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Heterogenous Multi-Task Online Reinforcement Learning (RL)
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Each robot learns the
preferences of its
paired individuals
through interactions.
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* A group of assistive robots deployed to provide personalized healthcare services
(Kubota et al., 2020).

* Question: If the robots receive similar yet nonidentical feedback, how can they
learn to perform their respective tasks faster in an online RL setting?



Multi-Player Episodic RL (MPERL)

* A set of M players (robots) concurrently interact with their respective
environments, each represented as an Episodic MDP.
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The e-MPERL Problem

* A set of M players (robots) concurrently interact with their respective
environments, each represented as an Episodic MDP.
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» ¢: dissimilarity parameter



The e-MPERL Problem: formal setup

M
M episodic, tabular, H-layered MDPs (Mp)p=1 with shared state-
action spaces, and common initial distribution 6 (sg)

* For episodes k = 1,2, ...,K: @ Y‘%‘.\ ® =:ob
* Forplayersp = 1,2, ..., M: dh 0 dh

* Player p interacts with M, with policy % (p) for one episode, obtaining trajectory Tg

M
* All M trajectories (T{,f)p_l are shared among the players

k
» Collective regret: Reg(K) = Xp_1 Yr=1 V' (s0) = V) ®)(s0)

Optimal value of player p  Value of player p executing m*(p)



Baseline: individual single-task learning

* Each player learns separately using a state-of-the-art online tabular RL
algorithm, e.g., Strong-Euler (Simchowitz and Jamieson, 2019),
achieving a collective regret of

* (Gap-independent bound) 5(M\/HZSAK)
* (Gap-dependent bound)
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where A, (s, a) =V, (s) — Qp(s,a), Zy opt = {(S, a):Ay(s,a) = O},

Apmin = min A (s,a)
p, ! (S;a)ezp,opt p

e Can we do better with inter-task information sharing?



The benefit of multi-task learning

* (Wang, Zhang, Singh, Riek, Chaudhuri, 2021): in a multi-task multi-armed bandit
setting, information sharing sometimes does not help, information theoretically.

* Example: For a fixed e and § < &/4, consider:
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* Key observation: the benefit of multi-task learning depends on the interaction
between € and suboptimality gaps A, (s, a)



Key notion: subpar state-action pairs

e Subpar state-action pairs:
J. = {(s, a): for some p € [M],A,(s,a) = Q(He)}
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* (5,3) €T, (s,2) &7,

» Subpar state-action pairs are those amenable for inter-task information sharing



Our results

For e-MPERL problems, assuming known &:

e Our algorithm, Multi-Task-Euler(g), achieves gap-dependent and gap-
independent regret upper bounds

* We also show gap-dependent and gap-independent regret lower bounds, that
nearly match the upper bounds for constant H



Our results: gap-independent bounds

State-action pairs
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Our results: gap-dependent bounds

For player p’s contribution to the collective regret:

State-action pairs
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Multi-task-Euler(g): main ideas
* For each player p, Multi-Task-Euler(¢):

1. Maintains two model estimates for M,: (1) an individual estimate ]\//[\p (2) an
aggregate model estimate M

2. Performs a " "heterogeneous’ optimistic value iteration using both ]\//fp and M to
obtain @, a tight upper confidence bound of Q;, and executes its greedy policy

 Similar algorithmic idea of "model transfer” has appeared in prior works, e.g.,
(Taylor, Jong, & Stone, 2008), (Pazis & Parr, 2016)



Technical overview

* Upper bounds: a new surplus bound in the multi-task setting:

1 1
Qp(s,a)—(Rp(S,a)+(]P’p(-|S,a),Vp)) < 0| min Vnp(s,a)'e-l_\‘n(S,a)

and combine with the ““clipping trick” (Simchowitz & Jamieson, 2019)

* Lower bounds: combine the multi-task bandit lower bounds (Wang, Zhang, Singh, Riek,
Chaudhuri, 2021) with a standard bandit-to-RL conversion



Conclusion and open problems

* We study e-MPERL, a new multi-task RL setting; this complements existing multi-

task RL settings (e.g., Brunskill & Li, 2013, Liu, Guo, & Brunskill, 2016, Pazis & Parr,
2016)

* We give upper and lower bounds on the collective regret that are nearly
matching for constant episode length H

* Open questions:
* Improve the dependence on H in the collective regret bounds

* Improve the dependence on z, ., similar to recent works (e.g., Xu, Ma, & Du, 2021)
* Extensions to RL with function approximation



Thank youl!
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