Part II: Active Learning in the PAC Setting

Chicheng Zhang

University of California San Diego

June 21, 2017

Outline

Introduction

Setting

Disagreement-based Active Learning(DBAL) Algorithm in Realizable Case Algorithm in Non-Realizable Case Analysis

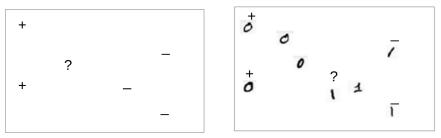
Confidence-based Active Learning(CBAL)

Conclusions and Open Problems

Membership Query vs PAC Model

Membership Query Model

PAC Model



Probably Approximately Correct (PAC) active learning:

- Query labels only of given unlabeled examples
- Evaluation metric: classification error wrt distribution

Outline

Introduction

Setting

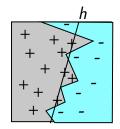
Disagreement-based Active Learning(DBAL) Algorithm in Realizable Case Algorithm in Non-Realizable Case Analysis

Confidence-based Active Learning(CBAL)

Conclusions and Open Problems

PAC Model Setup

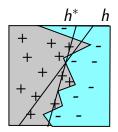
- ► Data distribution D over X × {−1,1} unlabeled distribution D_X
- Classifier $h: \mathcal{X} \to \{-1, 1\}$
- Hypothesis class H



- Error: $\operatorname{err}(h) = \mathbb{P}_D[h(x) \neq y]$
- Optimal classifier

 $h^* = \operatorname{argmin}_{h \in \mathcal{H}} \operatorname{err}(h)$

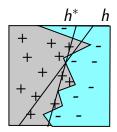
► Excess error: err(h) - err(h^{*})



- Error: $\operatorname{err}(h) = \mathbb{P}_D[h(x) \neq y]$
- Optimal classifier

 $h^* = \operatorname{argmin}_{h \in \mathcal{H}} \operatorname{err}(h)$

► Excess error: err(h) - err(h^{*})

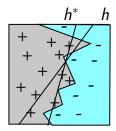


• PAC learning goal: get a classifier \hat{h} with excess error ϵ

- Error: $\operatorname{err}(h) = \mathbb{P}_D[h(x) \neq y]$
- Optimal classifier

$$h^* = \operatorname{argmin}_{h \in \mathcal{H}} \operatorname{err}(h)$$

Excess error: err(h) - err(h^{*})



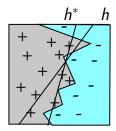
▶ PAC learning goal: get a classifier \hat{h} with excess error ϵ with probability $1 - \delta$ over the draw of random sample *S*

• Error: $\operatorname{err}(h) = \mathbb{P}_D[h(x) \neq y]$

Optimal classifier

$$h^* = \operatorname{argmin}_{h \in \mathcal{H}} \operatorname{err}(h)$$

Excess error: err(h) - err(h^{*})



▶ PAC learning goal: get a classifier \hat{h} with excess error ϵ with probability $1 - \delta$ over the draw of random sample S

• Empirical error in sample S:

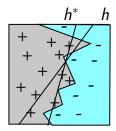
$$\operatorname{err}(h,S) = \frac{1}{|S|} \sum_{(x,y)\in S} \mathbb{1}\{h(x) \neq y\}$$

• Error: $\operatorname{err}(h) = \mathbb{P}_D[h(x) \neq y]$

Optimal classifier

$$h^* = \operatorname{argmin}_{h \in \mathcal{H}} \operatorname{err}(h)$$

Excess error: err(h) - err(h*)



▶ PAC learning goal: get a classifier \hat{h} with excess error ϵ with probability $1 - \delta$ over the draw of random sample S

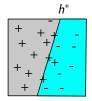
• Empirical error in sample S:

$$err(h, S) = \frac{1}{|S|} \sum_{(x,y)\in S} \mathbb{1}\{h(x) \neq y\}$$

Sample complexity $n(\epsilon, \delta)$: sample size needed to achieve goal

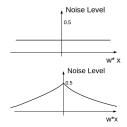
PAC Learning: Noise Models

• Realizable: $err(h^*) = 0$



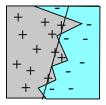
Flipping Probability $\eta(x) := \mathbb{P}[Y \neq h^*(x)|x]$

- η-Random classification noise (RCN):
 η(x) = η ≤ ½
- ► β -Tsybakov noise condition (TNC): $\mathbb{P}[\eta(x) \ge \frac{1}{2} - t] \le O(t^{\frac{1}{\beta}})$



