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Motivation 1: healthcare robotics (Kubota et al., 2020)

* A group of assistive robots deployed to provide
personalized healthcare services.

* Robots can recommend cognitive training
activities to patients
* E.g. chess, maze, puzzle...

* Goal: recommend activities that satisfy all
patients’ preferences

https://cseweb.ucsd.edu/~Iriek/papers/kubota-peterson-rajendren-kress-gazit-riek-hri20.pdf



Motivation 1: healthcare robotics (Kubota et al., 2020)
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e Question: If the robots receive similar yet nonidentical feedback, how can they
cooperatively learn to perform their respective tasks well online?



Motivation 2: movie recommendation (e.g. Qian et al, 2013)

 Recommendation system serves a set of
users, many of whom have similar yet
nonidentical preferences

e How can we make recommendations to
maximize the overall user satisfaction?

https://research.netflix.com/research-area/recommendations



Motivation 3: autonomous driving (Liang et al, 2019)

A set of self-driving agents,
operating on different car make /
model / wear & tear conditions

* How can we learn (customized)
autonomous driving agents
faster, by sharing information
among them?
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Background: the multi-armed bandit problem

* Initially: no knowledge about user’s

preferences on actions

*Forroundt € [T] ={1,...,T}:

* Take action (arm) a; € [K]

* Receive reward r; ~ v, , where each v,

has mean

e Goal: maximize E[X.I_; ¢], which is
equivalent to minimize regret:

Reg(T) =Ty — E[Z{=1
= Za Aq E[na(T)]
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A1= 0.2 A2=0.1 A3=0

Action = cognitive training
activities to recommend

 Many applications: medical
treatment, telecommunication,

pricing, ...

A, = u" —u,, ng(t): #times ais taken up to round t



Background: the multi-armed bandit problem (cont’d)

* Challenge: balance exploration vs. exploitation

* Representative approach: the upper confidence
bound (UCB) algorithm (Auer et al, 2002)

* Ateveryround t € [T]:

* Construct upper confidence bounds for

* Take action that maximizes its reward upper
confidence bound

EFEER

* Near-optimal regret guarantees: Zi:Ai>0A_
i

a

2= (i

Action 1 Action 2 Action 3

Action = cognitive training
activities to recommend

https://rpubs.com/markloessi/501899



The e-multiplayer multi-armed bandit problem

* A set of M players (robots) concurrently interact with their respective
environments (tasks), using K available actions

Action =
cognitive
activities to
recommend

* How

. Qﬁ : Fe e
Ex it fi S-IE:RIe W
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ub =06 us=0.4 us=0.5
I = | J L J
Vi€ [K],Vp,q €] vo—u | < ¢ —> & € [0,1] dissimilarity parameter

to model the 5|m|Iar|ty between tasks?

* This work: e-dissimilarity




The e-multiplayer multi-armed bandit problem

* Interaction Protocol: B @ @ @ Bob
For eachroundt € [T]: ' L, ah
For every player p € [M]:
p takes an action, and observes an independently-drawn reward.
Players share information at the end of each round. m

-
* Objective: o ' -
Minimize the collective regret el E tl
Action 1 Action 2 Action 3
Reg(T) = X, X; AY E[n? (T)]
Af=0.2 Af=0.1 A3=0

where AY = > 0 is the suboptimality gap
and nf (t) is the number of times action i taken by player p after t rounds.



Baseline 1: Individual single-task learning

g %&Bob

* Each player runs a bandit algorithm individually (e.g. UCB, Thompson Sampling)

. . . . InT
* Single-task optimal learning guarantee = player p incurs a regret Zi_Ap>OA—p

[l i i
InT

* Collective regret: Y., )., .p_.—%
b i:A; >0 Azi?

e Can we design algorithms with better collective regret, by sharing information
across players?



