidence-rated
predictor on U with error guarantee η.4 In particular, upon test, we are first given unlabelled examples
U = {x1, . . . , xm} drawn iid from DX and we are asked to predict the labels of all the examples in U all
at once. Since we only need to make decisions on examples in U , PU is defined as a randomized mapping
from U to {0, 1,⊥}. Specifically PU (xi) corresponds to a 3-tuple (ζi, ξi, γi), for each i. In this scenario, the
error and abstention are evaluated with respect to the uniform distribution of U . Formally, errU (PU ) =
P(x,y)∼U (PU (x) 6= y, PU (x) 6=⊥) = 1

m

∑m
i=1[I(h

∗(xi) = 1)ζi + I(h∗(xi) = 0)ξi](where we slightly abuse
the notation to denote (x, y) ∼ U as (x, y) drawn from uniform distribution on U), and absU (PU ) =
P(x,y)∼U (PU (x) 6=⊥) = 1

m

∑m
i=1 γi. Then, optimization problem (1) simplifies to a linear program, described

in the following algorithm:

Algorithm 5 Proposed Confidence-Rated Predictor

Inputs: Unlabelled test examples U = {x1, . . . xm}, candidate set V .
Solve the linear program:

min
1

m

m
∑

i=1

γi (2)

s.t.
1

m

m
∑

i=1

[I(h(xi) = 1)ζi + I(h(xi) = 0)ξi] ≤ η, for all h ∈ V

γi + ξi + ζi = 1, for all i

γi, ξi, ζi ≥ 0 for all i

Return the confidence-rated predictor corresponding to (ζi, ξi, γi)
m
i=1.

Although the number of constraints in the first group is infinite, since V is a hypothesis class with
VC dimension d, there are at most (em/d)d distinguishable constraints. Therefore the linear program has
essentially finite constraints, thus can be solved in principle. Suppose {(ξ∗i , ζ∗i , γ∗

i )}mi=1 is an optimal solution
of the linear program, denote P ∗

U as the confidence-rated predictor over U corresponding to this solution,
and the optimal objective value as ΦU (V, η). Standard VC inequalities implies that if a sufficiently large
number of examples are drawn from D to form U , then the absention of P ∗

U over U with error guarantee
η will be close to the abstention of P ∗ over D with slightly larger error guarantee. Essentially, this implies
that the error-abstension tradeoff behavior under uniform distribution over U is close to that of D. The fact
above is summarized in the following lemma.

4This is different from [EYW10], where only one single test example drawn from D is considered. This subtle difference may
result in significant reduction of abstension probability as we will see in the next subsections.
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Lemma 6. Given a hypothesis set V ⊆ H. Suppose m ≥ O( 1
λ2 (d ln

1
λ
+ln 1

δ
)) unlabelled examples are drawn

from DX . Then with probability 1− δ over the random draw of the unlabelled dataset U ∼ Dm,

ΦU (V, η + λ) ≤ Φ(V, η) + λ

As we will see in our proposed active learning algorithm (Algorithm 6), in each epoch k, it is enough to
first draw a large pool of unlabelled examples U as a proxy for the true underlying distribution DX , then
reduce our problem to learn a candidate set Vk with excess error ǫk, with respect to the uniform distribution
over U in conjunction with DY |X .

4.2 Active Learning via Perfect Confidence-rated Prediction

In the realizable case, it is shown by [EYW12] that active learning can be reduced to perfect confidence-rated
prediction, i.e. confidence-rated predicton with error guarantee 0. Consider running CAL on a stream of
training examples. Then P(DIS(Vt−1)), the probability of querying the t th example given information up
to time t − 1, is at least Φ(Vt−1, 0). This can be checked by first pick an arbitrary h in Vt−1 and define
ζ(x) = I(x /∈ DIS(Vt−1) ∧ h(x) = 0), ξ(x) = I(x /∈ DIS(Vt−1) ∧ h(x) = 1), γ(x) = I(x ∈ DIS(Vt−1)), and let
P be the confidence-rated predictor corresponding to (ζ(x), ξ(x), γ(x)).

By standard VC inequalities, if θ(ǫ) ≤ polylog( 1
ǫ
), then P(DIS(Vt−1)) = O(polylog(t)

t
). It is noted

in [EYW12, Han12] that the converse is also true. This fact are used by [EYW12] to prove examples of
the disagreement coefficient being polylog(1/ǫ), using a new technique called version space compression.
Note that under such conditions the label complexity of CAL is O(polylog( 1

ǫ
)).

