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1 Introduction

The goal of a topic model is to characterize observed data in terms of a much smaller set of unobserved topics. Topic models
have proven especially popular for information retrieval. Latent Dirichlet Allocation (LDA) is the most popular generative
model used for topic modeling.

Learning the optimal parameters of the LDA model efficiently, however, is an open question. As [2] point out, the
traditional techniques for learning latent variables have major disadvantages when it comes to topic modeling. Straightforward
maximum likelihood estimation does not produce a closed-form solution for LDA, and its approximations are NP-hard.
Approaches relying on Expectation-maximization (EM) have been the most popular way of learning LDA [4]. Unfortunately,
such approaches suffer from a lack of guarantees about the quality of the locally optimal solutions they produce. They also
exhibit slow convergence. Markov chain Monte Carlo (MCMC) approaches [5] are prone to failure (due to non-ergodicity, for
example), and can also exhibit slow mixing. For these reasons, the tensor decomposition approach on high-order moments
of the data seems like a promising option for recovering the topic vectors.[1] This approach has been applied successfuly to
other latent variable models, such as Hidden Markov Models and Gaussian Mixture Models [2] [3].

1.1 Outline

The remainder of this paper, broadly baseed on [1] and [2] is structured as follows: in §2 we will present a description of
the LDA generative model, as well as a formulation of this model in terms of observed binary vectors, a latent topic matrix,
and latent topic mixture vectors. In §3 we will describe how tensor decomposition methods can be used to find latent topic
vectors. Then in §4 we will outline several approaches for implementing the tensor decomposition and estimation of the
empirical moments of the data, and in §5 we sketch out some sample complexity bounds resulting from these approaches.
In §6 we will present some experiments that evaluate the performance of the tensor decomposition methods. Finally we
conclude with a discussion of our results and future work to evaluate the performance of tensor decomposition methods.

2 Latent Dirichlet Allocation

2.1 General Description

Suppose that we want to model multiple documents each composed of multiple words, in terms of a smaller number of
latent topics. Our observed data are merely the set of words occurring in each document. In the LDA model, we make the
simplifying assumption that each document is a ”bag-of-words” where the precise ordering of the words does not affect the
semantic content of the document. We attempt to model each document ℓ as containing a mixture of K unobserved topics
denoted by the topic mixture vector hℓ ∈ ∆K−1 (where the ∆K−1 denotes the K-dimensional simplex). hℓ for each document
is drawn independently according to a Dirichlet distribution with concentration parameter vector α = [α1, α2, ..., αK ]. We

will let α0 =
∑K

k=1 αk represent the sum of this parameter vector, which is sometimes referred to as the precision of the
Dirichlet distribution. Then we assume that the topic k pertaining to a word t in document ℓ is drawn independently from
a multinomial with parameters hℓ. Finally, the word type for the word is drawn independently from a multinomial with
parameters determined by the topic distribution vector ϕk ∈ ∆|V oc|−1 that corresponds to topic k, where |V oc| is the size of
the lexicon (i.e., the number of word types) in the entire data set.

2.2 Formulation of the Data

To make the tensor decomposition approach clear, we will need to represent our data as a set of binary vectors. Denote the
|V oc|-dimensional basis vector by ei. Then let xt

ℓ = ei if the tth term in document ℓ belongs to word class i. We also collect
the ϕk vectors into a |V oc|-by-K latent topic matrix Φ = (ϕ1, . . . ϕK).
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3 Tensor Decomposition Approach: Intuition

3.1 Why cross-moments?

With the above formulation in place, we can begin to make note of some properties of the hidden moments of the data. By
the assumption that the topic mixture vector h is drawn according to the Dirichlet distribution, we know that the expected
value of the kth element of this vector is

E[hk] =
αk

α0
.

Due to our formulation above, for a word x1 chosen from the set {xt
ℓ}, the expectation of x1 conditional on the topic

mixture vector h is

E[x1|h] = Φh =
K∑

k=1

ϕkhk.

This equation exhibits clearly the relationship between the observed x1 and the hidden ϕk, but it assumes knowledge of
h, which is hidden. However, we can observe our marginal expectation E[x1], and recalling the relationship between marginal
and conditional expectations we can see that

E[x1] = E[E[x1|h]] = ΦE[h] =
K∑

k=1

αk

α0
ϕk.

This exposition hints at how the moments of the data could help us recover the latent vectors ϕk. However, note that
under our topic model, the higher moments of a single word x1 are trivial. Recall that a crucial part of the structure of the
LDA model is all the words in a document share a topic mixture vector h, but within-document information does not figure
in the higher moments of single words. For this reason, we derive the cross-moments of pairs and triples of distinct words
x1, x2, x3 in {xℓ

t}. Note that such pairs and triples of words are conditionally independent given h. This allows us to write
the second-order cross-moment in terms of Φ and h as

E[x1 ⊗ x2] = E[Φh⊗ Φh] = E[h⊗ h](ΦT ,ΦT )

and similarly we can write the third-order cross-moment as

E[x1 ⊗ x2 ⊗ x3] = E[Φh⊗ Φh⊗ Φh] = E[h⊗ h⊗ h](ΦT ,ΦT ,ΦT ).

