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More Complex Feedback

I So far: feedback used = labels or abstentions from a single
annotator

I Human beings are capable of much more complex feedback
I How to utilize such feedback?
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Outline

1. Active Learning using More Complex Queries

2. Queries from Labelers with Varying Expertise
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Challenge of Active Learning: Rare Classes [Das05, AP11]

I Impossible to account for rare classes if never observed
I Ω(1

ε ) label complexity

balanced classes rare class
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Challenge of Active Learning: Small Disjuncts [AP11]

I Classes are spread in “small islands”
I Need to find all rare subclasses to get an accurate classifier
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Complex Queries: Addressing the Rare-class problem

I In active learning, rare classes often leads to problems
I Remedy: more complex queries

I Class-conditional queries (CCQ) [CTGC05, BH12]
I Search queries [AP10, BHLZ16]
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Class-Conditional Queries (CCQ) [BH12]

I Oracle answers questions e.g.: “Show a cat among these
images” [CTGC05]
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Key Observation: Seed examples + Label queries

H = indicator functions for subintervals of [0, 1] ⊂ R,
DX = uniform on [0, 1]

I Postive class is rare
I In noiseless setting, need a seed positive example.

Armed with seed positive example, and negative examples, can
use binary search to find interval boundaries via label queries.

Search queries [AP10, BHLZ16]: Similar idea but weaker than
class conditional queries
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Motivation

I What if we have auxiliary information? - as an extra label
oracle

Oracle: expensive but
correct

Weak labeler: cheap,
sometimes wrong
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What Makes a Labeler Weak?

I Noise (See e.g. [KOS13])
I Bias (This Work)

Labels by Oracle O Labels by Weak Labeler W
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Formal Model [ZC15]

Given:
I Access to unlabeled examples drawn from DX
I Abilities to query oracle O
I Abilities to query weak labeler W

Goal:
I Get a classifier ĥ with excess error ε wrt O with probability

1− δ
Label Complexity:

I How many label queries (m(ε, δ)) to O are needed to achieve
this goal?
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How do We Address Weakness?

I Learn where weak and strong labelers differ
I Run standard active learning

I Query O in difference region
I Query W outside difference region

I Problem: may be statistically inconsistent
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Statistical Inconsistency

I False Negatives (incorrectly predict O and W agree) lead to
wrong annotations

Actual Labels Annotation using h∗ as
difference classifier
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Solution

Learn where O and W differ subject to low false negative (FN)
rates

Actual Labels Annotation using h∗FN as
difference classifier
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Label Complexity

I Training the difference classifier over entire space does not
save labels

I Solution: train difference classifiers in disagreement regions
only (at each phase)

I Label complexity for the rest of active learning can also be
established
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