The work of [EYW10, EYW12] makes it transparent that in realizable case, if a finite sample upper
bound of abstention probability can be established by a confidence-rated predictor with error guarantee
0(either by analyzing the geometry of the disagreement ball, or by version space compression), then a label
complexity upper bound for CAL can be obtained. This raises two questions: 1. can the same analysis be
carried out for designing agnostic active learning algorithms? 2. can some confidence-rated predictor with
nonzero error guarantee help designing active learning algorithms, possibly with better label complexity?
The first question has been partially addressed by the large body of literature on disagreement-based active
learning. For the second question, we provide an answer in the next subsection.

4.3 Active Learning via Imperfect Confidence-rated Prediction

We introduce our active learning algorithm, namely Algorithm 6 in this subsection. The algorithm proceeds
in epochs. Our claim is that the algorithm makes progress as the number of iterations increases, and h∗ is
always kept in the candidate set, therefore ensuring consistency.

Algorithm 6 An Agnostic Active Learning Algorithm based on Confidence-rated Prediction

Inputs: Excess error guaratee ǫ, failure probability δ.
Initialize V0 = H.
for k = 1, 2, . . . , k0 = ⌈log 1

ǫ
⌉ do

Draw nk unlabelled examples Uk = {x1, . . . , xnk
} from DX .

Run Algorithm 5 with respect to Vk−1 over Uk with error guarantee ǫk/32, to get {ξi, ζi, γi}nk

i=1.
φk = 1

nk

∑nk

i=1 γi.

Denote as Γk the normalized distribution with weight {γi}nk

i=1. Define Γ̃k as the joint distribution over
X × Y which has marginal Γk over X and conditonal probability DY |X=x.

Call Algorithm 7 with input distribution Γ̃k, candidate set Vk−1, target excess error ǫk/8φk, failure
probability δk, to get a new candidate set Vk.

Return an arbitrary hypothesis h in Vk0
.
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Lemma 7. Suppose Algorithm 6 is run with inputs example oracle U , labelling oracle O, hypothesis class
H, confidence-rated predictor P , target excess error ǫ and failure probability δ. Then with probability 1− δ,
for all k = 1, 2, . . . , k0,

(1) for all h ∈ Vk, err(h)− err(h∗) ≤ ǫk.
(2) h∗ ∈ Vk.

In particular, the ĥ returned at the end of the algorithm satisfies err(ĥ)− err(h∗) ≤ ǫ.

In epoch k, we would like to sample over D conditioned on a subset of X . It turns out that the smaller
this subset is(with respect to the measure DX ), the sharper label complexity bound we may hope to achieve.
One particular choice of the regionis DIS(Vk−1), which makes this procedure a disagreement-based active
learning algorithm. Perhaps not surprisingly, the approach achieves the same label complexity upper bounds
given by Algorithm 3, as in Theorems 4 and 5, up to logarithmic factors.

Recall that as shown by [BBZ07, BL13], in the case of H being the class of homogeneous linear classifiers
and DX isotropic log-concave on R

d, in order to output a classifier hk in epoch k such that err(hk)−err(h∗) ≤
ǫk, it is possible to subsample and query on a set different from DIS(B(hk−1, rk)) that has considerably
smaller probability measure with respect to D. Our main contribution can be seen as generalizing this idea
to arbitrary (H, D) by employing a confidence-rated predictor in transductive setting.

The algorithm has two important components: a selection procedure based on confidence-rated predictor
by Algorithm 5 and a label query procedure, namely Algorithm 7, to determine the number of examples
needed to get a version space that has target excess error ǫk in epoch k, for Algorithm 6 to proceed. We
discuss each component in turn.

First, to make the idea of selection implementable, in epoch k we first draw a fresh pool of unlabelled
examples Uk as a proxy of the underlying distribution D. By standard VC inequalities, for all h ∈ H,
errŨk

(h) is essentially the same as err(h) when nk is sufficiently large. Thus it suffice to get a candidate

set Vk tight enough with respect to Ũk, the distribution on X × Y such that its marginal over X and
conditional distribution of Y given X are Uk and DY |X , respectively. Then a confidence-rated predictor
with guaranteed disagreement with h∗ with probability ηk on the unlabelled set Uk is run, outputting
the “abstention” probability γ1, . . . , γnk

. Intuitively the weighted set {(γ1, x1), . . . , (γnk
, xnk

)} represent
the “hard-core” of our learning goal in epoch k, that is, outside the abstention region, any pairs of classifier
h, h′ ∈ Vk are approximately indistinguishable(cf. exactly indistinguishable, if DIS(Vk−1)∩Uk were selected).
Γ̃k is the normailized distribution over Uk with weight γi, i = 1, . . . , nk. Note that Γ̃k can be significantly
different from the uniform distribution over DIS(Vk−1) ∩ Uk(which is usually considered in disagreement-
based algorithms). Therefore, some bias are introduced – the optimal classifier with respect to Γ̃k may not
necessarily be h∗! The bias comes from two sources. One is that we use the distribution Ũk to approximate
D, which we have addressed before. The other is that we use a confidence-rated predictor to focus on
learning with respect to distribution Γ̃k. On one hand ηk should not be too large, otherwise a large bias will
be introduced. This may result in either Vk excluding h∗, or Vk being not tight enough for the algorithm
to proceed. On the other hand, ηk should not be small, otherwise there will be no significant improvement
over disagreement-based active learning. In fact, the choice of parameters nk = O( 1

