
Part II: Active Learning in the PAC Setting

Chicheng Zhang

University of California San Diego

June 21, 2017

1

Outline

Introduction

Setting

Disagreement-based Active Learning(DBAL)
Algorithm in Realizable Case
Algorithm in Non-Realizable Case
Analysis

Confidence-based Active Learning(CBAL)

Conclusions and Open Problems

2

Membership Query vs PAC Model

Membership Query Model PAC Model

Probably Approximately Correct (PAC) active learning:

◮ Query labels only of given unlabeled examples

◮ Evaluation metric: classification error wrt distribution

3

Outline

Introduction

Setting

Disagreement-based Active Learning(DBAL)
Algorithm in Realizable Case
Algorithm in Non-Realizable Case
Analysis

Confidence-based Active Learning(CBAL)

Conclusions and Open Problems

4

PAC Model Setup

◮ Data distribution D over X × {−1, 1}
unlabeled distribution DX

◮ Classifier h : X → {−1, 1}
◮ Hypothesis class H

+ +

+

+ +

+

+ +
+

+

+

+

-

-

-

-

-

-

-

-
h

5

PAC Model: Evaluation

◮ Error: err(h) = PD [h(x) 6= y]

◮ Optimal classifier

h∗ = argminh∈H err(h)

◮ Excess error: err(h)− err(h∗)

+ +

+

+ +

+

+ +
+

+

+

+

-

-

-

-

-

-

-

-

h
∗

h

6

PAC Model: Evaluation

◮ Error: err(h) = PD [h(x) 6= y]

◮ Optimal classifier

h∗ = argminh∈H err(h)

◮ Excess error: err(h)− err(h∗)

+ +

+

+ +

+

+ +
+

+

+

+

-

-

-

-

-

-

-

-

h
∗

h

◮ PAC learning goal: get a classifier ĥ with excess error ǫ

6

PAC Model: Evaluation

◮ Error: err(h) = PD [h(x) 6= y]

◮ Optimal classifier

h∗ = argminh∈H err(h)

◮ Excess error: err(h)− err(h∗)

+ +

+

+ +

+

+ +
+

+

+

+

-

-

-

-

-

-

-

-

h
∗

h

◮ PAC learning goal: get a classifier ĥ with excess error ǫ with
probability 1− δ over the draw of random sample S

6

PAC Model: Evaluation

◮ Error: err(h) = PD [h(x) 6= y]

◮ Optimal classifier

h∗ = argminh∈H err(h)

◮ Excess error: err(h)− err(h∗)

+ +

+

+ +

+

+ +
+

+

+

+

-

-

-

-

-

-

-

-

h
∗

h

◮ PAC learning goal: get a classifier ĥ with excess error ǫ with
probability 1− δ over the draw of random sample S

◮ Empirical error in sample S :

err(h, S) =
1

|S |
∑

(x ,y)∈S

1{h(x) 6= y}

6

PAC Model: Evaluation

◮ Error: err(h) = PD [h(x) 6= y]

◮ Optimal classifier

h∗ = argminh∈H err(h)

◮ Excess error: err(h)− err(h∗)

+ +

+

+ +

+

+ +
+

+

+

+

-

-

-

-

-

-

-

-

h
∗

h

◮ PAC learning goal: get a classifier ĥ with excess error ǫ with
probability 1− δ over the draw of random sample S

◮ Empirical error in sample S :

err(h, S) =
1

|S |
∑

(x ,y)∈S

1{h(x) 6= y}

◮ Sample complexity n(ǫ, δ): sample size needed to achieve goal

6

PAC Learning: Noise Models

◮ Realizable: err(h∗) = 0
+ +

+

+ +

+

+ +
+

+

+

+

-

-

-

-

-

-

-

-

h
∗

Flipping Probability η(x) := P[Y 6= h∗(x)|x]

◮ η-Random classification noise (RCN):
η(x) = η ≤ 1

2

◮ β-Tsybakov noise condition (TNC):

P[η(x) ≥ 1
2 − t] ≤ O(t

1
β)

7

Agnostic Noise Model

◮ No assumption on label generation
process

◮ Optimal error rate err(h∗) = ν

+ +

+

+ +

+

+ +
+

+

+

+

-

-

-

-

-

-

-

-

8

PAC Learning: Noise Models

◮ Realizable: err(h∗) = 0 + +

+

+ +

+

+ +
+

+

+

+

-

-

-

-

-

-

-

-

h
∗

◮ η-Random classification noise (RCN):
η(x) = η ≤ 1

2

◮ β-Tsybakov noise condition (TNC):

P[η(x) ≥ 1
2 − t] ≤ O(t

1
β)

◮ ν-Agnostic:
optimal error err(h∗) = ν

+ +

+

+ +

+

+ +
+

+

+

+

-

-

-

-

-

-

-

-

9

Sample Complexity in PAC Passive Learning

◮ “Difficulty” of noise models:
Realizable < RCN < TNC < Agnostic

◮ d : VC dimension of H

Noise Model n(ǫ, δ)