Baseline 2: naive data aggregation

* |dea: pretend that all M tasks are the same, and maintain only one
reward model for decision making
* Drawback: does not “personalize”
e OKife =0, butfailife >0
* Well known as the “negative transfer” issue (Rosenstein et al ’05)
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Fundamental limits of knowledge transfer

* The utility of cross-task knowledge transfer depends on
* g, the dissimilarities between the player-dependent reward distributions

* the gaps Azl?’s, the intrinsic difficulty of each multi-armed bandit problem each
player faces individually

. Example: let 6 < &/4, consider:

Claim: Any “reasonable”

é iy algorithm must have
M In
Actlon 1 Actlon 2 Actlon 1 Action 2 Q( ) regret in this case,

pi = p; = matchlng Individual-UCB
0 5 ’ 6 0.5+9 0.5 baseline’s regret bound.
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Algorithmic principle: optimism in the face of uncertainty

* Key idea: when you are uncertain, act according to the

best plausible world W (reward-wise) té ® .,
« If W is correct => no regret => exploitation ey il
e If W is wrong => learn useful information => exploration
e W in the multi-player bandit problem: |
A A WLA

* For every p, i, what is the best plausible value of ,uf? fif

» UCB!: upper confidence bound on u;

* Algorithm: for every p, choose action i = argmanUCB]p

https://rlgammazero.github.io/docs/2020_AAAI_tut_part2.pdf



Naive construction of reward UCBs

» UCB#: upper confidence bound on u

* Alice has observed n = n{ rewards from arm i = g

X1, X7, ..., Xy iild with sample mean m{l

« Confidence interval for uf:

|m# — wf, mf -IiWiA]' ml | fwf
InT
where WLA X |— UCB{4

n;

* This results in the individual-UCB baseline




Our algorithm: RobustAgg-UCB

» Key idea: robustly estimate upper confidence bounds on ft:’s using a

weighted combination of ‘s own data and other players’ data
@ D @ gob j Q) ol
D B e =
» Let UCB{! :== min (a/' (1) + w{' (1))
A€[0,1] Mean reward of arm i

e Center i (1) :== (1 — )mf + A m;*“ played by others
1

1
241T+’1( nn__£+e)

l l

» Tighter UCB than the individual-UCB baseline  Accounting for bias in
other players’ data

e Width w/' (1) == (1 = 2)
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RobustAgg-UCB: performance guarantees

* For player p’s contribution to collective regret:

Actions 00000000
J
|

—
7¢ subpar arms 7 = {i: Vp,A? = Q(€)}
Individual-UCB 2 InT InT
. P AP
InT 1 InT
RobustAgg-UCB Z P TR

* Key takeaway: for subpar arms 7., players share information to explore less
* Matching lower bound: RobustAgg-UCB’s regret is essentially unimprovable



Alternative algorithmic principle: Thompson Sampling

» Key idea (Thompson’33):

* maintain a posterior distribution of the world p(W)

* Sample W ~ p and act according to W @ Alice t%), &
(o o o)
* p(W) in multi-player bandits: -
pT) I multplay B E i

* For every p, i, has a separate component over ,Uf
* Algorithm: for every p: u) v
-
U

* For every i, sample 9ip from posterior
* Choose action i = argmax]ﬁjp

 Strong empirical performance (Chapelle and Li, 2011; Scott, 2010)



Our second algorithm: RobustAgg-TS (Thompson Sampling)

* Challenge: no explicit probabilistic assumptions on the task similarity
Vi€ [K],Vp,q €[M], —ul 1 < e

How to define posterior? @ D @ 3ob

* Workaround: sample 9{4’5 instead from the following “optimistic-

posterior”:

i 1 InT
Mear.1 reward / #times of m; + €, _) n <0 ( n2 )
arm i chosen by all players A < — T €
Oi ~ 4 1 InT
N (mi,=),nf >0 (%)
k nl &

e Same optimality guarantee as RobustAgg-UCB
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Experiments

* Key question 1: Are our algorithms resistant to negative transfer?

* Key question 2: Does the notion of subpar arms J. characterize the difficulty
of e-multi-player muti-armed bandit problems in practlce?

