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Membership Query vs PAC Model

Membership Query Model PAC Model
+
+ o
o) —
— /
2 0
+ ?
+ —
o \ 4 ~
— |

Probably Approximately Correct (PAC) active learning:
» Query labels only of given unlabeled examples

» Evaluation metric: classification error wrt distribution
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PAC Model Setup

» Data distribution D over X x {—1,1}
unlabeled distribution Dy

» Classifier h: X — {-1,1}
» Hypothesis class H




PAC Model: Evaluation

» Error: err(h) = Pplh(x) # y]
» Optimal classifier

h* = argminy,cq, err(h)

» Excess error: err(h) — err(h*)
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PAC Model: Evaluation

» Error: err(h) = Pp[h(x) # y]

Optimal classifier
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PAC Model: Evaluation

» Error: err(h) = Pp[h(x) # y]

Optimal classifier

v

h* = argminy,cq, err(h)

v

Excess error: err(h) — err(h*)

v

PAC learning goal: get a classifier h with excess error € with
probability 1 — § over the draw of random sample S

» Empirical error in sample S:
1
en(h.8) =g 2 () #y)
(x,y)eS

v

Sample complexity n(e, d): sample size needed to achieve goal



PAC Learning: Noise Models

» Realizable: err(h*) =0

Flipping Probability n(x) := P[Y # h*(x)|x]
Noise Level

» n-Random classification noise (RCN): A
n(x)=n<3 T

wW* X

Noise Level
» [3-Tsybakov noise condi;cion (TNC): ﬂos\
P[n(x) > 3 —t] < O(t?)

I
WX




Agnostic Noise Model

» No assumption on label generation
process

» Optimal error rate err(h*) = v




PAC Learning: Noise Models

v

Realizable: err(h*) =0

Noise Level

n-Random classification noise (RCN): -
n)=n <} —

v

w* X

Noise Level
B-Tsybakov noise condition (TNC): ﬂos\
1
Pln(x) = 5 —t] < O(t?)

WX

v

» v-Agnostic:
optimal error err(h*) = v




Sample Complexity in PAC Passive Learning

» "“Difficulty” of noise models:
Realizable < RCN < TNC < Agnostic

» d: VC dimension of H

Noise Model | n(e, )
Realizable O(d-1

d
n-RCN ?(1_2n -15)
B-TNC O(d - €78 ?)
v-Agnostic | O(d - “5°)




PAC Active Learning

Given:

» Access to unlabeled examples drawn from Dy

» Abilities to query label oracle O
Goal:

» Get a classifier h with excess error € with probability 1 — 4
Label Complexity m(e, d):

» How many label queries are needed to achieve this goal?

11



Special Challenges in PAC Active Learning

PAC active learning algorithms need to adapt to distribution since:
» Labels queries outside the support is not allowed

» Evaluation metric is classification error

?

Membership Query Model PAC Model
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PAC Active Learning Algorithms

» Disagreement-based Active Learning(DBAL) [CAL94, BBLO9,
DHMO07, Han07, Han09, Kol10, HY12, Han14]..

» Confidence-based Active Learning(CBAL) [ZC14, BL13]
» Cluster-based Active Learning [DH08, UWBD13]

13
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Disagreement-based Active Learning(DBAL)
Algorithm in Realizable Case
Algorithm in Non-Realizable Case
Analysis
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DBAL: Realizable Case [CAL94|

Main Idea:

» Maintain a set of candidate classifiers
VCH

» Query the label of an example x if x is
in the disagreement region of V

Definition
Given a set of classifiers V, the disagreement region of V/,

DIS(V) := {x : there exist hy, hy in V, hi(x) # ha(x)}

16



Candidate Sets

> Realizable case: use version spaces as candidate sets

Definition
A version space V is the set of all classifiers h in hypothesis class
‘H that agree with labeled examples seen so far.