Agnostic Noise Model

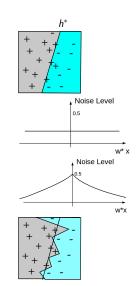
- No assumption on label generation process
- Optimal error rate $err(h^*) = \nu$



PAC Learning: Noise Models

• Realizable: $err(h^*) = 0$

- ▶ η -Random classification noise (RCN): $\eta(x) = \eta \leq \frac{1}{2}$
- ▶ β -Tsybakov noise condition (TNC): $\mathbb{P}[\eta(x) \ge \frac{1}{2} - t] \le O(t^{\frac{1}{\beta}})$
- ν-Agnostic:
 optimal error err(h*) = ν



Sample Complexity in PAC Passive Learning

 "Difficulty" of noise models: Realizable < RCN < TNC < Agnostic

• *d*: VC dimension of \mathcal{H}

Noise Model	$n(\epsilon, \delta)$
Realizable	$ ilde{O}(d \cdot rac{1}{\epsilon})$
η -RCN	$ ilde{O}(rac{d}{1-2\eta}\cdotrac{1}{\epsilon})$
β -TNC	$\tilde{O}(d \cdot \epsilon^{rac{1}{1+eta}-2})$
u-Agnostic	$ ilde{O}(d \cdot rac{ u+\epsilon}{\epsilon^2})$

PAC Active Learning

Given:

- Access to **unlabeled examples** drawn from D_X
- Abilities to query label oracle $\mathcal O$

Goal:

• Get a classifier \hat{h} with excess error ϵ with probability $1 - \delta$ Label Complexity $m(\epsilon, \delta)$:

How many label queries are needed to achieve this goal?

Special Challenges in PAC Active Learning

PAC active learning algorithms need to adapt to distribution since:

- Labels queries outside the support is not allowed
- Evaluation metric is classification error

PAC Active Learning Algorithms

- Disagreement-based Active Learning(DBAL) [CAL94, BBL09, DHM07, Han07, Han09, Kol10, HY12, Han14]..
- Confidence-based Active Learning(CBAL) [ZC14, BL13]
- Cluster-based Active Learning [DH08, UWBD13]

Outline

Introduction

Setting

Disagreement-based Active Learning(DBAL) Algorithm in Realizable Case Algorithm in Non-Realizable Case Analysis

Confidence-based Active Learning(CBAL)

Conclusions and Open Problems

Outline

Introduction

Setting

Disagreement-based Active Learning(DBAL) Algorithm in Realizable Case Algorithm in Non-Realizable Case Analysis

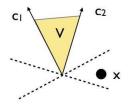
Confidence-based Active Learning(CBAL)

Conclusions and Open Problems

DBAL: Realizable Case [CAL94]

Main Idea:

- Maintain a set of candidate classifiers $V \subseteq \mathcal{H}$
- Query the label of an example x if x is in the disagreement region of V



Definition

Given a set of classifiers V, the disagreement region of V,

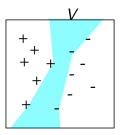
 $\mathsf{DIS}(V) := \{x : \text{there exist } h_1, h_2 \text{ in } V, h_1(x) \neq h_2(x)\}$

Candidate Sets

Realizable case: use version spaces as candidate sets

Definition

A version space V is the set of all classifiers h in hypothesis class \mathcal{H} that agree with labeled examples seen so far.



Input: target excess error ϵ , failure probability δ . Initialize candidate set $V_0 = \mathcal{H}$ For phases $k = 1, 2, \dots, k_0 = \lceil \ln \frac{1}{\epsilon} \rceil$:

• Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$

Input: target excess error ϵ , failure probability δ . Initialize candidate set $V_0 = \mathcal{H}$ For phases $k = 1, 2, ..., k_0 = \lceil \ln \frac{1}{\epsilon} \rceil$:

- Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$
- Label Query:

Input: target excess error $\epsilon,$ failure probability $\delta.$ Initialize candidate set $V_0=\mathcal{H}$

For phases $k = 1, 2, \ldots, k_0 = \lceil \ln \frac{1}{\epsilon} \rceil$:

- Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$
- Label Query:

Where to query?

Labels of all x outside $DIS(V_{k-1})$ are predictable Query on the examples in $DIS(V_{k-1})$

Input: target excess error ϵ , failure probability δ . Initialize candidate set $V_0 = \mathcal{H}$ For phases $k = 1, 2, \dots, k_n = \lceil \ln^{1} \rceil$:

For phases $k = 1, 2, \ldots, k_0 = \lceil \ln \frac{1}{\epsilon} \rceil$:

- Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$
- Label Query:

How many labels to query?