We have now written our observed cross-moments in terms of Φ and the cross-moments of h. Fortunately, due to our
assumption that the topic assignment vector h is drawn from a Dirichlet distribution, we can derive closed-form expressions
for the cross-moments of h in terms of the Dirichlet parameters (see Appendix A). And using these expressions, we can
explicitly write our observed cross-moments solely in terms of α and Φ:

E[x1 ⊗ x2] =
1

α0(α0 + 1)
(Φα⊗ Φα+

K∑
k=1

αk(ϕk ⊗ ϕk))

E[x1 ⊗ x2 ⊗ x3] =
1

α0(α0 + 1)(α0 + 2)
(Φα⊗ Φα⊗ Φα)

+
K∑

k=1

αk(ϕk ⊗ ϕk ⊗Φα+ ϕk ⊗Φα⊗ ϕk +Φα⊗ ϕk ⊗ ϕk) +
K∑

k=1

2αk(ϕk ⊗ ϕk ⊗ ϕk))

The last terms in the two expressions above are especially promising candidates for recovering the latent vectors ϕk. By
the following algebraic manipulations, we can isolate these terms as noncentral moments of x1, x2, and x3:

M1 := E[x1] =

K∑
k=1

αk

α0
ϕk

M2 := E[x1 ⊗ x2]−
α0

α0 + 1
(M1 ⊗M1)

M3 := E[x1 ⊗ x2 ⊗ x3]M1 −
α0

α0 + 2
(E[x1 ⊗ x2 ⊗M1] +E[x1 ⊗M1 ⊗ x2] +E[M1 ⊗ x1 ⊗ x2])

+
2α2

0

(α0 + 2)(α0 + 1)
(M1 ⊗M1 ⊗M1)
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where Mi denotes the ith non-central moment. Of special note is that these manipulations are in terms only of the observed
moments themselves and of the parameter α0, not the entire α vector, which is a necessary input for EM methods for LDA.
Our newly defined non-central moments can now be written as linear combinations of tensor powers of the ϕk vectors:

M1 =
K∑

k=1

αk

α0
ϕk (1)

M2 =
K∑

k=1

αk

(α0 + 1)α0
(ϕk ⊗ ϕk) (2)

M3 =

K∑
k=1

2αk

(α0 + 2)(α0 + 1)α0
(ϕk ⊗ ϕk ⊗ ϕk). (3)

3.2 Whitening Matrix

We now have moments defined in terms of the observed data and α0 that can be expressed as linear combinations of tensor
powers the variables of interest. If we can symmetrize our moments in some way and express them in terms of orthogonal
matrices, techniques for decomposing into such matrices can in principle be used to recover the latent variables. Suppose we
found any matrix W such that it whitens the second moment: M2(W,W ) := WTM2W = I. Then this can be written using
(2) as

M2(W,W ) =
K∑

k=1

αk

α0 + 1
WTϕk ⊗WTϕk

=
K∑

k=1

WT

√
αk

α0 + 1
ϕk ⊗WT

√
αk

α0 + 1
ϕk,

and defining βk = WT
√

αk

α0+1ϕk, we see that M2(W,W ) =
∑K

k=1 βk ⊗ βk = I.

In other words, the βk are orthonormal vectors, and the whitened moment matrix is amenable to an orthogonal matrix
decomposition. From these βk it would be possible to recover the ϕk vectors, as the βk’s are merely linear combinations of
the ϕk’s and W . However, note that the solution produced by such a decomposition would not be unique in the general case,
only in the case where no two αk’s are equal. Fortunately, application of the same whitening matrix W yields the following
results on the third moment:

M3(W,W,W ) =

K∑
k=1

2αk

(α0 + 2)(α0 + 1)α0
WTϕk ⊗WTϕk ⊗WTϕk

=

K∑
k=1

2
√
(α0 + 1)α0

(α0 + 2)
√
αk

(βk ⊗ βk ⊗ βk) :=

K∑
k=1

γk(βk ⊗ βk ⊗ βk).

Thus, the observed third moment can also be decomposed in terms of orthogonal vectors that are linear combinations of
the ϕk’s and a whitening matrix W that depends on the observed data. The details of this tensor decomposition are covered
in the Implementation section below.

