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Motivation 1: healthcare robotics (Kubota et al., 2020)

• A group of assistive robots deployed to provide 
personalized healthcare services.

• Robots can recommend cognitive training 
activities to patients
• E.g. chess, maze, puzzle…

• Goal: recommend activities that satisfy all 
patients’ preferences 

https://cseweb.ucsd.edu/~lriek/papers/kubota-peterson-rajendren-kress-gazit-riek-hri20.pdf



Motivation 1: healthcare robotics (Kubota et al., 2020)

• Question: If the robots receive similar yet nonidentical feedback, how can they 
cooperatively learn to perform their respective tasks well online?

Each robot learns the 
preferences of its 
paired individuals 
through interactions.



Motivation 2: movie recommendation (e.g. Qian et al, 2013)

• Recommendation system serves a set of 
users, many of whom have similar yet 
nonidentical preferences

• How can we make recommendations to 
maximize the overall user satisfaction?

https://research.netflix.com/research-area/recommendations



Motivation 3: autonomous driving (Liang et al, 2019)

• A set of self-driving agents, 
operating on different car make / 
model / wear & tear conditions

• How can we learn (customized) 
autonomous driving agents 
faster, by sharing information 
among them?
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Background: the multi-armed bandit problem
User

Action 1
𝝁𝟏 = 0.4
𝚫𝟏= 0.2

Action = cognitive training  
activities to recommend

Action 2
𝝁𝟐= 0.5
𝚫𝟐= 0.1

Action 3
𝝁𝟑= 0.6
𝚫𝟑= 0

• Initially: no knowledge about user’s 
preferences on actions

• For round :
• Take action (arm) 
• Receive reward , where each 

has mean 

• Goal: maximize , which is 
equivalent to minimize regret:

∗
• Many applications: medical 

treatment, telecommunication, 
pricing, …

∗ , : # times is taken up to round 

𝜇∗ = max 𝜇



Background: the multi-armed bandit problem (cont’d)

• Challenge: balance exploration vs. exploitation 
• Representative approach: the upper confidence 

bound (UCB) algorithm (Auer et al, 2002)
• At every round :

• Construct upper confidence bounds for 𝟏 𝟐 𝟑

• Take action that maximizes its reward upper 
confidence bound

• Near-optimal regret guarantees:  
:

User

Action 1
𝝁𝟏 = 0.4

Action = cognitive training  
activities to recommend

Action 2
𝝁𝟐= 0.5

Action 3
𝝁𝟑= 0.6

https://rpubs.com/markloessi/501899



The -multiplayer multi-armed bandit problem
• A set of players (robots) concurrently interact with their respective 

environments (tasks), using available actions

• How to model the similarity between tasks?
• This work: -dissimilarity

Alice Bob

Action 1
𝝁𝟏

𝑨 = 0.4
Action 1
𝝁𝟏

𝑩 = 0.6

Action = 
cognitive 
activities to 
recommend

Action 2
𝝁𝟐

𝑨 = 0.5
Action 3
𝝁𝟑

𝑨 = 0.6
Action 2
𝝁𝟐

𝑩 = 0.4
Action 3
𝝁𝟑

𝑩 = 0.5

dissimilarity parameter



The -multiplayer multi-armed bandit problem

• Interaction Protocol:
For each round : 

For every player :
takes an action, and observes an independently-drawn reward

Players share information at the end of each round.

• Objective:
Minimize the collective regret  

where ∗ is the suboptimality gap
and is the number of times action taken by player after rounds.

Alice Bob

Alice

Action 1
𝝁𝟏

𝑨 = 0.4
𝚫𝟏

𝑨= 0.2

Action 2
𝝁𝟐

𝑨 = 0.5
𝚫𝟏

𝑨= 0.1

Action 3
𝝁𝟑

𝑨 = 0.6
𝚫𝟑

𝑨= 0



Baseline 1: Individual single-task learning

• Each player runs a bandit algorithm individually (e.g. UCB, Thompson Sampling)

• Single-task optimal learning guarantee player incurs a regret  

:

• Collective regret:  

:

• Can we design algorithms with better collective regret, by sharing information 
across players?