17



DBAL: Algorithm

Input: target excess error ¢, failure probability §. Initialize
candidate set Vo = H
For phases k =1,2,... ko = [In %]

» Candidate set V) _1, target excess error ¢, = 2k

18
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DBAL: Algorithm

Input: target excess error ¢, failure probability §. Initialize
candidate set Vo = H
For phases k =1,2,..., ko = [In %1

» Candidate set V)_1, target excess error € = 2k

» Label Query:

Where to query?
Labels of all x outside DIS(Vj_1) are predictable
Query on the examples in DIS(Vj_1)
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Input: target excess error ¢, failure probability ¢. Initialize
candidate set Vo = H
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» Label Query:
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DBAL: Algorithm

Input: target excess error ¢, failure probability ¢. Initialize
candidate set Vp = H
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examples in
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DBAL: Algorithm

Input: target excess error ¢, failure probability §. Initialize
candidate set Vg = H
For phases k =1,2,... . ko = [In %]

» Candidate set V) _1, target excess error ¢, = 2k

> Label Query: S, < Sample 5(d%{k’l)]) examples in
DIS(Vik—1) and query for labels

» Prune Candidate Set:

How to do the pruning?
Remove from V/_; the classifiers that does not agree
with Sy
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DBAL: Algorithm

Input: target excess error ¢, failure probability ¢. Initialize
candidate set Vp = H
For phases k =1,2,... . ko = [In %1
» Candidate set V) _1, target excess error €, = 2k
» Label Query: S < Sample @(d%{k’l)]) examples in
DIS(Vk—1) and query for labels

» Prune Candidate Set:
Vi + {h € Vi_1: h agrees with all (x,y) € Sk}

18



DBAL: Algorithm

Input: target excess error ¢, failure probability §. Initialize
candidate set Vo = H
For phases k =1,2,... . ko = [In 5

» Candidate set V/)_1, target excess error € = 2k

» Label Query: Sy < Sample @(d%) examples in
DIS(Vik—1) and query for labels

» Prune Candidate Set:
Vi {h € Vi_1 : h agrees with all (x,y) € Sk}

Return h < an arbitrary classifier from V.

18



Outline

Introduction
Setting

Disagreement-based Active Learning(DBAL)

Algorithm in Non-Realizable Case

Confidence-based Active Learning(CBAL)

Conclusions and Open Problems

19



PAC Learning: Noise Models

v

Realizable: err(h*) =0

v

nx)=n<1i

v

B-Tsybakov noise condition (TNC):
1
Pln(x) > 3 — t] < O(t?)

» Agnostic:
optimal error err(h*) = v

n-Random classification noise (RCN):

Noise Level
05

w* X

Noise Level
ﬂos\

WX
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DBAL: Non-Realizable Case

Realizable Case:

There is some h* in H such that
h*(x) =y, for all (x,y) ~ D

Use version space as set of
candidate classifiers

Non-Realizable Case:

h* is the classifier in H with min
error

Use (1 — §) confidence set for h*
as candidate classifiers

21



Construction of Confidence Sets

» Generalization bounds [VCT71]: w.p.
1 — ) over the draw of a sample S of
size m iid from D, for all hin H,

~ Vv
|err(h,S) —err(h)] < O d
m + + -
+ -
> Choose: all h with iy &

+ - -

err(h,S) < min err(h,S)+0 ( d) A

h'eH m

» More careful construction needed in
active learning

22



DBAL: Non-Realizable Case

Realizable Case:

There is some h* in H such that
h*(x) =y, for all (x,y) ~ D

Use version space as set of
candidate classifiers

At phase k, draw

O(d%ﬁk‘m) examples

Non-Realizable Case:

h* is the classifier in H with min
error

Use (1 — ¢) confidence set for h*
as candidate classifiers

At phase k, adaptively draw
enough examples for excess

€k H
efror PIDIS(Vi_1)] 'f‘
disagreement region

23



DBAL: Algorithm in Non-Realizable Case

Input: target excess error ¢, failure probability d.
Initialize candidate set Vo = H
For phases k =1,2,... ko = [In %]

» Candidate set V) _1, target excess error ¢, = 22—k,

24
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Initialize candidate set Vo = H
For phases k =1,2,... . ko = [In %1
» Candidate set V) _1, target excess error €, = 2k,
» Label Query:

How many labels to query?