4 Implementation

4.1 Empirical Estimation of Moments and Whitening Matrix

While the formulation of the data in terms of binary basis vectors xt
ℓ is helpful to develop intuition for our technique, it is

quite cumbersome from an implementation point of view. The storage complexity of such an implementation grows linearly
in the number of word tokens. Since the order of words within documents does not matter for LDA, a much more compact
representation in terms of word-type count vectors is possible. Such a representation grows in the number of word types. We
have derived estimates of our empirical moments and their products in terms of such count vectors, and these estimates are
in Appendix B. Another matter of practical concern is estimating the whitening matrix W . As [1] point out, if we take our

empirical second moment and find its singular value decomposition M̂2 = AΣAT , then the matrix Ŵ = AΣ− 1
2 fulfills the

property of whitening M̂2. Thus, W can be efficiently estimated from our empirical moment estimators.
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4.2 Tensor Decomposition Approaches

Suppose the empirical versions of M1, M2, and M3 are observed, recall that the goal of the tensor decomposition is to recover
ϕk, k = 1, 2, . . . ,K. Several approaches have been introduced in [1],[2], [3], and [6] and are reviewed below. Our experiments
focus on variants of the first two approaches only.

4.2.1 Tensor Power Method[2]

First we find the whitening matrix W , defined as above, and define T := M3(W,W,W ). A power-deflation approach can be

used to recover the βk from this tensor, because if we start with a u0 =
∑K

k=1 ckβk + β⊥ randomly drawn from unit shpere,
where β⊥ is the component outside the span of (β1, . . . , βk). Then after several iterations of ut+1 = T (I, ut, ut), the result

will be ut+1 =
∑K

k=1(2
t − 1)γk2

tckβk, so when initially ckγk dominates, then it will dominate in the whole run, and the
convergence speed is with respect to the rate of the largest ckγk to the second largest component of ckγk, in initialization. Also
note After extracting the approximate βk, T (βk, βk, βk) = γk can be used to recover αk. After a pair (γk, βk) is extracted,
we can deal with the new tensor T − γkβk ⊗ βk ⊗ βk, and do this recursively.

Once the βk are recovered, because βk = αk

α0(α0+1)W
Tϕk, then for ϕk is in the column space of W , we can see that

ϕk = Wck,ck =
√

α0(α0+1)
αk

(WTW )−1βk.

4.2.2 SVD Method[1]

The first two steps are simliar to the tensor power approach. When T = M3(W,W,W ) is found, we project T into a matrix,
i.e.:

T (I, I, θ) =
K∑

k=1

γk(βk
T θ)βk ⊗ βk

it can also be treated as a ”thin” SVD form of T (I, I, θ):

T (I, I, θ) = USUT = (β1, . . . , βK)diag(γ1(β1
T θ), . . . , γK(βK

T θ))(β1, . . . , βK)T

So if we do SVD of the T (I, I, θ) matrix, as long as γ1(β1
T θ), . . . , γK(βK

T θ) are distinct (in the empirical version we require
them to have a not-too-small gap, note that the tensor power approach does not have this problem), then we can recover βk.

Following the tensor power approach, we can first recover αk, then ϕk.

4.3 Simultaneous power method[1]

To improve computational efficiency, we do not have to explicitly calculate the M2, M3 (in our implementation we calculate
M2, which can be improved, but never calculateM3). [1] suggests a generic power method to calculate approximate orthogonal
decomposition for matrices and tensors:

Matrix case: Suppose input matrix is M, then start with random initialization of (v01 , . . . , v
0
K), calculate (M(I, vt1), . . . ,M(I, vtK))

and then orthonormalize to get (vt+1
1 , . . . , vt+1

K ), repeat the procedure until convergence.
Tensor case: Suppose input tensor is T, then start with random initialization of (v01 , . . . , v

0
K), calculate (T (I, vt1, v

t
1), . . . , T (I, v

t
K , vtK))

and then orthonormalize them to get (vt+1
1 , . . . , vt+1

K ), repeat the procedure until convergence.
Our first implementation used this approach to get the approximate βks, which works empirically, but its theoretical

guarantee are to be verified. So this approach is not the main concern of the report.

4.4 Other methods

Three other approaches for recovering the orthonormal vectors are provided in [?] and [3]. However, since we did not
implement these, our review of these methods is in Appendix C.