Enough s.t. excess error of each h in V_k is at most ϵ_k Need $\approx \tilde{O}(\frac{d\mathbb{P}[\text{DIS}(V_{k-1})]}{\epsilon_k})$ labels from $\text{DIS}(V_{k-1})$

Input: target excess error ϵ , failure probability δ . Initialize candidate set $V_0 = \mathcal{H}$ For phases $k = 1, 2, ..., k_0 = \lceil \ln \frac{1}{\epsilon} \rceil$:

- Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$
- ► Label Query: $S_k \leftarrow \text{Sample } \tilde{O}(d \frac{\mathbb{P}[\text{DIS}(V_{k-1})]}{\epsilon_k})$ examples in $\text{DIS}(V_{k-1})$ and query for labels

Input: target excess error ϵ , failure probability δ . Initialize candidate set $V_0 = \mathcal{H}$ For phases $k = 1, 2, ..., k_0 = \lceil \ln \frac{1}{\epsilon} \rceil$:

- Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$
- ► Label Query: $S_k \leftarrow$ Sample $\tilde{O}(d \frac{\mathbb{P}[\text{DIS}(V_{k-1})]}{\epsilon_k})$ examples in $\text{DIS}(V_{k-1})$ and query for labels
- Prune Candidate Set:

Input: target excess error ϵ , failure probability δ . Initialize candidate set $V_0 = \mathcal{H}$

For phases $k = 1, 2, \ldots, k_0 = \lceil \ln \frac{1}{\epsilon} \rceil$:

- Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$
- ► Label Query: $S_k \leftarrow \text{Sample } \tilde{O}(d^{\frac{\mathbb{P}[\mathsf{DIS}(V_{k-1})]}{\epsilon_k}})$ examples in $\mathsf{DIS}(V_{k-1})$ and query for labels
- Prune Candidate Set:

How to do the pruning? Remove from V_{k-1} the classifiers that does not agree with S_k

Input: target excess error ϵ , failure probability δ . Initialize candidate set $V_0 = \mathcal{H}$ For phases $k = 1, 2, ..., k_0 = \lceil \ln \frac{1}{\epsilon} \rceil$:

- Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$
- ▶ Label Query: $S_k \leftarrow \text{Sample } \tilde{O}(d^{\frac{\mathbb{P}[\mathsf{DIS}(V_{k-1})]}{\epsilon_k}})$ examples in $\mathsf{DIS}(V_{k-1})$ and query for labels
- Prune Candidate Set:

 $V_k \leftarrow \left\{h \in V_{k-1} : h \text{ agrees with all } (x, y) \in S_k
ight\}$

Input: target excess error ϵ , failure probability δ . Initialize candidate set $V_0 = \mathcal{H}$

For phases $k = 1, 2, \ldots, k_0 = \lceil \ln \frac{1}{\epsilon} \rceil$:

- Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$
- ► Label Query: $S_k \leftarrow \text{Sample } \tilde{O}(d \frac{\mathbb{P}[\text{DIS}(V_{k-1})]}{\epsilon_k})$ examples in $\text{DIS}(V_{k-1})$ and query for labels
- Prune Candidate Set:

 $V_k \leftarrow \left\{h \in V_{k-1} : h \text{ agrees with all } (x, y) \in S_k \right\}$

Return $\hat{h} \leftarrow$ an arbitrary classifier from V_{k_0} .

Outline

Introduction

Setting

Disagreement-based Active Learning(DBAL) Algorithm in Realizable Case Algorithm in Non-Realizable Case Analysis

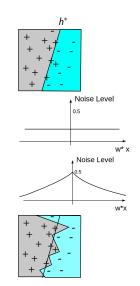
Confidence-based Active Learning(CBAL)

Conclusions and Open Problems

PAC Learning: Noise Models

• Realizable: $err(h^*) = 0$

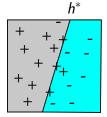
- ▶ η -Random classification noise (RCN): $\eta(x) = \eta \leq \frac{1}{2}$
- ▶ β -Tsybakov noise condition (TNC): $\mathbb{P}[\eta(x) \ge \frac{1}{2} - t] \le O(t^{\frac{1}{\beta}})$
- ► Agnostic: optimal error err(h*) = v

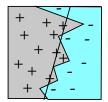


DBAL: Non-Realizable Case

Realizable Case:

Non-Realizable Case:





