





# Abstract

- We study multi-player reinforcement learning (RL) in *heterogeneous* environments, where the reward distributions and transition probabilities for all players are *similar but not necessarily identical*.
- Our formulation can be used to model *multi-task* RL in application domains such as healthcare robotics.
- We study when and how players can improve their collective performance by sharing and aggregating data.
- We provide upper and lower bounds that characterize what can be done and what cannot be done.

# **Problem Formulation**

- A multi-player episodic RL (MPERL) problem instance consists of M episodic, layered, tabular MDPs  $\{\mathcal{M}_p = (H, \mathcal{S}, \mathcal{A}, d_0, \mathbb{P}_p, R_p)\}_{p=1}^M$ , where
- H is an episode length, S is a finite state space of size S, and A is a finite action space of size A;
- $d_0 \in \Delta(\mathcal{S})$  is the initial state distributionshared across all players;
- For each player p,  $\mathbb{P}_p: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$  is its transition probability, and  $R_p: \mathcal{S} \times \mathcal{A} \to [0, 1]$  is its expected reward.

An MPERL problem instance is said to be  $\epsilon$ -dissimilar, if for every pair of players  $p, q \in [M]$ , and  $(s, a) \in \mathcal{S} \times \mathcal{A}$ ,  $|R_p(s,a) - R_q(s,a)| \le \epsilon, \ \|\mathbb{P}_p(\cdot \mid s,a) - \mathbb{P}_q(\cdot \mid s,a)\|_1 \le \frac{\epsilon}{H}.$ 

**Interaction protocol.** In each episode  $k \in [K]$ , each player  $p \in [M]$  interacts with its respective MDP,  $\mathcal{M}_p$ , and executes a policy,  $\pi^k(p)$ , generating a trajectory  $\tau_p^k = (s_{1,p}^k, a_{1,p}^k, s_{2,p}^k, a_{2,p}^k, \dots, s_{H,p}^k, a_{H,p}^k)$  according to  $\mathbb{P}_p$  and  $R_p$ . Once all players finish, all M trajectories are shared among the players.

**Performance measure.** The players seek to minimize their *collective* where

•  $V_{0,p}^{\star} = \mathbb{E}_{s_1 \sim d_0} \left[ V_{1,p}^{\star}(s_1) \right]$  is the expected optimal value of player p, and •  $V_{0,p}^{\pi^k(p)} = \mathbb{E}_{s_1 \sim d_0} \left[ V_{1,p}^{\pi^k(p)}(s_1) \right]$  is the expected value of player p executing policy  $\pi^k(p)$ .

Application in healthcare robotics (e.g., Kubota et al, 2020).

A group of assistive robots deployed to provide personalized healthcare services. Si 158 Action 1 Action 2 Action 3 Action 1  $R_p(s,2) =$  $R_p(s,1)$  =  $R_p(s,3) =$ 0.5 0.4 0.6

**Baseline:** individual single-task learning. If each player learns separately with a state-of-the art algorithm (e.g. UCBVI-Bernstein (Azar, Osband & Munos, 2017), Euler (Zanette & Brunskill, 2019), Strong-Euler (Simchowitz & Jamieson, 2019)), they can achieve a gap-independent collective regret guarantee of  $\text{Reg}(K) \leq O(M\sqrt{H^2SAK})$ .

# Provably Efficient Multi-Task Reinforcement Learning with Model Transfer

Chicheng Zhang<sup>1</sup>, Zhi Wang<sup>2</sup>

<sup>1</sup>University of Arizona, <sup>2</sup>University of California San Diego.

e regret, 
$$\operatorname{Reg}(K) = \sum_{p=1}^{M} \sum_{k=1}^{K} \left( V_{0,p}^{\star} - V_{0,p}^{\pi^{k}(p)} \right)$$
,





### For each episode k and each player p:

### Maintain models:

where suboptimality gap  $gap_p(s, a) := V_p^{\star}(s) - Q_p^{\star}(s, a)$ . **Theorem:** If  $\{\mathcal{M}_p\}_{p=1}^M$  are  $\epsilon$ -dissimilar, then for K large enough, Multi-task-Euler satisfies that with probability  $1-\delta$ ,

see also our full paper for a *gap-dependent* regret lower bound. **Remark:** The upper and lower bounds nearly match for any constant H.

# **Algorithm:** Multi-task-Euler

• Individual estimates of transition probability  $\mathbb{P}_p$ , reward  $\hat{R}_p$  and count  $n_p(\cdot, \cdot)$  based on player p's experience; • Aggregate estimates of transition probability  $\mathbb{P}$ , reward R and count  $n(\cdot, \cdot)$  based on all players' experience.

**Optimisic value iteration using heterogeneous data**: (recursively) compute upper and lower bound estimates of  $Q_p^{\star}$ , namely,  $\overline{Q}_p$  and  $\underline{Q}_p$ , using value iteration; specifically:

• Construct  $\underline{agg}-Q_p$  and  $\overline{agg}-Q_p$  based on aggregate model estimates and an  $\epsilon$ -aware bonus term; • Construct ind- $Q_{p}$  and  $\overline{ind}-\overline{Q}_{p}$  based on individual model estimates of player p and a standard bonus term; •  $\overline{Q}_p$  is chosen to be the tighter confidence bound between  $\overline{\operatorname{agg-}Q_p}$  and  $\overline{\operatorname{ind-}Q_p}$ ; a similar construction holds for  $Q_p$ .

**Execute policy**: Execute  $\pi^k(p)$ , the greedy policy of  $\overline{Q}_p$ , obtaining trajectory  $\tau_p^k$ .

**Update models:** Update individual estimates using  $\tau_p^k$ , and update aggregate estimates using  $\{\tau_q^k\}_{q=1}^M$ .

# **Instance-dependent Regret Upper Bounds**

Subpar state-action pairs: state-action pairs that are far from optimal for some player, formally,  $\mathcal{I}_{\epsilon} := \{ (s, a) \in \mathcal{S} \times \mathcal{A} : \exists p \in [M], \operatorname{gap}_{p}(s, a) \geq 96H\epsilon \},\$ 

$$\operatorname{Reg}(K) \leq \tilde{O}\left(M\sqrt{H^2|\mathcal{I}_{\epsilon}^C|K} + \sqrt{MH^2|\mathcal{I}_{\epsilon}|K}\right)$$

see also our full paper for a *gap-dependent* regret upper bound.

**Comparison to individual single-task baseline:** If  $|\mathcal{I}_{\epsilon}^{C}| \ll SA$  and  $M \gg 1$ , Multi-task-Euler provides a regret bound of lower order than individual Strong-Euler.

# Instance-dependent Regret Lower Bounds

**Theorem (informal):** For any  $l, l^C \in \mathbb{N}$  such that  $l + l^C = SA$ , there exists some  $\epsilon$  such that for any algorithm Alg, there exists an  $\epsilon$ -MPERL problem instance with  $|\mathcal{I}_{\frac{\epsilon}{102H}}| \geq l$ , and

$$\mathbb{E}\left[\operatorname{Reg}_{\operatorname{Alg}}(K)\right] \ge \Omega\left(M\sqrt{H^2 l^C K} + \sqrt{M H^2 l K}\right);$$