Enough s.t. excess error of each h in Vj is at most €,
Adaptively draw enough examples to achieve error at
most m on DIS(Vk-1)
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Sk < Adaptively sample just enough examples on DIS(Vj_1)
and query for their labels to get target excess error m

» Prune Candidate Set:

How to do the pruning?
Remove from V/_; the classifiers that have a large
empirical error on Sk
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DBAL: Algorithm in Non-Realizable Case

Input: target excess error ¢, failure probability ¢.
Initialize candidate set Vo = H
For phases k = 1,2,..., kg = [In1]:

» Candidate set V) _1, target excess error ¢, = 22—k,

» Label Query:
Sk < Adaptively sample just enough examples on DIS(Vj_1)
and query for their labels to get target excess error m

» Prune Candidate Set:

Vi + {h € Vi1 serr(h, 5¢) — hg“\/ikn_l err(h, ) < O <IP>[D|S€(I§/;<_1)]>}
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Input: target excess error ¢, failure probability J.
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» Label Query:
Sk < Adaptively sample just enough examples on DIS(Vj_1)
and query for their labels to get target excess error m

» Prune Candidate Set:

Vi + {h € Vi_1 :err(h,Sk) — hg’nvikn_1 err(h,Sx) < O (M)}

Return h < an arbitrary classifier from V.
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DBAL: Algorithm in Non-Realizable Case

Input: target excess error ¢, failure probability J.
Initialize candidate set Vo = H
For phases k =1,2,... . ko = [In %1

» Candidate set V) _1, target excess error €, = 2k,

» Label Query:
Sk + Adaptively sample just enough examples on DIS(Vj_1)
and query for their labels to get target excess error m

» Prune Candidate Set:

Vk — {h S Vk_]_ . err(h, Sk) — hemviﬂl err(h, Sk) < (0] <IP)[D|S€(l§/kl)]> }

Return h < an arbitrary classifier from V.
Computationally efficient implementation
in [DHMO07, BDL09, Han09, BHLZ10, HAH*"15]...

24
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Statistical Consistency

Theorem
Suppose DBAL is run with parameters € and 6. Then with
probability 1 — §, the output h satisfies that

err(h) —err(h*) < e.
Main Idea:

> After phase k, all classifier in V) have excess error < e,

» Specifically, after phase ko, all classifiers in Vj, have excess
error < €, <€

26



Label Complexity

Key factor: Shrinkage of P[DIS( V()]
Depends on:

» Shrinkage of the V}'s radius
» Ratio of P[DIS( V)] to the radius of Vj

27



Label Complexity: Definitions

» Disagreement metric:
p(h, ') = Pp[h(x) # K (x)]

> Disagreement ball:
B(h,r) = {H € H: p(h,h) < r}

28



Factor 1: Shrinkage of the V/'s Radius

Harder noise condition = Slower shrinkage

Noise Model | radius( V)

Realizable O(ek)
n-RCN O0(:%;)
T

B-TNC O(e,™)
v-Agnostic | O(v + €)

Version Space Radius Shrinkage under Noise Models



Factor 2: Disagreement Coefficient

Relating P[DIS(V4))] to Vi's radius

Definition ([Han07, Ale87, RR11])

Given a concept class H, data distribution D, the disagreement
coefficient with respect to H and D is defined as:

P[DIS(B(h, r))]

heH,r>0 r

0 —

Corollary

P[DIS(V)] < 6 - radius(V).

30



Shrinkage of Disagreement Region

Relationship P[DIS( V)] < 6 - radius( Vi) implies:

Noise Model | P[DIS( V)]
Realizable O(0 - ex)
n-RCN ?(0 : lilg,])
B-TNC O(0 - e1+7)
v-Agnostic OO (v+ex))

Disagreement Region Shrinkage under Noise Models




Label Complexity Analysis: Main ldea

Realizable Case

» Label complexity in phase k: my = O(d%{k’l)]) = O(db)
» Total label complexity: Z’;‘;l my = O(dfIn )

The analysis can be extended to non-realizable cases
straightforwardly.