There is some h^* in \mathcal{H} such that $h^*(x) = y$, for all $(x, y) \sim D$

 h^* is the classifier in ${\mathcal H}$ with min error

Use version space as set of candidate classifiers

Use $(1 - \delta)$ confidence set for h^* as candidate classifiers

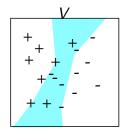
Construction of Confidence Sets

 Generalization bounds [VC71]: w.p. 1 - δ over the draw of a sample S of size m iid from D, for all h in H,

$$|\operatorname{err}(h,S) - \operatorname{err}(h)| \leq \tilde{O}\left(\sqrt{\frac{d}{m}}\right)$$

Choose: all h with

$$\operatorname{err}(h,S) \leq \min_{h' \in \mathcal{H}} \operatorname{err}(h',S) + \tilde{O}\left(\sqrt{rac{d}{m}}
ight)$$



 More careful construction needed in active learning

DBAL: Non-Realizable Case

Realizable Case:

There is some h^* in \mathcal{H} such that $h^*(x) = y$, for all $(x, y) \sim D$

Use version space as set of candidate classifiers

At phase k, draw $\tilde{O}(d \frac{\mathbb{P}[DIS(V_{k-1})]}{\epsilon_k})$ examples

Non-Realizable Case:

 h^{\ast} is the classifier in ${\cal H}$ with min error

Use $(1 - \delta)$ confidence set for h^* as candidate classifiers

At phase k, adaptively draw enough examples for excess error $\frac{\epsilon_k}{\mathbb{P}[\text{DIS}(V_{k-1})]}$ in disagreement region

DBAL: Algorithm in Non-Realizable Case

Input: target excess error ϵ , failure probability δ . Initialize candidate set $V_0 = \mathcal{H}$ For phases $k = 1, 2, ..., k_0 = \lceil \ln \frac{1}{\epsilon} \rceil$:

• Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$.

Input: target excess error ϵ , failure probability δ . Initialize candidate set $V_0 = \mathcal{H}$ For phases $k = 1, 2, ..., k_0 = \lceil \ln \frac{1}{\epsilon} \rceil$:

- Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$.
- Label Query:

Input: target excess error ϵ , failure probability δ . Initialize candidate set $V_0 = \mathcal{H}$ For phases $k = 1, 2, ..., k_0 = \lceil \ln \frac{1}{\epsilon} \rceil$:

- Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$.
- Label Query:

Where to query? Query on the examples in $DIS(V_{k-1})$

Input: target excess error ϵ , failure probability δ . Initialize candidate set $V_0 = \mathcal{H}$ For phases $k = 1, 2, ..., k_0 = \lceil \ln \frac{1}{\epsilon} \rceil$:

- Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$.
- Label Query:

How many labels to query?

Enough s.t. excess error of each h in V_k is at most ϵ_k Adaptively draw enough examples to achieve error at most $\frac{\epsilon_k}{\mathbb{P}[\text{DIS}(V_{k-1})]}$ on $\text{DIS}(V_{k-1})$

Input: target excess error ϵ , failure probability δ . Initialize candidate set $V_0 = \mathcal{H}$ For phases $k = 1, 2, ..., k_0 = \lceil \ln \frac{1}{\epsilon} \rceil$:

• Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$.

Label Query:

 $S_k \leftarrow \text{Adaptively sample just enough examples on DIS}(V_{k-1})$ and query for their labels to get target excess error $\frac{\epsilon_k}{\mathbb{P}[\text{DIS}(V_{k-1})]}$

Input: target excess error ϵ , failure probability δ . Initialize candidate set $V_0 = \mathcal{H}$ For phases $k = 1, 2, ..., k_0 = \lceil \ln \frac{1}{\epsilon} \rceil$:

• Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$.

Label Query:

 $S_k \leftarrow$ Adaptively sample just enough examples on DIS (V_{k-1}) and query for their labels to get target excess error $\frac{\epsilon_k}{\mathbb{P}[DIS(V_{k-1})]}$

Prune Candidate Set:

Input: target excess error ϵ , failure probability δ . Initialize candidate set $V_0 = \mathcal{H}$ For phases $k = 1, 2, ..., k_0 = \lceil \ln \frac{1}{\epsilon} \rceil$:

- Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$.
- Label Query:

 $S_k \leftarrow$ Adaptively sample just enough examples on DIS (V_{k-1}) and query for their labels to get target excess error $\frac{\epsilon_k}{\mathbb{P}[D]S(V_{k-1})]}$

Prune Candidate Set:

How to do the pruning? Remove from V_{k-1} the classifiers that have a large empirical error on S_k