Realizable Õ(d · 1
ǫ
)

η-RCN Õ(d
1−2η · 1ǫ)

β-TNC Õ(d · ǫ
1

1+β
−2

)

ν-Agnostic Õ(d · ν+ǫ
ǫ2

)

10

PAC Active Learning

Given:

◮ Access to unlabeled examples drawn from DX

◮ Abilities to query label oracle O
Goal:

◮ Get a classifier ĥ with excess error ǫ with probability 1− δ

Label Complexity m(ǫ, δ):

◮ How many label queries are needed to achieve this goal?

11

Special Challenges in PAC Active Learning

PAC active learning algorithms need to adapt to distribution since:

◮ Labels queries outside the support is not allowed

◮ Evaluation metric is classification error

Membership Query Model PAC Model

12

PAC Active Learning Algorithms

◮ Disagreement-based Active Learning(DBAL) [CAL94, BBL09,
DHM07, Han07, Han09, Kol10, HY12, Han14]..

◮ Confidence-based Active Learning(CBAL) [ZC14, BL13]

◮ Cluster-based Active Learning [DH08, UWBD13]

13

Outline

Introduction

Setting

Disagreement-based Active Learning(DBAL)
Algorithm in Realizable Case
Algorithm in Non-Realizable Case
Analysis

Confidence-based Active Learning(CBAL)

Conclusions and Open Problems

14

Outline

Introduction

Setting

Disagreement-based Active Learning(DBAL)
Algorithm in Realizable Case
Algorithm in Non-Realizable Case
Analysis

Confidence-based Active Learning(CBAL)

Conclusions and Open Problems

15

DBAL: Realizable Case [CAL94]

Main Idea:

◮ Maintain a set of candidate classifiers
V ⊆ H

◮ Query the label of an example x if x is
in the disagreement region of V

Definition
Given a set of classifiers V , the disagreement region of V ,

DIS(V) := {x : there exist h1, h2 in V , h1(x) 6= h2(x)}

16

Candidate Sets

◮ Realizable case: use version spaces as candidate sets

Definition
A version space V is the set of all classifiers h in hypothesis class
H that agree with labeled examples seen so far.

+

+

+

+

+

+

-

-

-

-

-
-

-

V

17

DBAL: Algorithm

Input: target excess error ǫ, failure probability δ. Initialize
candidate set V0 = H
For phases k = 1, 2, . . . , k0 = ⌈ln 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k

18

DBAL: Algorithm

Input: target excess error ǫ, failure probability δ. Initialize
candidate set V0 = H
For phases k = 1, 2, . . . , k0 = ⌈ln 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k

◮ Label Query:

18

DBAL: Algorithm

Input: target excess error ǫ, failure probability δ. Initialize
candidate set V0 = H
For phases k = 1, 2, . . . , k0 = ⌈ln 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k

◮ Label Query:

Where to query?

Labels of all x outside DIS(Vk−1) are predictable
Query on the examples in DIS(Vk−1)

18

DBAL: Algorithm

Input: target excess error ǫ, failure probability δ. Initialize
candidate set V0 = H
For phases k = 1, 2, . . . , k0 = ⌈ln 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k

◮ Label Query:

How many labels to query?

Enough s.t. excess error of each h in Vk is at most ǫk
Need ≈ Õ(

dP[DIS(Vk−1)]
ǫk

) labels from DIS(Vk−1)

18

DBAL: Algorithm

Input: target excess error ǫ, failure probability δ. Initialize
candidate set V0 = H
For phases k = 1, 2, . . . , k0 = ⌈ln 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k

◮ Label Query: Sk ← Sample Õ(d
P[DIS(Vk−1)]

ǫk
) examples in

DIS(Vk−1) and query for labels

18

DBAL: Algorithm

Input: target excess error ǫ, failure probability δ. Initialize
candidate set V0 = H
For phases k = 1, 2, . . . , k0 = ⌈ln 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k

◮ Label Query: Sk ← Sample Õ(d
P[DIS(Vk−1)]

ǫk
) examples in

DIS(Vk−1) and query for labels

◮ Prune Candidate Set:

18

DBAL: Algorithm

Input: target excess error ǫ, failure probability δ. Initialize
candidate set V0 = H
For phases k = 1, 2, . . . , k0 = ⌈ln 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k

◮ Label Query: Sk ← Sample Õ(d
P[DIS(Vk−1)]

ǫk
) examples in

DIS(Vk−1) and query for labels

◮ Prune Candidate Set:

How to do the pruning?