* Experimental setup:
* 20-player 10-armed bandit environments with different values of |7,|, with ¢ = 0.15

 Algorithms evaluated:
* Naive-Aggregation
Individual-UCB
Individual-TS
RobustAgg-UCB (ours)
RobustAgg-TS (ours)



Experiment 1: resistance to negative transfer
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have sublinear regret, with the latter
performing better



Experiment 2: effect of subpar arms

17500 — ng‘jztgggm'ﬁ)
° |:78| — 8 ;E;’ oot —— RobustAgg-TS(0.15)
* RobustAgg-UCB and RobustAgg-TS

outperform the two individual single-task
baSE||neS 0 10000 20000 30000 40000 50000

Round
* Regret from subpar arms is much lower s
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Experiment 2: effect of subpar arms

17500 __ RobustAgg(0.15)
—— Ind-UCB
15000 —— |nd-TS
—— RobustAgg-TS(0.15)
° |‘78| _— 5 12500 /

>

10000

7500

Cumulative Collective Regret

5000

* The gaps between our robust aggregation
algorithms and the individual single-task
ba Selines are Smaller 0 10000 ZOOODRoundSUOOO 40000 50000

30000
B RobustAgg(0.15)
B Ind-UCB

25000 Ind-TS

* Contribution of regret from near-optimal = ey B
arms increases

15000

Incurred Regret

10000

|
5000
0 — J—

Near-optimal Subpar
Arm Optimality



Outline

* Motivation

* The e-multiplayer multi-armed bandit problem

e Our algorithms: Upper Confidence Bound and Thompson Sampling
* Experimental evaluation

* The e-multiplayer episodic reinforcement learning problem



Background: episodic reinforcement learning

* Markov decision process (MDP) environment M’
* Generalizes multi-armed bandits: environment’s state s (e.g user’s moood)

* For episodesk = 1,2, ..., K:
° Deploy d pOlICV TL'k 8 observation

action user’s organic behavior

i For StepS h - 1,2, ey H: recommendation Y.
* Observe state s;,
* Take action ay,

‘ click or .no click
* Receive reward r;, = R(sp, ap) @
* Transition to state sy, .1 ~ P(:| s3, ay) =

agent

. : k S
* Goal: maximize cumulative reward E [Z’,f,’:l |4 ] V' expected reward of policy 7 in M



The &-Multi-Player Episodic RL (e-MPERL) Problem

* A set of M players (robots) concurrently interact with their respective
environments, each represented as an Episodic MDP.

ﬁl Alice

dh
Actions =
cognitive -
activities to | Action1 Action 1 Action 2 Action 3
recommend | Bp(5 1) = R,(s, 1) = R,(s,2) = R,(s,3) =
04 . . 0.6 0.4 0.5
Vpaqs a:

|Rp(s,a)—Rq(s,a)| < ¢
||[P>p(-| s,a) — P, (- S,a)”1 < ¢/H

> &: dissimilarity parameter



The e-MPERL Problem: formal setup

M
* M episodic MDPs (]\/[p)p=1 with identical state-action spaces

g tﬁ% ® -

e For episodes k = 1,2, ..., K:
* For playersp = 1,2, ..., M:

* Player p interacts with M, with policy nk(p) for one episode, obtaining trajectory T{,f

M
e All M trajectories (T{,f)p_l are shared among the players

k
* Collective regret: Reg(K) = Y31 Y51 E [Vp* — Vp” (P)]
Optimal value of player p  Value of player p executing n"(p)



Our algorithm: Multi-task-Euler(g) and guarantees

For player p’s contribution to the collective regret:

State-action pairs . . . . ‘ . . .
\ J ) \ Y J

Cc

Zp,opt (Zp,opt U ‘76) Je
Individual
S'OI Id'lcjak Z HInK H?In K H3In K
ingle-tas
basgeline sa  Apmin 8p(s,a) Ap(s,a)
Multi-task-Euler(e) 2 HIn K H’In K 1 HlnK

ulti-task-Euler(e —.
Ap min A, (s, a) M Ay(s,a)

s,a

J. = {(s, a):Vp € [M],A,(s,a) = Q(HE)} for some generalized notion of
suboptimality gap A, (s, a)



Conclusions and open problems

* We study multi-task bandit and reinforcement learning where the tasks
are similar but not necessarily identical

e Our algorithms provably avoid “negative transfer”

* Open problem:

* Are there other practical and interesting notions of task similarity beyond &-
dissimilarity?
* E.g. recent works on representation transfer in RL (e.g. Yang et al, 2020, Agarwal et al, 2022)
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