5 Theoretical Guarantees: Sample Complexity

First note that M̂2(M̂3) will converge to M2(M3), as can be seen by considering their vector stacking and applying McDi-
armid’s Lemma. With probability 1− δ,

d∑
i=1

d∑
j=1

(M̂2i,j −M2i,j)
2 <

(1 +
√

ln 1/δ)2

N

d∑
i=1

d∑
j=1

d∑
k=1

(M̂3i,j,k −M3i,j,k)
2 <

(1 +
√
ln 1/δ)2

N
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Then it is straightforward to see that ||M2 − M̂2|| < EP , ||M3(I, I, η)− M̂3(I, I, η)|| < ET ||η||, EP = ET =
(1+

√
ln 1/δ)√
N

. We

verified these convergence results on two datasets, as we explain in §6 and §7 below.
Let W = Ŵ (ŴTM2Ŵ )†

1
2 , then W whitens M2, but its range may not equal range(M2) = range(Φ). Matrix perturbation

theory yields the unsurprising result that for EP small,

||WT Φ̃− ŴT Φ̃|| ≤ 4

σk(Φ̃)2
EP ,

||Ŵ † −W †|| ≤ 6σ1(Φ̃)

σk(Φ̃)2
EP

||Π−ΠW || ≤ 4

σk(Φ̃)2
EP

Next, we consider the matrix M̂3(Ŵ , Ŵ , Ŵ ) that we are going to decompose. Then:

||M̂3(Ŵ , Ŵ , Ŵ )−M3(W,W,W )|| < c(
(α0 + 2)1/2EP

p
3/2
minσk(Φ)2

+
(α0 + 2)3/2ET

p
3/2
minσk(Φ)3

)

Denote this deviation by E. Because W whitens M2, M3(W,W,W ) has an orthogonal decomposition. Then for the
SVD/Tensor Power decompositions of M̂3(Ŵ , Ŵ , Ŵ ), we have the results:
(For SVD Method), w.p 3/4:

||β̂i − βi|| < c1K
3
√
α0 + 2E

(For Tensor Power Method), w.p 3/4:

||β̂i − βi|| < c2
√
α0 + 2E

So if we look at reconstruction accuracy,

||Φi −
(Ŵ †)T

β̂i

|| ≤ ||Π−ΠW ||+ W †

Zi
||β̂i − βi||+

1

Zi
||W † − Ŵ †||+ ||Ŵ †||| 1

Zi
− 1

Ẑi

|

It turns out the second and fourth terms dominate, and w.p. 1− δ over the random examples given, it is bounded by:
(For SVD Method), w.p. 3/4 over the randomness of choice of θ:

c′1
K3(α0 + 2)2

p2minσk(Φ)3
(
1 +

√
ln 1/δ√
N

)

(For Tensor Power Method), w.p. 3/4 over the randomness of choice of iteration startpoint:

c′2
(α0 + 2)2

p2minσk(Φ)3
(
1 +

√
ln 1/δ√
N

)

One remarkable aspect of these results is that the error bound of the SVD method depends polynomially on K3, while
the error bound of the tensor power method does not depend on K at all. For both methods, these results guarantee that
the error falls off inversely with the square root of the number of word tokens in the sample.

6 Experiments

6.1 Datasets

We tested the empirical algorithm on two real-world datasets. The first dataset is Classic3/Classic4. Classic4 is
comprises four different collections of abstracts: CACM, CISI, CRAN, and MED. These collections roughly correspond
to the topics of computer science, information science, aeronautics, and medicine, respectively. Classic3 is the same as
Classic4, with the exclusion of CACM. The second dataset we used is the 20Newsgroups dataset. It consists of postings
on 20 Usenet newsgroups, on diverse topics such as computers, religion, and politics. In order to evaluate quantitatively the
performance of the algorithm, we had to set a ’ground truth’ for our datasets by assigning topic mixtures to the documents
in the datasets. We settled on assigning a single topic per document, which corresponds to α0 = 0. Each document in
Classic3/Classic4 was assigned with a topic label determined by the collection of abstracts it came from (therefore, K
= 3 for Classic3 and K=4 for Classic4). For 20Newsgroups, it did not seem appropriate to assign a separate topic for
each newsgroup, since there is much topical overlap among groups. For instance, comp.windows.x and comp.os.ms-windows

seem to share a great deal of vocabulary. Instead, we collected the groups into K = 6 topics, following [8]. These topics are
found in Appendix D.
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Figure 1: empirical deviation of M2 (blue line) and M3 (green line) for classic3 (left) and 20Newsgroups (right)

6.2 Procedure

Our overall empirical algorithm was as follows:
1. Construct empirical moments M̂2, M̂3(implicitly)
2. Whiten: Let Ŵ = AΣ−1/2 where AΣAT is the SVD of M̂2.
3. Tensor Decomposition: (SVD Method) Calculate the left singular vectors of ŴM̂3(Ŵθ)Ŵ as in section 4.2.2.
(Tensor Power Method, using deflation) Calculate the eigenvectors of M̂3(Ŵ , Ŵ , Ŵ ) as in Section 4.2.1, extracting

one pair at a time.
(Tensor Power Method, simultaneous) Calculate the eigenvectors of M̂3(Ŵ , Ŵ , Ŵ ) as in Section 4.2.1, without

deflating.
4. Reconstruct: Zi = (Ŵvi)

T M̂3(Ŵvi)(Ŵvi) and ϕ̂i = (Ŵ+)T vi/Zi.
We randomly divided Classic3 and 20Newsgroups data into three folds, each composed of one-third of the documents.