Remove from Vk−1 the classifiers that does not agree
with Sk

18

DBAL: Algorithm

Input: target excess error ǫ, failure probability δ. Initialize
candidate set V0 = H
For phases k = 1, 2, . . . , k0 = ⌈ln 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k

◮ Label Query: Sk ← Sample Õ(d
P[DIS(Vk−1)]

ǫk
) examples in

DIS(Vk−1) and query for labels

◮ Prune Candidate Set:

Vk ←
{

h ∈ Vk−1 : h agrees with all (x , y) ∈ Sk
}

18

DBAL: Algorithm

Input: target excess error ǫ, failure probability δ. Initialize
candidate set V0 = H
For phases k = 1, 2, . . . , k0 = ⌈ln 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k

◮ Label Query: Sk ← Sample Õ(d
P[DIS(Vk−1)]

ǫk
) examples in

DIS(Vk−1) and query for labels

◮ Prune Candidate Set:

Vk ←
{

h ∈ Vk−1 : h agrees with all (x , y) ∈ Sk
}

Return ĥ← an arbitrary classifier from Vk0 .

18

Outline

Introduction

Setting

Disagreement-based Active Learning(DBAL)
Algorithm in Realizable Case
Algorithm in Non-Realizable Case
Analysis

Confidence-based Active Learning(CBAL)

Conclusions and Open Problems

19

PAC Learning: Noise Models

◮ Realizable: err(h∗) = 0 + +

+

+ +

+

+ +
+

+

+

+

-

-

-

-

-

-

-

-

h
∗

◮ η-Random classification noise (RCN):
η(x) = η ≤ 1

2

◮ β-Tsybakov noise condition (TNC):

P[η(x) ≥ 1
2 − t] ≤ O(t

1
β)

◮ Agnostic:
optimal error err(h∗) = ν

+ +

+

+ +

+

+ +
+

+

+

+

-

-

-

-

-

-

-

-

20

DBAL: Non-Realizable Case

Realizable Case: Non-Realizable Case:

+ +

+

+ +

+

+ +
+

+

+

+

-

-

-

-

-

-

-

-

h
∗

+ +

+

+ +

+

+ +
+

+

+

+

-

-

-

-

-

-

-

-

There is some h∗ in H such that
h∗(x) = y , for all (x , y) ∼ D

h∗ is the classifier in H with min
error

Use version space as set of
candidate classifiers

Use (1− δ) confidence set for h∗

as candidate classifiers
21

Construction of Confidence Sets

◮ Generalization bounds [VC71]: w.p.
1− δ over the draw of a sample S of
size m iid from D, for all h in H,

| err(h, S)− err(h)| ≤ Õ

(

√

d

m

)

◮ Choose: all h with

err(h, S) ≤ min
h′∈H

err(h′, S)+Õ

(

√

d

m

)

◮ More careful construction needed in
active learning

+

+

+

+

+

+

-

-

-

-

-
-

-

-

+

V

+

-
-

22

DBAL: Non-Realizable Case

Realizable Case: Non-Realizable Case:

There is some h∗ in H such that
h∗(x) = y , for all (x , y) ∼ D

h∗ is the classifier in H with min
error

Use version space as set of
candidate classifiers

Use (1− δ) confidence set for h∗

as candidate classifiers

At phase k, draw

Õ(d
P[DIS(Vk−1)]

ǫk
) examples

At phase k, adaptively draw

enough examples for excess

error ǫk
P[DIS(Vk−1)]

in

disagreement region

23

DBAL: Algorithm in Non-Realizable Case

Input: target excess error ǫ, failure probability δ.
Initialize candidate set V0 = H
For phases k = 1, 2, . . . , k0 = ⌈ln 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k .

24

DBAL: Algorithm in Non-Realizable Case

Input: target excess error ǫ, failure probability δ.
Initialize candidate set V0 = H
For phases k = 1, 2, . . . , k0 = ⌈ln 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k .

◮ Label Query:

24

DBAL: Algorithm in Non-Realizable Case

Input: target excess error ǫ, failure probability δ.
Initialize candidate set V0 = H
For phases k = 1, 2, . . . , k0 = ⌈ln 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k .

◮ Label Query:

Where to query?

Query on the examples in DIS(Vk−1)

24

DBAL: Algorithm in Non-Realizable Case

Input: target excess error ǫ, failure probability δ.
Initialize candidate set V0 = H
For phases k = 1, 2, . . . , k0 = ⌈ln 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k .

◮ Label Query:

How many labels to query?

Enough s.t. excess error of each h in Vk is at most ǫk
Adaptively draw enough examples to achieve error at
most ǫk

P[DIS(Vk−1)]
on DIS(Vk−1)

24

DBAL: Algorithm in Non-Realizable Case

Input: target excess error ǫ, failure probability δ.
Initialize candidate set V0 = H
For phases k = 1, 2, . . . , k0 = ⌈ln 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k .

