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Upper confidence bound (UCB)-based RobustAgg(¢) [1]:
For each arm ¢ and player p, compute adaptive weighting of data to
minimize width of confidence intervals.

Application in healthcare robotics (Kubota et al, 2020).
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A group of assistive Each robot learns the

e \We show that our algorithm has near-optimal frequentist regret guar-
antees and superior empirical performance in comparison with Upper
confidence bound (UCB)-based algorithms.

e an aggregate Gaussian posterior for 7 using all players’ data:
N(agg—/ii +e,(’)(1/zpnf)>.

In each round, choose posterior by comparing n; to a threshold in
terms of €, and draw sample from chosen posterior.

Auxiliary Data: Always Helpful?

Auxiliary data from transfer learning is not always helpful!

Problem Formulation

The utility of auxiliary data depends on

The e-multi-player multi-armed bandit (e-MPMAB) problem [1]: + Near-optimal (slightly weaker) regret guarantees & fallback guarantee;

o M players, labeled as elements in [M]|;

e the dissimilarities between the player-dependent reward distributions,

o + Superior empirical performance;
as indicated by ¢, and

— Much harder to analyze.

o K arms, labeled as elements in [K; e the intrinsic difficulty of the bandit problem each player faces indi-

vidually, as indicated by the gaps A”'s Regret bound comparison (gap-dependent):

e Each player p and arm 7 associated with an unknown reward distri-

bution with support [0, 1] and mean p; o o
Data aggregation is only provably beneficial on O(¢)-subpar arms:

o ¢. (reward) dissimilarity parameter.
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Interaction protocol (see also Hong et al., 2022).
In each round t € [T:

e A set of active players P; C [M] is chosen (by an oblivious adversary);
e Each active player pulls an arm and observes a reward;

e Decisions & rewards shared with all players at the end of the round.

Special cases:

o |P;| = 1forallt: sequential transfer (e.g., Cesa-Bianchi et al., 2013);

o |P;| = [M] for all t: concurrent interaction (e.g., [1]).

Objective: To minimize the expected collective regret,
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e n!(t) is the number of pulls of arm ¢ by player p after ¢ rounds.

[1] Wang et al. "Multitask bandit learning through heterogeneous feedback aggregation.” AISTATS 2021.

e [ he set of a-subpar arms is defined as
= {i:dp € [M],AY > a}.

e ‘Easier’ arms for which transfer learning can be effective.

Robust Transfer in -« MPMAB

Bias-variance trade-off: utilizing auxiliary data may
e reduce variance of estimations, and

e introduce bias due to dissimilarity of reward distributions.
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e ind-fi}: empirical mean reward of ¢ based on p's own data;

e agg-[i; : empirical mean reward of ¢ based on all players’ data.
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Empirical validation:
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Figure 1: Average performance in randomly generated Bernoulli 0.15-MPMAB problem

instances with K = 10 and M = 20.




