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Abstract

• We study multi-task bandits, in which different tasks have similar but
not necessarily identical reward distributions.

• Our problem setting covers a wide range of transfer learning scenarios,
such as multi-player concurrent learning and sequential transfer, and
has applications in healthcare robotics, etc.

• We design and analyze a Thompson sampling-type algorithm that
robustly aggregates and utilizes data collected from similar sources.

• We show that our algorithm has near-optimal frequentist regret guar-
antees and superior empirical performance in comparison with Upper
confidence bound (UCB)-based algorithms.

Problem Formulation

The ε-multi-player multi-armed bandit (ε-MPMAB) problem [1]:

•M players, labeled as elements in [M ];

•K arms, labeled as elements in [K];

• Each player p and arm i associated with an unknown reward distri-
bution with support [0, 1] and mean µpi ;

• ε: (reward) dissimilarity parameter.

∀i ∈ [K], p, q ∈ [M ], |µpi − µ
q
i | ≤ ε.

Interaction protocol (see also Hong et al., 2022).
In each round t ∈ [T ]:

• A set of active players Pt ⊆ [M ] is chosen (by an oblivious adversary);

• Each active player pulls an arm and observes a reward;

• Decisions & rewards shared with all players at the end of the round.

Special cases:

• |Pt| = 1 for all t: sequential transfer (e.g., Cesa-Bianchi et al., 2013);

• |Pt| = [M ] for all t: concurrent interaction (e.g., [1]).

Objective: To minimize the expected collective regret,

E[R(T )] =
∑
p∈[M ]

∑
i∈[K]

∆p
i · E[npi (T )], where

• ∆p
i = maxi∈[K] µ

p
i − µ

p
i ≥ 0 is the suboptimality gap, and

•npi (t) is the number of pulls of arm i by player p after t rounds.

[1] Wang et al. ”Multitask bandit learning through heterogeneous feedback aggregation.” AISTATS 2021.

Application in healthcare robotics (Kubota et al, 2020).

Auxiliary Data: Always Helpful?

Auxiliary data from transfer learning is not always helpful!

The utility of auxiliary data depends on

• the dissimilarities between the player-dependent reward distributions,
as indicated by ε, and

• the intrinsic difficulty of the bandit problem each player faces indi-
vidually, as indicated by the gaps ∆p

i ’s.

Data aggregation is only provably beneficial on O(ε)-subpar arms:

• The set of α-subpar arms is defined as

Iα = {i : ∃p ∈ [M ],∆p
i > α}.

•“Easier” arms for which transfer learning can be effective.

Robust Transfer in ε-MPMAB

Bias-variance trade-off: utilizing auxiliary data may

• reduce variance of estimations, and

• introduce bias due to dissimilarity of reward distributions.

• ind-µ̃pi : empirical mean reward of i based on p’s own data;

• agg-µ̃pi : empirical mean reward of i based on all players’ data.

Upper confidence bound (UCB)-based RobustAgg(ε) [1]:
For each arm i and player p, compute adaptive weighting of data to
minimize width of confidence intervals.
+ Near-optimal regret guarantees & fallback guarantee;
− Underwhelming empirical performance (too conservative).

Thompson sampling (TS)-type RobustAgg-TS (ε):

For each i and p, maintain two posteriors:

• an individual Gaussian posterior for i based on p’s own data:

N (ind-µ̃pi ,O (1/npi )) ;

• an aggregate Gaussian posterior for i using all players’ data:

N
(

agg-µ̃i + ε,O
(

1/
∑

p n
p
i

))
.

In each round, choose posterior by comparing npi to a threshold in
terms of ε, and draw sample from chosen posterior.

+ Near-optimal (slightly weaker) regret guarantees & fallback guarantee;
+ Superior empirical performance;
− Much harder to analyze.

Regret bound comparison (gap-dependent):

Ind-UCB/Ind-TS O
(∑

i∈[K]

∑
p∈[M ]:∆p

i>0
lnT
∆p
i

)
RobustAgg(ε) [1] Õ

(
1
M

∑
i∈I5ε

∑
p∈[M ]

lnT
∆p
i

+
∑

i∈IC5ε

∑
p∈[M ]:∆p

i>0
lnT
∆p
i

)

RobustAgg-TS (ε) Õ

(
1
M

∑
i∈I10ε

∑
p∈[M ]

lnT
∆p
i

+
∑

i∈IC10ε

∑
p∈[M ]:∆p

i>0
lnT
∆p
i

)

Lower Bound [1] Ω
(

1
M

∑
i∈Iε/4

∑
p∈[M ]:∆p

i>0
lnT
∆p
i

+
∑

i∈ICε/4

∑
p∈[M ]:∆p

i>0
lnT
∆p
i

)
Empirical validation:

(a) |Iε| = 8 (b) |Iε| = 5

Figure 1: Average performance in randomly generated Bernoulli 0.15-MPMAB problem
instances with K = 10 and M = 20.