◮ Label Query:

Sk ← Adaptively sample just enough examples on DIS(Vk−1)
and query for their labels to get target excess error ǫk

P[DIS(Vk−1)]

24

DBAL: Algorithm in Non-Realizable Case

Input: target excess error ǫ, failure probability δ.
Initialize candidate set V0 = H
For phases k = 1, 2, . . . , k0 = ⌈ln 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k .

◮ Label Query:

Sk ← Adaptively sample just enough examples on DIS(Vk−1)
and query for their labels to get target excess error ǫk

P[DIS(Vk−1)]

◮ Prune Candidate Set:

24

DBAL: Algorithm in Non-Realizable Case

Input: target excess error ǫ, failure probability δ.
Initialize candidate set V0 = H
For phases k = 1, 2, . . . , k0 = ⌈ln 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k .

◮ Label Query:

Sk ← Adaptively sample just enough examples on DIS(Vk−1)
and query for their labels to get target excess error ǫk

P[DIS(Vk−1)]

◮ Prune Candidate Set:

How to do the pruning?

Remove from Vk−1 the classifiers that have a large
empirical error on Sk

24

DBAL: Algorithm in Non-Realizable Case

Input: target excess error ǫ, failure probability δ.
Initialize candidate set V0 = H
For phases k = 1, 2, . . . , k0 = ⌈ln 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k .

◮ Label Query:

Sk ← Adaptively sample just enough examples on DIS(Vk−1)
and query for their labels to get target excess error ǫk

P[DIS(Vk−1)]

◮ Prune Candidate Set:

Vk ←
{

h ∈ Vk−1 : err(h, Sk)− min
h∈Vk−1

err(h, Sk) ≤ O

(

ǫk

P[DIS(Vk−1)]

)

}

24

DBAL: Algorithm in Non-Realizable Case

Input: target excess error ǫ, failure probability δ.
Initialize candidate set V0 = H
For phases k = 1, 2, . . . , k0 = ⌈ln 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k .

◮ Label Query:

Sk ← Adaptively sample just enough examples on DIS(Vk−1)
and query for their labels to get target excess error ǫk

P[DIS(Vk−1)]

◮ Prune Candidate Set:

Vk ←
{

h ∈ Vk−1 : err(h, Sk)− min
h∈Vk−1

err(h, Sk) ≤ O

(

ǫk

P[DIS(Vk−1)]

)

}

Return ĥ← an arbitrary classifier from Vk0 .

24

DBAL: Algorithm in Non-Realizable Case

Input: target excess error ǫ, failure probability δ.
Initialize candidate set V0 = H
For phases k = 1, 2, . . . , k0 = ⌈ln 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k .

◮ Label Query:

Sk ← Adaptively sample just enough examples on DIS(Vk−1)
and query for their labels to get target excess error ǫk

P[DIS(Vk−1)]

◮ Prune Candidate Set:

Vk ←
{

h ∈ Vk−1 : err(h, Sk)− min
h∈Vk−1

err(h, Sk) ≤ O

(

ǫk

P[DIS(Vk−1)]

)

}

Return ĥ← an arbitrary classifier from Vk0 .
Computationally efficient implementation
in [DHM07, BDL09, Han09, BHLZ10, HAH+15]...

24

Outline

Introduction

Setting

Disagreement-based Active Learning(DBAL)
Algorithm in Realizable Case
Algorithm in Non-Realizable Case
Analysis

Confidence-based Active Learning(CBAL)

Conclusions and Open Problems

25

Statistical Consistency

Theorem
Suppose DBAL is run with parameters ǫ and δ. Then with

probability 1− δ, the output ĥ satisfies that

err(ĥ)− err(h∗) ≤ ǫ.

Main Idea:

◮ After phase k , all classifier in Vk have excess error ≤ ǫk

◮ Specifically, after phase k0, all classifiers in Vk0 have excess
error ≤ ǫk0 ≤ ǫ

26

Label Complexity

Key factor: Shrinkage of P[DIS(Vk)]
Depends on:

◮ Shrinkage of the Vk ’s radius

◮ Ratio of P[DIS(Vk)] to the radius of Vk

27

Label Complexity: Definitions

◮ Disagreement metric:
ρ(h, h′) = PD [h(x) 6= h′(x)]

h h
′

r
ρ(h, h′)

◮ Disagreement ball:
B(h, r) = {h′ ∈ H : ρ(h, h′) ≤ r}

h

B(h, r)

28

Factor 1: Shrinkage of the Vk ’s Radius

Harder noise condition ⇒ Slower shrinkage

Noise Model radius(Vk)

Realizable Õ(ǫk)

η-RCN Õ(ǫk
1−2η)

β-TNC Õ(ǫ
1

1+β

k)

ν-Agnostic Õ(ν + ǫk)

Version Space Radius Shrinkage under Noise Models

29

Factor 2: Disagreement Coefficient

Relating P[DIS(Vk))] to Vk ’s radius

Definition ([Han07, Ale87, RR11])

Given a concept class H, data distribution D, the disagreement
coefficient with respect to H and D is defined as:

θ = sup
h∈H,r>0

P[DIS(B(h, r))]

r

Corollary

P[DIS(V)] ≤ θ · radius(V).