We then used a cross-validation scheme, where we tested the algorithm on each combination of two folds, while using the
documents and topic labels of the third fold as held-out data to compute an estimate of the ”ground truth” moments and
latent variable matrix Φ. Suppose we wish to estimate the ground-truth distribution of our data from |Docs| different
documents in our held-out data, and we have a label vector y ∈ R|Docs| as well as a count vector cℓ for each document, where
cℓi is the count of word type i in document ℓ. Then we estimate the ith element of ϕk as

ϕ̃k,i =

∑|Docs|
ℓ=1 cℓi1yi=k∑|V oc|

i=1

∑|Docs|
ℓ=1 cℓi1yi=k

. (4)

To assess the performance of the three decomposition techniques and compare it to the sample complexity bounds, we
computed the ϕ̂k and empirical moments for varying sample sizes, on a logarithmic scale, using each of the three methods
with α0 = 0 . We then recorded the L2 error between the ground truth estimates of the moments and ϕ̃k’s derived from
the held-out data, and the empirical moments and ϕ̂k’s returned by the three tensor decomposition techniques. Note that
tensor decomposition methods only return the matrix Φ̂ up to a permutation; we used a bipartite matching algorithm, the
Hungarian algorithm [7], to match the ϕ̂k’s to the ϕ̃k’s.

7 Results and Conclusion

1.
Qualitative results showing that our implementation recovers semantically reasonable topics are included in Appendix E.

?? and 2 show the the L2 errors in estimation of the empirical moments and the L2 error in estimation of the topic vectors,
respectively. As can be seen, all the errors fall off with sample size, but they do not quite fall off as 1/

√
(N). Performance

seems roughly the same for all three methods, and despite the polynomial dependence of the SVD method on the number of
topics, the performance of this method seems similar on both datasets.

There are several possible explanations for our results. First of all, we must question the quality of the ”ground truth” we
estimated. Mislabeling is a problem, and the ground truth topics approached by LDA need not correspond to our topic labels
at all. Secondly, a misspecified K will make a big difference in our implementation. For example, consider a single-topic
model (where α0 is approaches 0) where we estimate a ”ground truth” consisting of two topics (say about library science
and dynamics) using labeled documents, with topic probability distributions ϕ1 and ϕ2 , while actually the documents of the
second topic have two subcategories whose probability distribution are ϕ2,1, ϕ2,2 (say aerodynamics and thermodynamics)
that rarely if ever mix in the same document. Then the true K is 3, while the K we used for our evaluation is 2. Moreover,
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Figure 2: ||ϕ̂k − ϕ̃k|| for classic3 (top) and 20Newsgroups (bottom). The dashed line represents O(1/
√
N).

if we look at the M2 matrix, we assume that

M2 =
1

α0(α0 + 1)
(α1ϕ1ϕ

T
1 + α2ϕ2ϕ

T
2 )

but actually

M2 =
1

α0(α0 + 1)
(α1ϕ1ϕ

T
1 + α2,1ϕ2,1ϕ

T
2,1 + α2,2ϕ2,2ϕ

T
2,2)

Suppose, say α1 = 0.2α0, α2,1 = α2,2 = 0.4α0 and the ϕ1, ϕ2,1, ϕ2,2 do not overlap in thier support sets (which ensures they
are orthogonal), then the W extracted using the SVD of M2 may favor ϕ2,1 and ϕ2,2, and its columns will be exactly (ϕ2,1,
ϕ2,2). Running the algorithm with K = 3, we may recover these two subtopics and overlook the main topic ϕ1, which has
a critical impact on further testing of the deviations. It is not clear to us in general what happens when K used by the
algorithm is less than the true K. But if K used by the algorithm is greater than the true K, then it can be guaranteed
that we recover all ”main” topics, but some of them may be found as the combination of several subtopics extracted due to
the inherent structure of data, i.e. it will reduce false negative topics. The price we pay is that it may produce more false
positive topics, i.e. some topics that are not reasonable. So how to select optimal K for the algorithm, if we do not know it
beforehand, is an open question. In this respect, it is interesting to note that the rank of M2 would be K in the absence of
noise.

To address whether substructure within our ground truth topics is responsible for our results, we used the LDA generative
model to simulate a data set of the same size as the Classic3 dataset, using estimated ϕk’s computed from the classic3
corpus using equation (4) and setting α0 = 0. These results are in 3. Performance now seems to be closer to the theoretical
bound, but still not exact. This suggests there may be other reasons for deviation from the theoretical results.

It might be instructive to run a traditional EM- or MCMC-based approach for learning LDA on our data, in order to
compare to our tensor decomposition results. However, how to objectively compare the solutions found by these fundamentally
different methods is not straightforward. Finally, we note that we have not fine-tuned the iterative parameters of the tensor
power approach, which could give this method a boost in performance.