Alice Bob



Baseline 2: naïve data aggregation
• Idea: pretend that all tasks are the same, and maintain only one 

reward model for decision making
• Drawback: does not “personalize”
• OK if , but fail if 
• Well known as the “negative transfer” issue (Rosenstein et al ’05)

Alice Bob

Action 1
𝝁𝟏

𝑨 = 0.4
Action 1
𝝁𝟏

𝑩 = 0.6
Action 2
𝝁𝟐

𝑨 = 0.5
Action 3
𝝁𝟑

𝑨 = 0.6
Action 2
𝝁𝟐

𝑩 = 0.4
Action 3
𝝁𝟑

𝑩 = 0.5



Fundamental limits of knowledge transfer
• The utility of cross-task knowledge transfer depends on

• , the dissimilarities between the player-dependent reward distributions
• the gaps ’s, the intrinsic difficulty of each multi-armed bandit problem each 

player faces individually

• Example: let , consider:

Action 1
𝝁𝟏

𝒑 = 
𝟎. 𝟓 + 𝜹

Action 2
𝝁𝟐

𝒑 =
𝟎. 𝟓

Action 1
𝝁𝟏

𝒒 = 
𝟎. 𝟓 + 𝜹

Action 2
𝝁𝟐

𝒒 =
𝟎. 𝟓

Δ =  𝛿 Claim: Any “reasonable” 
algorithm must have 

regret in this case, 
matching Individual-UCB 
baseline’s regret bound.
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Algorithmic principle: optimism in the face of uncertainty

• Key idea: when you are uncertain, act according to the 
best plausible world (reward-wise)
• If is correct => no regret => exploitation
• If is wrong => learn useful information => exploration

• in the multi-player bandit problem:
• For every , , what is the best plausible value of ?
• : upper confidence bound on 

• Algorithm: for every , choose action 

�̂� 𝑤

https://rlgammazero.github.io/docs/2020_AAAI_tut_part2.pdf

Alice Bob



Naïve construction of reward UCBs

• : upper confidence bound on 
• Alice has observed rewards from arm 

iid with sample mean 

• Confidence interval for :

,

where  

• This results in the individual-UCB baseline

𝑚 𝑤

Alice



Our algorithm: RobustAgg-UCB

• Key idea: robustly estimate upper confidence bounds on 𝒊
𝑨’s using a 

weighted combination of Alice’s own data and other players’ data

• Let 
∈[ , ]

• Center

• Width   

• Tighter than the individual-UCB baseline

�̂� 𝑤

Alice Bob Carol

Accounting for bias in 
other players’ data   

Mean reward of arm 
played by others



RobustAgg-UCB: performance guarantees

• For player ’s contribution to collective regret:

• Key takeaway: for subpar arms , players share information to explore less 
• Matching lower bound: RobustAgg-UCB’s regret is essentially unimprovable

Actions

ℐ subpar arms ℐ = {𝑖:  ∀𝑝, Δ ≥ Ω(𝜖)}

Individual-UCB ln 𝑇

Δ

ln 𝑇

Δ

RobustAgg-UCB
ln 𝑇

Δ

1

𝑀
⋅

ln 𝑇

Δ



Alternative algorithmic principle: Thompson Sampling
• Key idea (Thompson’33): 

• maintain a posterior distribution of the world 
• Sample and act according to 

• in multi-player bandits:
• For every 𝑝, , has a separate component over 

• Algorithm: for every 
• For every , sample from posterior 
• Choose action 

• Strong empirical performance (Chapelle and Li, 2011; Scott, 2010)

Alice Bob



Our second algorithm: RobustAgg-TS (Thompson Sampling)

• Challenge: no explicit probabilistic assumptions on the task similarity 

How to define posterior?