30

Shrinkage of Disagreement Region

Relationship P[DIS(Vk)] ≤ θ · radius(Vk) implies:

Noise Model P[DIS(Vk)]

Realizable Õ(θ · ǫk)
η-RCN Õ(θ · ǫk

1−2η)

β-TNC Õ(θ · ǫ
1

1+β)

ν-Agnostic Õ(θ · (ν + ǫk))

Disagreement Region Shrinkage under Noise Models

31

Label Complexity Analysis: Main Idea

Realizable Case

◮ Label complexity in phase k : mk = Õ(d
P[DIS(Vk−1)]

ǫk
) = Õ(dθ)

◮ Total label complexity:
∑k0

k=1mk = Õ(dθ ln 1
ǫ
)

The analysis can be extended to non-realizable cases
straightforwardly.

32

Label Complexity

Theorem
Suppose DBAL is run with parameters ǫ and δ. Then with

probability 1− δ, the number of label requests is:

Noise Model Label Complexity

Realizable Õ(θ · d · ln 1
ǫ
)

η-RCN Õ(θ · d
(1−2η)2

· ln 1
ǫ
)

β-TNC Õ(θ · d · ǫ
2

1+β
−2

)

ν-Agnostic Õ(θ · d · (ν+ǫ)2

ǫ2
)

33

Comparison to Passive Learning

DBAL improves over passive learning if θ is finite

Noise Model Improvement Factor

Realizable Õ(θǫ)

η-RCN Õ(θǫ
1−2η)

β-TNC Õ(θǫ
1

1+β)

ν-Agnostic Õ(θ(ν + ǫ))

34

Disagreement Coefficient: Examples

Thresholds

◮ DX : Uniform([0, 1])

◮ H: threshold classifiers
ht(x) = I (x ≥ t), t ∈ [0, 1]

◮ θ ≤ 2

h

r r

DIS(B(h, r))

Linear Classification

◮ DX : uniform over unit sphere

◮ H: linear classifiers through the
origin hw = sign(w · x), w ∈ R

d

◮ θ = O(
√
d)

B(h, r)

DIS(B(h, r))

h

35

Outline

Introduction

Setting

Disagreement-based Active Learning(DBAL)
Algorithm in Realizable Case
Algorithm in Non-Realizable Case
Analysis

Confidence-based Active Learning(CBAL)

Conclusions and Open Problems

36

Confidence-based Active Learning(CBAL)

◮ The label query policy of DBAL is too conservative
◮ perform label query as long as an example is in disagreement

region

◮ Idea of CBAL: select a subset of disagreement region using
confidence-rated predictors

37

Confidence-based Active Learning(CBAL)

◮ Confidence-rated predictor(CRP): classifiers that can say
“Don’t know” (⊥)

Output of a binary classifier Output of a CRP

◮ Main idea of CBAL:
◮ Maintain a confidence-rated predictor P
◮ Use P to make label query decision: Query the label of x if P

says “Don’t know” on x

38

CBAL: Algorithmic Framework
◮ Inputs: target excess error ǫ, failure probability δ.
◮ Initialization: V0 ← H.
◮ For phase k = 1 to k0 = ⌈log 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k .
◮ Transduction: Draw a set of Õ(d

ǫ2
k

) unlabeled examples Uk iid

from DX .
◮ Selection: Run Algorithm CRP on Uk with error guarantee

O(ǫk) with uncertainty set Vk−1, get abstention probability
{γi}nki=1, normalize it to a distribution Γk . Let
φk = absUk

(P) = 1
nk

∑nk
i=1 γi .

◮ Label Query: Sk ← Adaptively sample just enough examples
to get target excess error O(ǫk

φk
) on Γk and query their labels.

◮ Prune Candidate Set: Update candidate set

Vk ←
{

h ∈ Vk−1 : err(h, Sk)− min
h∈Vk−1

err(h, Sk) ≤ O

(

ǫk

φk

)

}

◮ Return ĥ← an arbitrary classifier in Vk0 .