Further work needs to be done in order to assess tensor decomposition approaches for LDA. In addition to the suggestions
above, it would also be interesting to compare the efficiency with which the tensor decomposition approach approaches the
ground truth, compared with an EM-based approach, as the fact that tensor decomposition approaches avoid the problem
of local minima is a big advantage of this method.
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Figure 3: ||ϕ̂k − ϕ̃k|| for data simulated from classic3. The dashed line represents O(1/
√
N).
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A Cross-Moments of Dirichlet-Distributed Vectors

If h is drawn from a Dirichlet distribution and the concentration parameters are known, then these moments could easily be
calculated:

If h ∼ Dirichlet(α1, α2, .., αK), then

E[hi] =
αi

α0

E[h⊗ h]i,j = E[hihj ] =

{
αiαj

α0(α0+1) , i ̸= j
αi(αi−1)
α0(α0+1) , i = j

E[h⊗ h⊗ h]i,j,k = E[hihjhk] =


αiαjαk

α0(α0+1)(α0+2) , i, j, k distinct
αi(αi+1)αj

α0(α0+1)(α0+2) , i = j ̸= k
αi(αi+1)(αi+2)
α0(α0+1)(α0+2) , i = j = k

9



B Derivation of Empirical Moment Estimators and Products

The equations listed below are needed for implicit calculation of power iteration just for completeness. In general they are
useful for real implementation, but have nothing to do with theoretical guarantees.

B.1 Notes:

For a specific document ℓ (Vl),
∑|V oc|

i ,
∑|V oc|

i,j can be re-written as
∑|V ocl|

i ,
∑|V ocl|

i,j (V ocl is the number of distinct word types
used in document ℓ), because we only need to care about words that occurred in document ℓ .

B.2 Empirical First and Second Moments

M̂1 = E[x1] =
1

|Docs|

|Docs|∑
l=1

1

|Vl|
cl

M̂2 = E[x1 ⊗ x2]−
α0

α0 + 1
M̂1 ⊗ M̂1

=
1

|Docs|

|Docs|∑
l=1

1

|Vl|(|Vl| − 1)
(cl ⊗ cl − diag(cl))−

α0

α0 + 1
M̂1 ⊗ M̂1

B.3 Empirical Third Moment and Its Multilinear Products

M̂3 = E[x1 ⊗ x2 ⊗ x3]−
α0

α0 + 2
(E[x1 ⊗ x2 ⊗M1] +E[x1 ⊗M1 ⊗ x2] +E[M̂1 ⊗ x1 ⊗ x2]) +

α2
0

(α0 + 1)(α0 + 2)
(M̂1 ⊗ M̂1 ⊗ M̂1)

=
1

|Docs|

|Docs|∑
l=1

1

(|Vl|)(|Vl| − 1)(|Vl| − 2)
[cl⊗cl⊗cl+2

|V oc|∑
i

cli(ei⊗ei⊗ei)−
|V oc|∑
i,j

cliclj(ei⊗ei⊗ej)−
|V oc|∑
i,j

cliclj(ei⊗ej⊗ei)−
|V oc|∑
i,j

cliclj(ej⊗ei⊗ei)]

− 1

|Docs|

|Docs|∑
l=1

1

(|Vl|)(|Vl| − 1)

α0

α0 + 2
[cl⊗cl⊗M̂1+cl⊗M̂1⊗cl+M̂1⊗cl⊗cl−

|V oc|∑
i

cli(ei⊗ei⊗M̂1+ei⊗M̂1⊗ei+M̂1⊗ei⊗ei)]

+
2α2

0

(α0 + 1)(α0 + 2)
(M1 ⊗ M̂1 ⊗ M̂1)

M̂3(I, I, η) =
1

|Docs|

|Docs|∑
l=1

1

(|Vl|)(|Vl| − 1)(|Vl| − 2)
[cl ⊗ cl(η

T cl) + 2diag(cl ◦ η)− cTl ηdiag(cl)− (cl ◦ η)⊗ cl − cl ⊗ (cl ◦ η)]

− 1

|Docs|

|Docs|∑
l=1

1

(|Vl|)(|Vl| − 1)

α0

α0 + 2
[(cl ⊗ cl − diag(cl))(η

TM1) + (cl ⊗ cl − diag(cl))ηM̂
T
1 + M̂1η

T (cl ⊗ cl − diag(cl))]

+
2α2

0

(α0 + 1)(α0 + 2)
(ηT M̂1)(M̂1 ⊗ M̂1)

M̂3(Ŵ , Ŵ , η) =
1

|Docs|

|Docs|∑
l=1

1

(|Vl|)(|Vl| − 1)(|Vl| − 2)

