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Abstract

• We study multi-player reinforcement learning (RL) in heterogeneous environments, where the reward distributions
and transition probabilities for all players are similar but not necessarily identical.

• Our formulation can be used to model multi-task RL in application domains such as healthcare robotics.

• We study when and how players can improve their collective performance by sharing and aggregating data.

• We provide upper and lower bounds that characterize what can be done and what cannot be done.

Problem Formulation

A multi-player episodic RL (MPERL) problem instance consists of M episodic, layered, tabular MDPs
{Mp = (H,S,A, d0,Pp, Rp)}Mp=1, where

•H is an episode length, S is a finite state space of size S, and A is a finite action space of size A;

• d0 ∈ ∆(S) is the initial state distributionshared across all players;

• For each player p, Pp : S ×A → ∆(S) is its transition probability, and Rp : S ×A → [0, 1] is its expected reward.

An MPERL problem instance is said to be ε-dissimilar, if for every pair of players p, q ∈ [M ], and (s, a) ∈ S ×A,

|Rp(s, a)−Rq(s, a)| ≤ ε, ‖Pp(· | s, a)− Pq(· | s, a)‖1 ≤
ε

H
.

Interaction protocol. In each episode k ∈ [K], each player p ∈ [M ] interacts with its respective MDP, Mp, and
executes a policy, πk(p), generating a trajectory τ kp = (sk1,p, a
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H,p) according to Pp and Rp. Once

all players finish, all M trajectories are shared among the players.

Performance measure. The players seek to minimize their collective regret, Reg(K) =
∑M

p=1

∑K
k=1

(
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)
,

where

•V ?
0,p = Es1∼d0

[
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1,p(s1)
]

is the expected optimal value of player p, and

•V πk(p)
0,p = Es1∼d0

[
V
πk(p)

1,p (s1)
]

is the expected value of player p executing policy πk(p).

Application in healthcare robotics (e.g., Kubota et al, 2020).

Baseline: individual single-task learning. If each player learns separately with a state-of-the art algorithm (e.g.
UCBVI-Bernstein (Azar, Osband & Munos, 2017), Euler (Zanette & Brunskill, 2019), Strong-Euler (Simchowitz &
Jamieson, 2019) ), they can achieve a gap-independent collective regret guarantee of Reg(K) ≤ Õ(M

√
H2SAK).

Algorithm: Multi-task-Euler

For each episode k and each player p:

Maintain models:

• Individual estimates of transition probability P̂p, reward R̂p and count np(·, ·) based on player p’s experience;

• Aggregate estimates of transition probability P̂, reward R̂ and count n(·, ·) based on all players’ experience.

Optimisic value iteration using heterogeneous data: (recursively) compute upper and lower bound estimates
of Q?

p, namely, Qp and Q
p
, using value iteration; specifically:

• Construct agg-Q
p

and agg-Qp based on aggregate model estimates and an ε-aware bonus term;

• Construct ind-Q
p

and ind-Qp based on individual model estimates of player p and a standard bonus term;

•Qp is chosen to be the tighter confidence bound between agg-Qp and ind-Qp; a similar construction holds for Q
p
.

Execute policy: Execute πk(p), the greedy policy of Qp, obtaining trajectory τ kp .

Update models: Update individual estimates using τ kp , and update aggregate estimates using
{
τ kq
}M
q=1

.

Instance-dependent Regret Upper Bounds

Subpar state-action pairs: state-action pairs that are far from optimal for some player, formally,

Iε :=
{

(s, a) ∈ S ×A : ∃p ∈ [M ], gapp(s, a) ≥ 96Hε
}
,

where suboptimality gap gapp(s, a) := V ?
p (s)−Q?

p(s, a).

Theorem: If {Mp}Mp=1 are ε-dissimilar, then for K large enough, Multi-task-Euler satisfies that with probability
1− δ,

Reg(K) ≤ Õ

(
M
√
H2|ICε |K +

√
MH2|Iε|K

)
;

see also our full paper for a gap-dependent regret upper bound.

Comparison to individual single-task baseline: If
∣∣ICε ∣∣� SA and M � 1, Multi-task-Euler provides a regret

bound of lower order than individual Strong-Euler.

Instance-dependent Regret Lower Bounds

Theorem (informal): For any l, lC ∈ N such that l + lC = SA, there exists some ε such that for any algorithm
Alg, there exists an ε-MPERL problem instance with

∣∣I ε
192H

∣∣ ≥ l, and

E
[
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]
≥ Ω
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M
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)
;

see also our full paper for a gap-dependent regret lower bound.

Remark: The upper and lower bounds nearly match for any constant H.