32



Label Complexity

Theorem
Suppose DBAL is run with parameters ¢ and §. Then with
probability 1 — 8, the number of label requests is:

Noise Model | Label Complexity
Realizable o0 -d- In )

n-RCN o0 - (1 277)2‘ n%)
B-TNC O(0-d-etin?)
v-Agnostic | O(6 - (V:;) )




Comparison to Passive Learning

DBAL improves over passive learning if 6 is finite

Noise Model | Improvement Factor
Realizable | O(f)

Oe
n-RCN ?( 1—217)
B-TNC O(fet+5)
v-Agnostic | O(6(v + €))

34



Disagreement Coefficient: Examples

Thresholds
» Dy : Uniform([0, 1])
» H: threshold classifiers M
he(x) =1(x>1t), t€0,1 h
() = (x> 1), t € 0.1 s
> 0 <2
Linear Classification
h_ B(hr)

» Dy : uniform over unit sphere
» H: linear classifiers through the
origin h,, = sign(w - x), w € R DIS(B(h, r))

» 0= 0(Vd)

35
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Confidence-based Active Learning(CBAL)

» The label query policy of DBAL is too conservative

» perform label query as long as an example is in disagreement
region

> Idea of CBAL: select a subset of disagreement region using
confidence-rated predictors

37



Confidence-based Active Learning(CBAL)

» Confidence-rated predictor(CRP): classifiers that can say
“Don’t know” (1)

Output of a binary classifier Output of a CRP

» Main idea of CBAL:
» Maintain a confidence-rated predictor P
» Use P to make label query decision: Query the label of x if P
says “Don’t know" on x

38



CBAL: Algorithmic Framework
» Inputs: target excess error ¢, failure probability §.
» Initialization: Vp < H.
> For phase k =1 to kg = [log 1]:

v

Candidate set Vj_1, target excess error ¢4 = 2k,
Transduction:

v

v

Selection:

v

Label Query:

v

Prune Candidate Set:

» Return h < an arbitrary classifier in V.

39



Confidence-rated Prediction [EYW10]

» Given x, P(x) € {—1,+1, L}

40



Confidence-rated Prediction [EYW10]

» Given x, P(x) € {—1,+1, L}
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Confidence-rated Prediction [EYW10]

» Given x, P(x) € {—1,+1, L}
» Error: errp(P) = Pp[P(x) # h*(x), P(x) #1]

h*

40



Confidence-rated Prediction [EYW10]

» Given x, P(x) € {—1,+1, L}
» Error: errp(P) = Pp[P(x) # h*(x), P(x) #1]
» Abstention: absp(P) = Pp[P(x) =1]

40



Confidence-rated Predictor in Transductive Setting

v

Transductive Setting: given unlabeled examples

U= {x1,...,xn} drawn from Dy, make predictions on U
+1 w.p. &

“Soft” prediction: P(x;) =< —1 w.p. (;
1 w.p.

v

v

A confidence-rated predictor P on U is described as n
3-tuples: {(&i,Civ i),y

Error: erry(P) = %27:1 1[h*(x;) = —1]& + 1[h*(x;) = +1]¢;
Abstention: absy(P) =157,

v

v

41



A Confidence-rated Predictor with Guaranteed Error

» Given set of unlabeled examples U
» Given uncertainty set of classifiers V, h* is known to be in V

» Error guarantee n: erry(P) <7

S

+

J__
+ 47
oL




A Confidence-rated Predictor with Guaranteed Error

» Algorithm CRP
> Input: uncertainty set V/, unlabeled set U, error guarantee n

» Construct a linear program:

subject to:
Vi, &+ ¢G+i=1
Viv EI'?CH > 0

1 n
VheV, - z_; 1[h(x;) = —1]¢ + 1[h(x;) = +1]¢ < n

» Confidence-rated predictor P returned is described as the
optimal solution of the LP {(&F, (¥, /),

42



CBAL: Algorithm

> Inputs: target excess error ¢, failure probability §.
» Initialize candidate set Vo = H.