ǫ2
k

(d ln 1
ǫk

+ ln 1
δk
)) and

η = ǫk/32 suffice for our purposes. In this case, h∗ will still be approximately optimal, in the sense that
errΓ̃k

(h∗) ≤ infh∈Vk−1
errΓ̃k

(h) + ǫk
16φk

.
The second important component is Algorithm 7, which is an empirical Bernstein stopping-like procedure.

It will be called by Algorithm 6 in each epoch k, based on subsampling on Γ̃k to prune the version space
from Vk−1 to Vk such that {h ∈ Vk−1 : errΓ̃k

(h) − infh∈Vk−1
errΓ̃k

(h) ≤ ǫk/16φk} ⊆ Vk ⊆ {h ∈ Vk−1 :
errΓ̃k

(h) − infh∈Vk−1
errΓ̃k

(h) ≤ ǫk/8φk}. This guarantees that h∗ ∈ Vk ⊆ {h ∈ H : err(h) − err(h∗) ≤ ǫk},
which completes the induction in the proof of Lemma 7. An important property of Algorithm 7 is that the
number of label queries it results in is adaptive to different noise conditions of Π, which is crucial to the label
complexity analysis.5 The number of label queries are characterized by the following two lemmas under two
separate assumptions of (Vk−1, Γ̃k) that are of particular interest in our analysis.

5A much more general idea has appeared in [Kol10], where not only VC class but also a broader class satisfying entropy
conditon are taken into account.
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Algorithm 7 An Adaptive Procedure to get a Candidate Set with Target Excess Error

Inputs: Data distribution Π, candidate set V , excess error guaratee ǫ̃, failure probability δ̃.
Outputs: a candidate set V ′ such that {h ∈ V : errΠ(h) − infh∈V errΠ(h) ≤ ǫ̃/2} ⊆ V ′ ⊆ {h ∈ V :
errΠ(h)− infh∈V errΠ(h) ≤ ǫ̃}
for k = 1, 2, . . . do

Draw 2k labelled examples Sk from Π.
Train an ERM classifier ĥk = argminh∈V errSk

(h).

Define Vk = {h ∈ V : errSk
(h)− errSk

(ĥk) ≤ σ(nk, δ̃k) +
√

σ(nk, δ̃k)ρSk
(h, hk)}.

if suph∈Vk
σ(nk, δ̃k) +

√

σ(nk, δ̃k)ρSk
(h, hk) ≤ ǫ̃/2 then

break

Return Vk.

Lemma 8. Suppose Algorithm 7 is run under distribution Π, candidate set V , excess error guarantee ǫ̃,
failure probability δ̃, where (V,Π) satisfies infh∈V errΠ(h) = ν∗(Π). Then with probability 1− δ̃,

(1) The new candidate set V ′ satisfies

{h ∈ V : errΠ(h)− inf
h∈V

errΠ(h) ≤ ǫ̃/2} ⊆ V ′ ⊆ {h ∈ V : errΠ(h)− inf
h∈V

errΠ(h) ≤ ǫ̃}

(2) The total number of labelled examples drawn is at most

Õ(d ln
1

ǫ̃
· ν

∗(Π) + ǫ̃

ǫ̃2
)

Lemma 9. Suppose Algorithm 7 is run under distribution Π, candidate set V , excess error guarantee ǫ̃,
failure probability δ̃, where (V,Π) satisfies (C, κ, ǫ̃)-Tsybakov noise condition, that is, there is a hypothesis h̃

in V such that ρ(h, h̃) ≤ Cmax(ǫ̃, err(h)− err(h̃))
1
κ . Then with probability 1− δ̃,

(1) The new candidate set V ′ satisfies

{h ∈ V : errΠ(h)− inf
h∈V

errΠ(h) ≤ ǫ̃/2} ⊆ V ′ ⊆ {h ∈ V : errΠ(h)− inf
h∈V

errΠ(h) ≤ ǫ̃}

(2) The total number of labelled examples drawn is at most

Õ(max(dǫ̃−1 ln(ǫ̃−1), dCǫ̃
1
κ
−2 ln(Cǫ̃

1
κ
−2)))