• Workaround: sample ’s instead from the following “optimistic-
posterior”:

 

 

• Same optimality guarantee as RobustAgg-UCB

Alice Bob

Mean reward / #times of 
arm chosen by all players
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Experiments

• Key question 1: Are our algorithms resistant to negative transfer?

• Key question 2: Does the notion of subpar arms characterize the difficulty 
of -multi-player muti-armed bandit problems in practice?

• Experimental setup:
• 20-player 10-armed bandit environments with different values of , with 
• Algorithms evaluated:

• Naïve-Aggregation
• Individual-UCB
• Individual-TS
• RobustAgg-UCB (ours)
• RobustAgg-TS (ours)



Experiment 1: resistance to negative transfer

•

• Naïve-Aggregation suffers a linear regret

• Both Individual-UCB and RobustAgg-UCB 
have sublinear regret, with the latter 
performing better



Experiment 2: effect of subpar arms

•

• RobustAgg-UCB and RobustAgg-TS 
outperform the two individual single-task 
baselines
• Regret from subpar arms is much lower 

• Thompson sampling-based algorithms 
outperforms their UCB counterparts



Experiment 2: effect of subpar arms

•

• The gaps between our robust aggregation 
algorithms and the individual single-task 
baselines are smaller

• Contribution of regret from near-optimal 
arms increases
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Background: episodic reinforcement learning

• Markov decision process (MDP) environment 
• Generalizes multi-armed bandits: environment’s state (e.g user’s moood)

• For episodes 
• Deploy a policy 
• For steps 

• Observe state 
• Take action 
• Receive reward 
• Transition to state 

• Goal: maximize cumulative reward 𝑉 : expected reward of policy 𝜋 in ℳ



The -Multi-Player Episodic RL ( -MPERL) Problem

• A set of players (robots) concurrently interact with their respective 
environments, each represented as an Episodic MDP.

Alice Bob

Action 1
𝑹𝒑(𝒔, 𝟏) = 

0.4

Action 3
𝑹𝒑(𝒔, 𝟑) =

0.6

Action 2
𝑹𝒑(𝒔, 𝟐) =

0.5

Action 1
𝑹𝒑(𝒔, 𝟏) =

0.6

Action 3
𝑹𝒒 𝒔, 𝟑 =

0.5

Action 2
𝑹𝒒(𝒔, 𝟐) =

0.4

Actions = 
cognitive 
activities to 
recommend

: dissimilarity parameter



The -MPERL Problem: formal setup

• episodic MDPs with identical state-action spaces

• For episodes 
• For players 

• Player 𝑝 interacts with ℳ with policy 𝜋 (𝑝) for one episode, obtaining trajectory 𝜏

• All trajectories are shared among the players

• Collective regret: ⋆

Alice Bob

Optimal value of player Value of player executing 



Our algorithm: Multi-task-Euler( ) and guarantees
For player ’s contribution to the collective regret:

State-action pairs

𝑍 , 𝑍 , ∪ ℐ ℐ

Individual
Single-task 
baseline

𝐻  ln 𝐾

Δ ,

𝐻 ln 𝐾

Δ (𝑠, 𝑎)

𝐻 ln 𝐾

Δ (𝑠, 𝑎)
,

Multi-task-Euler( )
𝐻  ln 𝐾

Δ ,

𝐻 ln 𝐾

Δ (𝑠, 𝑎)

1

𝑀
⋅

𝐻 ln 𝐾

Δ (𝑠, 𝑎)
,

for some generalized notion of 
suboptimality gap 



Conclusions and open problems

• We study multi-task bandit and reinforcement learning where the tasks 
are similar but not necessarily identical

• Our algorithms provably avoid “negative transfer”

• Open problem: 
• Are there other practical and interesting notions of task similarity beyond -

dissimilarity?
• E.g. recent works on representation transfer in RL (e.g. Yang et al, 2020, Agarwal et al, 2022)



Thank you!

https://arxiv.org/abs/2010.15390
https://arxiv.org/abs/2107.08622
https://arxiv.org/abs/2206.08556