39

Confidence-rated Prediction [EYW10]

◮ Given x , P(x) ∈ {−1,+1,⊥}

40

Confidence-rated Prediction [EYW10]

◮ Given x , P(x) ∈ {−1,+1,⊥}

+

+

+

⊥

+

−

−
−⊥⊥
⊥
⊥
⊥

40

Confidence-rated Prediction [EYW10]

◮ Given x , P(x) ∈ {−1,+1,⊥}
◮ Error: errD(P) = PD [P(x) 6= h∗(x),P(x) 6=⊥]

+

+

+

⊥

+

−

−
−⊥⊥
⊥
⊥
⊥

h
∗

40

Confidence-rated Prediction [EYW10]

◮ Given x , P(x) ∈ {−1,+1,⊥}
◮ Error: errD(P) = PD [P(x) 6= h∗(x),P(x) 6=⊥]
◮ Abstention: absD(P) = PD [P(x) =⊥]

+

+

+

⊥

+

−

−
−⊥⊥
⊥
⊥
⊥

40

Confidence-rated Predictor in Transductive Setting

◮ Transductive Setting: given unlabeled examples
U = {x1, . . . , xn} drawn from DX , make predictions on U

◮ “Soft” prediction: P(xi) =

+1 w.p. ξi

−1 w.p. ζi

⊥ w.p. γi

◮ A confidence-rated predictor P on U is described as n
3-tuples: {(ξi , ζi , γi)}ni=1

◮ Error: errU(P) = 1
n

∑n
i=1 1[h

∗(xi) = −1]ξi + 1[h∗(xi) = +1]ζi
◮ Abstention: absU(P) = 1

n

∑n
i=1 γi

41

A Confidence-rated Predictor with Guaranteed Error

◮ Given set of unlabeled examples U

◮ Given uncertainty set of classifiers V , h∗ is known to be in V

◮ Error guarantee η: errU(P) ≤ η

+

+

+

+

+

⊥

-

-

-

-

-
-

-

⊥

⊥

V

⊥
⊥
-

42

A Confidence-rated Predictor with Guaranteed Error

◮ Algorithm CRP

◮ Input: uncertainty set V , unlabeled set U, error guarantee η

◮ Construct a linear program:

min
1

n

n
∑

i=1

γi

subject to:

∀i , ξi + ζi + γi = 1

∀i , ξi , ζi , γi ≥ 0

∀h ∈ V ,
1

n

n
∑

i=1

1[h(xi) = −1]ξi + 1[h(xi) = +1]ζi ≤ η

◮ Confidence-rated predictor P returned is described as the
optimal solution of the LP {(ξ∗i , ζ∗i , γ∗i)}ni=1

42

CBAL: Algorithm

◮ Inputs: target excess error ǫ, failure probability δ.

◮ Initialize candidate set V0 = H.

43

CBAL: Algorithm

◮ For phase k = 1 to k0 = ⌈log 1
ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k

43

CBAL: Algorithm
◮ For phase k = 1 to k0 = ⌈log 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k

◮ Transduction: Draw a set of Õ(d
ǫ2
k

) unlabeled examples Uk iid

from DX .
Uk

43

CBAL: Algorithm
◮ For phase k = 1 to k0 = ⌈log 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k

◮ Transduction: Draw a set of Õ(d
ǫ2
k

) unlabeled examples Uk iid

from DX .
◮ Selection: Run Algorithm CRP on Uk with error guarantee

O(ǫk) with uncertainty set Vk−1, get abstention probability
{γi}nki=1, normalize it to a distribution Γk . Let φk = 1

nk

∑nk
i=1 γi .

Vk−1

{γi}nki=1

43

CBAL: Algorithm

◮ For phase k = 1 to k0 = ⌈log 1
ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k

◮ Transduction: Draw a set of Õ(d
ǫ2
k

) unlabeled examples Uk iid

from DX .
◮ Selection: Run Algorithm CRP on Uk with error guarantee

O(ǫk) with uncertainty set Vk−1, get abstention probability
{γi}nki=1, normalize it to a distribution Γk . Let
φk = 1

nk

∑nk
i=1 γi .

◮ Label Query:

Where to query?

Query on the examples drawn from distribution Γk

43

CBAL: Algorithm

◮ For phase k = 1 to k0 = ⌈log 1
ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k

◮ Transduction: Draw a set of Õ(d
ǫ2
k

) unlabeled examples Uk iid

from DX .
◮ Selection: Run Algorithm CRP on Uk with error guarantee

O(ǫk) with uncertainty set Vk−1, get abstention probability
{γi}nki=1, normalize it to a distribution Γk . Let
φk = 1

nk

∑nk
i=1 γi .

◮ Label Query:

How many labels to query?

Enough s.t. excess error of each h in Vk is at most ǫk
Adaptively draw enough examples to achieve error at most
O(ǫk

φk
) on Γk

43

CBAL: Algorithm

◮ For phase k = 1 to k0 = ⌈log 1
ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k

◮ Transduction: Draw a set of Õ(d
ǫ2
k

) unlabeled examples Uk iid

from DX .
◮ Selection: Run Algorithm CRP on Uk with error guarantee

O(ǫk) with uncertainty set Vk−1, get abstention probability
{γi}nki=1, normalize it to a distribution Γk . Let
φk = 1

nk

∑nk
i=1 γi .

◮ Label Query:
Sk ← Adaptively sample just enough examples to get target
excess error O(ǫk

φk
) on Γk and query their labels.