43



CBAL: Algorithm

» For phase k =1 to kg = [log %]

» Candidate set Vj_1, target excess error €, = 2~k

43



CBAL: Algorithm
» For phase k =1 to kg = [log 5
» Candidate set Vj_1, target €XCess error € = 2~k
> Transduction: Draw a set of O(%) unlabeled examples Uy iid
k

from Dy.
Uk
o
© o
(o] fo) o
o o
o
o
o
o




CBAL: Algorithm
» For phase k =1 to kg = [log 5
» Candidate set Vj_1, target €XCess error € = 2~k
> Transduction: Draw a set of O(%) unlabeled examples Uy iid
k

from Dy.

» Selection: Run Algorithm CRP on Uy with error guarantee
O(ex) with uncertainty set Vj_1, get abstention probability
{7/}, normalize it to a distribution I's. Let ¢y = - > 7%,

Vk*l




CBAL: Algorithm

> For phase k =1 to ko = [log 1]:
» Candidate set Vj_1, target excess error €, = 2~k
» Transduction: Draw a set of é(%) unlabeled examples Uy iid
from Dy. ‘
» Selection: Run Algorithm CRP on Uy with error guarantee
O(ex) with uncertainty set Vi_1, get abstention probability
{7} v normalize it to a distribution . Let

Dk = o Doy
» Label Query:

Where to query?
Query on the examples drawn from distribution I

43



CBAL: Algorithm

» For phase k =1 to kg = [log 5

» Candidate set Vj_1, target excess error €x = 2~k

» Transduction: Draw a set of (N)(%) unlabeled examples Uy iid
from Dy.

» Selection: Run Algorithm CRP on Uy with error guarantee
O(ex) with uncertainty set Vi _1, get abstention probability
{7}, normalize it to a distribution I'y. Let
bi = ,,Lk Zfil

» Label Query:

How many labels to query?
Enough s.t. excess error of each hin V is at most €,

Adaptively draw enough examples to achieve error at most

O(g) on Tk

43



CBAL: Algorithm

> For phase k =1 to ko = [log 1]:

» Candidate set V_1, target excess error ¢, = 27X
> Transduction: Draw a set of O(%) unlabeled examples Uy iid
k

from Dy.

» Selection: Run Algorithm CRP on Uy with error guarantee
O(ex) with uncertainty set Vj_1, get abstention probability
{7} . normalize it to a distribution I'y. Let
Dk = o Doty

» Label Query
Sk < Adaptively sample just enough examples to get target
excess error O(g-) on I’ and query their labels.



CBAL: Algorithm

» For

phase k =1 to ko = [log 1]:

» Candidate set V_1, target excess error ¢, = 27X
> Transduction: Draw a set of O(%) unlabeled examples Uy iid
k

from Dy.

Selection: Run Algorithm CRP on U, with error guarantee
O(ex) with uncertainty set Vj_1, get abstention probability
{7} . normalize it to a distribution I'y. Let

Pk = o Diky

Label Query

Sk < Adaptively sample just enough examples to get target
excess error O(£-) on I’ and query their labels.

Prune Candidate Set:

43



CBAL: Algorithm

» For

phase k =1 to ko = [log 17:

» Candidate set V_1, target excess error ¢, = 27X
» Transduction: Draw a set of O(e%) unlabeled examples Uy iid
k

from Dy.

Selection: Run Algorithm CRP on Uy with error guarantee
O(ex) with uncertainty set Vj_1, get abstention probability
{7/}, normalize it to a distribution I'x. Let

¢k = n% Zfi1

Label Query:

Sk < Adaptively sample just enough examples to get target
excess error O(£-) on I’ and query their labels.