[(ŴT cl)⊗ (ŴT cl)(η
T cl) + 2ŴT diag(cl ◦ η)Ŵ − (cTl η)Ŵ

T diag(cl)Ŵ − (ŴT (cl ◦ η))⊗ (ŴT cl)− (ŴT cl)⊗ (ŴT (cl ◦ η))]

− 1

|Docs|

|Docs|∑
l=1

1

(|Vl|)(|Vl| − 1)

α0

α0 + 2
[((ŴT cl)⊗(ŴT cl)−ŴT diag(cl)Ŵ )(ηT M̂1)+ŴT (cl⊗cl−diag(cl))ηM̂

T
1 Ŵ+ŴTM1η

T (cl⊗cl−diag(cl))Ŵ ]
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+
2α2

0

(α0 + 1)(α0 + 2)
(ηT M̂1)((Ŵ

T M̂1)⊗ (ŴT M̂1))

M̂3(1, η, η) =
1

|Docs|

|Docs|∑
l=1

1

(|Vl|)(|Vl| − 1)(|Vl| − 2)
[cl(η

T cl)
2 + 2(cl ◦ cl ◦ η)− 2(cl ◦ η)(cTl η)− cl(c

T
l (η ◦ η))]

− 1

|Docs|

|Docs|∑
l=1

1

(|Vl|)(|Vl| − 1)

α0

α0 + 2
[(ηTM1)[(c

T
l η)cl − (cl ◦ η)] + [cl(c

T
l η)− (cl ◦ η)](M1

T η) + M̂1(η
T cl)

2 − M̂1η
T (cl ◦ η)]

+
2α2

0

(α0 + 1)(α0 + 2)
(ηT M̂1)

2M̂1

M̂3(η, η, η) =
1

|Docs|

|Docs|∑
l=1

1

(|Vl|)(|Vl| − 1)(|Vl| − 2)
[(ηT cl)

3 + 2((η ◦ η)T (cl ◦ cl))− 3(cTl η)(c
T
l (η ◦ η))]

− 1

|Docs|

|Docs|∑
l=1

1

(|Vl|)(|Vl| − 1)

α0

α0 + 2
[3(ηTM1)[(c

T
l η)

2 − cTl (η ◦ η)]] + 2α2
0

(α0 + 1)(α0 + 2)
(ηTM1)

3
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C Other Approaches for Tensor Decomposition

C.1 Pseudo-Inverse Method[6]

Consider G = (M2)
† 1
2M3(I, I, η)(M2)

† 1
2 , suppose (

√
α1

α0(α0+1)ϕ1, . . . ,
√

αK

α0(α0+1)ϕK) = USV T is the ”thin” SVD, then

M2 = US2UT ,M3(I, I, η) =
2

α0 + 2
USV T diag(ηTϕ1, . . . , η

TϕK)V SUT

G =
2

α0 + 2
UV T diag(ηTϕ1, . . . , η

TϕK)V UT

can be treated as a ”thin” SVD. So if we do SVD in G and get the singular vectors with respect to nonzero singular

values, we can get (r1, . . . , rK) = UV T up to column permutation and signs. Note that M
1
2
2 = USUT , then we calculate

USUT (r1, . . . , rK), which equals USV T up to column permutation and signs. Then we use

λk

ηT (M2)
1
2 vk

= γk

to recover αk and
2

α0 + 2

λk

ηT (M2)
1
2 vk

(M2)
1
2 vk = ϕk

to recover ϕk. We can also useM1 to refine the results of αk as well, becauseM1 = 1
α0

(ϕ1, . . . , ϕK)α, so α = α0(ϕ1, . . . , ϕK)†M1).
Note this method may be computationally intractable if we explicitly calculate G.

C.2 Eigenvector Method[3]

Suppose U is the orthonormal base of M2’s column space. (We can do SVD on M2 to find U, or more generally, if we can
get a U whose column space is M2’s column space (which is also Φ’s column space), similar technique applies.)

Consider the following matrix:
(UTM3(I, I, η)U)(UTM2U)−1

=
2

α0(α0 + 1)(α0 + 2)
(UTΦ)diag(α)diag(ΦT η)(UTΦ)T (

1

α0(α0 + 1)
(UTΦ)diag(α)(UTΦ)T )−1

=
2

α0 + 2
(UTΦ)diag(ΦT η)(UTΦ)−1

If we extract the eigenvectors of (UTM3(I, I, η)U)(UTM2U)−1 as (r1, . . . , rK), we can see they are columns of (UTΦ), up to
column permutation and scaling, then Urk = UUTϕk = ϕk.

Note that in this method we cannot directly recover α, and we can only normalize ϕk explicitly, because the eigenvectors
have one degree of freedom in scaling.