43

CBAL: Algorithm

◮ For phase k = 1 to k0 = ⌈log 1
ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k

◮ Transduction: Draw a set of Õ(d
ǫ2
k

) unlabeled examples Uk iid

from DX .
◮ Selection: Run Algorithm CRP on Uk with error guarantee

O(ǫk) with uncertainty set Vk−1, get abstention probability
{γi}nki=1, normalize it to a distribution Γk . Let
φk = 1

nk

∑nk
i=1 γi .

◮ Label Query:
Sk ← Adaptively sample just enough examples to get target
excess error O(ǫk

φk
) on Γk and query their labels.

◮ Prune Candidate Set:

43

CBAL: Algorithm

◮ For phase k = 1 to k0 = ⌈log 1
ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k

◮ Transduction: Draw a set of Õ(d
ǫ2
k

) unlabeled examples Uk iid

from DX .
◮ Selection: Run Algorithm CRP on Uk with error guarantee

O(ǫk) with uncertainty set Vk−1, get abstention probability
{γi}nki=1, normalize it to a distribution Γk . Let
φk = 1

nk

∑nk
i=1 γi .

◮ Label Query:
Sk ← Adaptively sample just enough examples to get target
excess error O(ǫk

φk
) on Γk and query their labels.

◮ Prune Candidate Set:

How to do the pruning?

Remove from Vk−1 the classifiers that have a large
empirical error on Sk

43

CBAL: Algorithm
◮ For phase k = 1 to k0 = ⌈log 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k

◮ Transduction: Draw a set of Õ(d
ǫ2
k

) unlabeled examples Uk iid

from DX .
◮ Selection: Run Algorithm CRP on Uk with error guarantee

O(ǫk) with uncertainty set Vk−1, get abstention probability
{γi}nki=1, normalize it to a distribution Γk . Let
φk = 1

nk

∑nk
i=1 γi .

◮ Label Query:
Sk ← Adaptively sample just enough examples to get target
excess error O(ǫk

φk
) on Γk and query their labels.

◮ Prune Candidate Set:
Update candidate set

Vk ←
{

h ∈ Vk−1 : err(h, Sk)− min
h∈Vk−1

err(h, Sk) ≤ O

(

ǫk

φk

)

}

43

CBAL: Algorithm
◮ For phase k = 1 to k0 = ⌈log 1

ǫ
⌉:

◮ Candidate set Vk−1, target excess error ǫk = 2−k

◮ Transduction: Draw a set of Õ(d
ǫ2
k

) unlabeled examples Uk iid

from DX .
◮ Selection: Run Algorithm CRP on Uk with error guarantee

O(ǫk) with uncertainty set Vk−1, get abstention probability
{γi}nki=1, normalize it to a distribution Γk . Let
φk = 1

nk

∑nk
i=1 γi .

◮ Label Query:
Sk ← Adaptively sample just enough examples to get target
excess error O(ǫk

φk
) on Γk and query their labels.

◮ Prune Candidate Set:
Update candidate set

Vk ←
{

h ∈ Vk−1 : err(h, Sk)− min
h∈Vk−1

err(h, Sk) ≤ O

(

ǫk

φk

)

}

◮ Return ĥ← an arbitrary classifier in Vk0 .

43

CBAL: Statistical Consistency

Theorem
Suppose CBAL is run with parameters ǫ and δ. Then with

probability 1− δ, the output ĥ satisfies that

err(ĥ)− err(h∗) ≤ ǫ.

44

CBAL: Label Complexity

◮ Φ(V , η): the minimum abstention probability of a
confidence-rated predictor with uncertainty set V with error
guarantee η under distribution DX

◮ Φ(V , η) ≤ Φ(V , 0) ≤ PD [DIS(V)]

◮ Define confidence coefficient σ(η) := supr>0
Φ(B(h∗,r),η)

r

◮ σ(η) ≤ θ and can sometimes be much smaller

45

CBAL: Shrinkage of Uncertainty Region

The size of the sampling region again depends on:

◮ radius of confidence set Vk

◮ confidence coefficient σ

Noise Model Size of Uncertainty Region

Realizable Õ(σ(ǫk) · ǫk)
η-RCN Õ(σ(ǫk) · ǫk

1−2η)

β-TNC Õ(σ(ǫk) · ǫ
1

1+β

k)

ν-Agnostic Õ(σ(ǫk) · (ν + ǫk))

Uncertainty Region Shrinkage in CBAL

46

CBAL: Label Complexity

Theorem
Suppose CBAL is run with parameters ǫ and δ. With probability

1− δ, the number of label requests is

Noise Model Label Complexity

Realizable Õ(σ(ǫ) · d · ln 1
ǫ
)

η-RCN Õ(σ(ǫ) · d
(1−2η)2

· ln 1
ǫ
)

β-TNC Õ(σ(ǫ) · d · ǫ
2

1+β
−2

)