Prune Candidate Set:

How to do the pruning?
Remove from V) _; the classifiers that have a large
empirical error on Sy

43



CBAL: Algorithm

» For phase k =1 to kg = [log 5

» Candidate set Vj_1, target excess error €, = 2~k

» Transduction: Draw a set of f)(e%) unlabeled examples Uy iid
from Dy. ‘

» Selection: Run Algorithm CRP on Uy with error guarantee
O(ex) with uncertainty set Vj_1, get abstention probability
{7} v normalize it to a distribution . Let
Pk = 7 Doing

» Label Query
Sk < Adaptively sample just enough examples to get target
excess error O(g-) on Iy and query their labels.

» Prune Candidate Set:

Update candidate set

Vi {h € Vi1 terr(h,Sx) — min err(h,S¢) < O <¢) )}
k

heVi_1



CBAL: Algorithm

» For phase k =1 to kg = [log 5

» Candidate set Vj_1, target excess error €, = 2~k

» Transduction: Draw a set of f)(e%) unlabeled examples Uy iid
from Dy. ‘

» Selection: Run Algorithm CRP on Uy with error guarantee
O(ex) with uncertainty set Vj_1, get abstention probability
{7} v normalize it to a distribution . Let
Pk = 7 Doing

» Label Query
Sk < Adaptively sample just enough examples to get target
excess error O(g-) on Iy and query their labels.

» Prune Candidate Set:

Update candidate set

Vi {h € Vi1 terr(h,Sx) — min err(h,S¢) < O <¢) )}
k

heVi_1

» Return h < an arbitrary classifier in V.



CBAL: Statistical Consistency

Theorem
Suppose CBAL is run with parameters € and 6. Then with
probability 1 — §, the output h satisfies that

err(h) —err(h*) < e.

24



CBAL

: Label Complexity

®(V,n): the minimum abstention probability of a
confidence-rated predictor with uncertainty set V' with error
guarantee 1 under distribution Dy

(V,n) < ®(V,0) < Pp[DIS(V)]

Define confidence coefficient (n) := sup,~ SB(A".r).n)

-
o(n) < 6 and can sometimes be much smaller

45



CBAL: Shrinkage of Uncertainty Region

The size of the sampling region again depends on:

» radius of confidence set Vi

» confidence coefficient o

Noise Model

Size of Uncertainty Region

Realizable

O(o(ex) - k)

7-RCN

B-TNC

O((ex) - 15:277)

O(o(en) - ¢")

v-Agnostic

O(o(ex) - (v + €x))

Uncertainty Region Shrinkage in CBAL
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CBAL: Label Complexity

Theorem

Suppose CBAL is run with parameters € and §. With probability

1 — 0, the number of label requests is

Noise Model | Label Complexity
Realizable O(o(e)-d-Inl)

d I
n-RCN ?(0'(6) @y In¢)
B-TNC O(o(e)-d- GW_Z)
v-Agnostic | O(o(e) - d - (ije)2)
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Comparison

CBAL improves over DBAL by replacing 6 with o(¢€) in label

complexity
Noise Model | DBAL CBAL
Realizable | O(f-d-In?) O(o(e)-d-Ini)
n-RCN O w57 ne) | O(o(e) w5 - In <)
B-TNC OO -d-ep2) | O(o(e)-d-ex?
v-Agnostic | O(0-d- “HL) | O(a(e) - d - L)

Example: linear classification under uniform distribution
> o(e) = O(min(v/d, In 1)) [BBZ07, BL13], whereas
0 = O(Vd)

» CBAL improves over DBAL by a factor of O(v/d) in label
complexity
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Outline

Conclusions and Open Problems
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Conclusions and Open Problems

> DBAL: general, statistically consistent, relatively high label
complexity
» CBAL: general, statistically consistent, lower label complexity
» Open Problems:
> Better algorithms for statistically consistent active learning

» Computationaly efficiency
» New notion of soft confidence in active learning
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Thank you!
Questions?
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