C.3 Eigenvalue Method Using Simultaneous Diagonalization[3]

Same as the eigenvectors approach, but we consider eigenvalues instead of eigenvectors. Note that if we do diagonalization
with different values of η, we can get different (ΦT η). To randomly choose ηk, k = 1, . . . ,K, for simplicity, we choose
θk, k = 1, . . . ,K uniformly on unit sphere, then obtain ηk = Uθk. Denote Θ = (θ1, . . . , θK)T .

Then we observe K vectors ΦT ηk = tk, denoted as Lk. Note that ϕk = Uck, so we can get ck, because:ηT1
. . .
ηTK

 (ϕ1, . . . , ϕK) =

θT1
. . .
θTK

UTU(c1, . . . , cK) = L

(c1, . . . , cK) = Θ−1L

(ϕ1, . . . , ϕK) = U(c1, . . . , cK) = UΘ−1L

A subtle issue is that we must diagonalize these matrices simultaneously. For example, if we deal with empirical moments, we
can use one single P which diagonalizes (UTM3(I, I, Uθ1)U)(UTM2U)−1, then although P−1(UTM3(I, I, Uθk)U)(UTM2U)−1P
are not perfectly diagonal for other θk, i ≥ 2, we still consider their diagonal elements. Note that if we diagonalize them
individually, the order of the eigenvalues will be shuffled for each individual matrix, so that we cannot safely recover the ϕk.
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D Partitioning of 20Newsgroups

20Newsgroups was partitioned into six classes, following [8]:

comp.graphics rec.autos sci.crypt
comp.os.ms-windows.misc rec.motorcycles sci.electronics
comp.sys.ibm.pc.hardware rec.sport.baseball sci.med
comp.sys.mac.hardware rec.sport.hockey sci.space

comp.windows.x
misc.forsale talk.politics.misc talk.religion.misc

talk.politics.guns alt.atheism
talk.politics.mideast soc.religion.christian

13



E Illustrative results

The results of simultaneous power method, ECA and tensor deflation seem very similiar, so we present only the results of
simultaneous power method here. The following tables show results of the method with different number of topics k.

E.1 Classic4

• k = 10

1 2 3 4
inform system flow case
librari program layer system
system comput boundari result
comput languag pressur method
data method number flow
scienc gener heat present
studi problem solut problem
user data equat time

research algorithm mach studi
method present theori patient
servic design present algorithm
retriev time bodi effect
develop structur shock solut
program develop transfer bodi
search paper effect growth
base techniqu result model
book discuss method techniqu
index function laminar obtain
process equat plate cell
oper oper wave develop

While 3 of the natural topics are recovered, MED is barely present. Topic 4 is a mixture of topics.

• k = 20

1 2 3 4 5 6
cell flow librari algorithm languag number

structur boundari inform method program librari
studi layer book program comput problem
data heat studi time gener list
scienc number research present problem bodi
activ solut journal data sort journal
line plate public number fortran titl

patient effect univers paper system creep
bodi equat develop system algorithm catalog
relat theori academ result list method
high transfer librarian inform structur buckl

normal laminar system set string function
marrow problem report problem featur scienc
languag compress work tabl present librarian
bone point catalog languag translat point
type pressur cost structur process work

growth surfac present bodi user column
rat dimension decis oper design time
tissu veloc scienc flow rule boundari
strain case paper gener file period

We chose to display 6 of the 20 topics. We see from columns 1-4 that all natural topics are recovered, but we also get
duplicate topics as in column 5 and mixed topics as in column 6.
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E.2 20Newsgroups

For 20Newsgroups, k=10 and k=20 produced fairly similar results.

• k = 10

1 2 3 4 5 6
drive window game kei god mail
disk run team chip christian list
hard problem win bit jesu sale
floppi card two order point address
system file plai encrypt post window
file applic player clipper question phone
do monitor come phone mean post

format video run secur exist file
scsi mail score gun church run

control manag season govern christ email
problem system cub simm jew info
question line last escrow bibl interest
comput program hockei number find send

set screen dai public law question
softwar do seri de group number
compress font world nsa religion do
switch color suck two state read
bit question tie mean show group

origin driver record run word advanc
copi set put call answer back

• k = 20

1 2 3 4 5 6 7
game window god drive mail card car
team problem christian disk list video file
run run jesu hard sale color problem
win system call floppi run vga question
two applic mean system address driver two
plai driver christ scsi interest window bike

player manag car format info mail monitor
come do read do group graphic bui
last color irq question phone monitor post

window file live file post mode last
score video bibl control chip cach opinion
kei mous group softwar type bui god
file monitor religion set send speed dai

season win church sale file address gener
seri graphic doesn origin advanc phone ride

system font sin come question set road
hockei program sound mac read problem didn
name screen post power inform number great
into set never boot problem list mac
sound card love program email fpu softwar
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