ν-Agnostic Õ(σ(ǫ) · d · (ν+ǫ)2

ǫ2
)

47

Comparison

CBAL improves over DBAL by replacing θ with σ(ǫ) in label
complexity

Noise Model DBAL CBAL

Realizable Õ(θ · d · ln 1
ǫ
) Õ(σ(ǫ) · d · ln 1

ǫ
)

η-RCN Õ(θ · d
(1−2η)2

· ln 1
ǫ
) Õ(σ(ǫ) · d

(1−2η)2
· ln 1

ǫ
)

β-TNC Õ(θ · d · ǫ
2

1+β
−2

) Õ(σ(ǫ) · d · ǫ 2
κ
−2)

ν-Agnostic Õ(θ · d · (ν+ǫ)2

ǫ2
) Õ(σ(ǫ) · d · (ν+ǫ)2

ǫ2
)

Example: linear classification under uniform distribution

◮ σ(ǫ) = O(min(
√
d , ln 1

ǫ
)) [BBZ07, BL13], whereas

θ = O(
√
d)

◮ CBAL improves over DBAL by a factor of Õ(
√
d) in label

complexity

48

Outline

Introduction

Setting

Disagreement-based Active Learning(DBAL)
Algorithm in Realizable Case
Algorithm in Non-Realizable Case
Analysis

Confidence-based Active Learning(CBAL)

Conclusions and Open Problems

49

Conclusions and Open Problems

◮ DBAL: general, statistically consistent, relatively high label
complexity

◮ CBAL: general, statistically consistent, lower label complexity

◮ Open Problems:
◮ Better algorithms for statistically consistent active learning
◮ Computationaly efficiency
◮ New notion of soft confidence in active learning

50

Thank you!
Questions?

51

References I

Kenneth S Alexander.
Rates of growth and sample moduli for weighted empirical
processes indexed by sets.
Probability Theory and Related Fields, 75(3):379–423, 1987.

M.-F. Balcan, A. Beygelzimer, and J. Langford.
Agnostic active learning.
J. Comput. Syst. Sci., 75(1):78–89, 2009.

M.-F. Balcan, A. Z. Broder, and T. Zhang.
Margin based active learning.
In COLT, 2007.

A. Beygelzimer, S. Dasgupta, and J. Langford.
Importance weighted active learning.
In ICML, 2009.

52

References II

A. Beygelzimer, D. Hsu, J. Langford, and T. Zhang.
Agnostic active learning without constraints.
In NIPS, 2010.

M.-F. Balcan and P. M. Long.
Active and passive learning of linear separators under
log-concave distributions.
In COLT, 2013.

D. A. Cohn, L. E. Atlas, and R. E. Ladner.
Improving generalization with active learning.
Machine Learning, 15(2), 1994.

S. Dasgupta and D. Hsu.
Hierarchical sampling for active learning.
In ICML, 2008.

53

References III

S. Dasgupta, D. Hsu, and C. Monteleoni.
A general agnostic active learning algorithm.
In NIPS, 2007.

R. El-Yaniv and Y. Wiener.
On the foundations of noise-free selective classification.
JMLR, 2010.

Tzu-Kuo Huang, Alekh Agarwal, Daniel J Hsu, John Langford,
and Robert E Schapire.
Efficient and parsimonious agnostic active learning.
In Advances in Neural Information Processing Systems, pages
2755–2763, 2015.

S. Hanneke.
A bound on the label complexity of agnostic active learning.
In ICML, 2007.

54

References IV

S. Hanneke.
Theoretical Foundations of Active Learning.
PhD thesis, Carnegie Mellon University, 2009.

Steve Hanneke.
Theory of disagreement-based active learning.
Foundations and Trends R© in Machine Learning,
7(2-3):131–309, 2014.

S. Hanneke and L. Yang.
Surrogate losses in passive and active learning.
CoRR, abs/1207.3772, 2012.

V. Koltchinskii.
Rademacher complexities and bounding the excess risk in
active learning.
JMLR, 2010.

55

References V

Maxim Raginsky and Alexander Rakhlin.
Lower bounds for passive and active learning.
In Advances in Neural Information Processing Systems, pages
1026–1034, 2011.

R. Urner, S. Wulff, and S. Ben-David.
Plal: Cluster-based active learning.
In COLT, 2013.

V. N. Vapnik and A. Ya. Chervonenkis.
On the uniform convergence of relative frequencies of events
to their probabilities.
Theory of Probability and its Applications, 16(2):264–280,
1971.

C. Zhang and K. Chaudhuri.
Beyond disagreement-based agnostic active learning.
In NIPS, 2014.

56

	Introduction
	Setting
	Disagreement-based Active Learning(DBAL)
	Algorithm in Realizable Case
	Algorithm in Non-Realizable Case
	Analysis

	Confidence-based Active Learning(CBAL)
	Conclusions and Open Problems