In light of these two components, the label complexity of Algorithm 6 can be argued as follows. First,
in epoch k, by Lemma 6, φk ≤ Φ(Vk−1, ǫk/64). This ensures that the target error ǫk/8φk is not too small.
Second, we establish some properties of the subpopulation Γ̃k. If the error of h∗ with respect to D is
ν, then the error of the optimal classifier within Vk−1 with respect to Γ̃k is O( ν+ǫ

φk

). If (H, D) satisfies

(C, κ)-Tsybakov noise condition, then (Vk−1, Γ̃k) satisfies (O(φ
1
κ
−1

k ), κ,Ω( ǫk
φk

))-approximate Tsybakov noise
condition. Third, we call Lemmas 8 and 9 respectively to compute the number of label queries in epoch k.
Finally we sum the number of label queries in each epoch k up. Our main results are summarized in the
following two theorems.

Theorem 8. Suppose Algorithm 6 is run with excess error guarantee ǫ and failure probability δ. err(h∗) = ν.

Then with probability 1 − δ, the output ĥ satisfies err(ĥ) − err(h∗) ≤ ǫ. The number of label queries is at
most

Õ(sup
r≥ǫ

Φ(B(h∗, 2ν + r), r/256)

2ν + r
· d ln 1

ǫ
· (ln 1

ǫ
+

ν2

ǫ2
))
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Theorem 9. Suppose Algorithm 6 is run with excess error guarantee ǫ and failure probability δ. (H, D)

satisfies (C, κ)-Tsybakov noise condition. Then with probability 1−δ, the output ĥ satisfies err(ĥ)−err(h∗) ≤
ǫ. The number of labels queries is at most

Õ(sup
r≥ǫ

Φ(B(h∗, Cr
1
κ ), r/256)

r
1
κ

· d ln2 1

ǫ
· ǫ 2

κ
−2)

We remark that since Φ(B(h∗, r), η) ≤ Φ(B(h∗, r), 0) ≤ P(DIS(B(h∗, r))), Theorem 8 implies that the

label complexity is always no worse than Õ(θ(2ν∗ + ǫ) · d ln 1
ǫ
· ( ν2

ǫ2
+ ln 1

ǫ
)) when err(h∗) = ν∗. Similarly,

Theorem 9 implies that the label complexity is always not worse than Õ(Cθ(Cr
1
κ ) · d ln 1

ǫ
· ǫ 2

κ
−2). Therefore,

up to logarithmic factors, our bound is always no worse than the bounds known for disagreement-based
algorithms.

Specifically, if H is the set of homogeneous linear classifiers, and DX is isotropic log-concave in R
d,

our label complexity bounds essentially recovers the results of [BL13], which is generally a O(
√
d) mul-

tiplicative factor improvement compared to known upper bounds for disagreement-based algorithms since
θ(r) = Õ(

√
d ln 1

ǫ
).

Corollary 2. Suppose Algorithm 6 is run with excess error guarantee ǫ and failure probability δ. DX is
isotropic log-concave on R

d. H is the class of homogeneous linear classifiers in R
d. Then the following

results holds.
(1) Suppose infh∈H err(h∗) = ν∗, then with probability 1− δ, the number of labels requested is at most

Õ(d ln2
1

ǫ
· (ln 1

ǫ
+

ν2

ǫ2
))

(2) Suppose (H, D) satisfies (C, κ)-Tsybakov noise condition, then with probability 1−δ, the number of labels
requested is at most

Õ(d ln3
1

ǫ
· ǫ 2

κ
−2)

5 Conclusion and Open Questions

By utilizing a novel notion of uncertainty based on confidence-rated predictor with guaranteed error, we
have proposed an aggressive agnostic active learning algorithm. This opens up several interesting research
directions, such as:

• Find other settings of (H, D) that confidence-based active learning algorithms can offer asymptotically
lower label requirements compared to known disagreement-based active learning algorithms.

• In epoch k of Algorithm 6, we crucially rely on that our confidence-rated predictor P satisfying
P(P (x) 6= h(x), P (x) 6=⊥) ≤ O(ηk) for all h ∈ Vk−1. Then triangle inequality is applied to ensure
for all h in Vk−1, P(h(x) 6= y, P (x) 6=⊥) − P(h∗(x) 6= y, P (x) 6=⊥) ≤ O(ηk). Can we design agnostic
algorithms that can directly guarantee the latter?

• Design computationally efficient alternatives of the algorithm. Note that Algorithm 6 crucially relies
on keeping a candidate set Vk in epoch k to ensure consistency, which is computationally intractable.
Can implicit candidate set representation, e.g. the ones in [DHM07, Han09, BHLZ10] help in reducing
computational costs?
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