Input: target excess error ϵ , failure probability δ . Initialize candidate set $V_0 = \mathcal{H}$ For phases $k = 1, 2, ..., k_0 = \lceil \ln \frac{1}{\epsilon} \rceil$:

- Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$.
- Label Query:

 $S_k \leftarrow \text{Adaptively sample just enough examples on DIS}(V_{k-1})$ and query for their labels to get target excess error $\frac{\epsilon_k}{\mathbb{P}[\text{DIS}(V_{k-1})]}$

Prune Candidate Set:

$$V_k \leftarrow \left\{ h \in V_{k-1} : \operatorname{err}(h, S_k) - \min_{h \in V_{k-1}} \operatorname{err}(h, S_k) \le O\left(\frac{\epsilon_k}{\mathbb{P}[\mathsf{DIS}(V_{k-1})]}\right) \right\}$$

Input: target excess error ϵ , failure probability δ . Initialize candidate set $V_0 = \mathcal{H}$ For phases $k = 1, 2, ..., k_0 = \lceil \ln \frac{1}{\epsilon} \rceil$:

- Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$.
- Label Query:

 $S_k \leftarrow$ Adaptively sample just enough examples on DIS (V_{k-1}) and query for their labels to get target excess error $\frac{\epsilon_k}{\mathbb{P}[DIS(V_{k-1})]}$

Prune Candidate Set:

$$V_k \leftarrow \left\{ h \in V_{k-1} : \operatorname{err}(h, S_k) - \min_{h \in V_{k-1}} \operatorname{err}(h, S_k) \le O\left(\frac{\epsilon_k}{\mathbb{P}[\mathsf{DIS}(V_{k-1})]}\right) \right\}$$

Return $\hat{h} \leftarrow$ an arbitrary classifier from V_{k_0} .

Input: target excess error ϵ , failure probability δ . Initialize candidate set $V_0 = \mathcal{H}$ For phases $k = 1, 2, ..., k_0 = \lceil \ln \frac{1}{\epsilon} \rceil$:

- Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$.
- Label Query:

 $S_k \leftarrow$ Adaptively sample just enough examples on DIS(V_{k-1}) and query for their labels to get target excess error $\frac{\epsilon_k}{\mathbb{P}[DIS(V_{k-1})]}$

Prune Candidate Set:

$$V_k \leftarrow \left\{ h \in V_{k-1} : \operatorname{err}(h, S_k) - \min_{h \in V_{k-1}} \operatorname{err}(h, S_k) \le O\left(\frac{\epsilon_k}{\mathbb{P}[\mathsf{DIS}(V_{k-1})]}\right) \right\}$$

Return $\hat{h} \leftarrow$ an arbitrary classifier from V_{k_0} . Computationally efficient implementation in [DHM07, BDL09, Han09, BHLZ10, HAH⁺15]...

Outline

Introduction

Setting

Disagreement-based Active Learning(DBAL)

Algorithm in Realizable Case Algorithm in Non-Realizable Case Analysis

Confidence-based Active Learning(CBAL)

Conclusions and Open Problems

Statistical Consistency

Theorem

Suppose DBAL is run with parameters ϵ and δ . Then with probability $1 - \delta$, the output \hat{h} satisfies that

$$ext{err}(\hat{h}) - ext{err}(h^*) \leq \epsilon.$$

Main Idea:

- After phase k, all classifier in V_k have excess error $\leq \epsilon_k$
- Specifically, after phase k₀, all classifiers in V_{k₀} have excess error ≤ e_{k₀} ≤ e

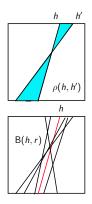
Key factor: Shrinkage of $\mathbb{P}[DIS(V_k)]$ Depends on:

- Shrinkage of the V_k's radius
- Ratio of $\mathbb{P}[DIS(V_k)]$ to the radius of V_k

Label Complexity: Definitions

• Disagreement metric: $\rho(h, h') = \mathbb{P}_D[h(x) \neq h'(x)]$

• Disagreement ball: B(h, r) = { $h' \in \mathcal{H} : \rho(h, h') \leq r$ }



Factor 1: Shrinkage of the V_k 's Radius

Harder noise condition \Rightarrow Slower shrinkage

Noise Model	$radius(V_k)$
Realizable	$ ilde{O}(\epsilon_k)$
η -RCN	$ ilde{O}(rac{\epsilon_k}{1-2\eta})$
β -TNC	$ ilde{O}(\epsilon_k^{rac{1}{1+eta}})$
u-Agnostic	$ ilde{O}(u+\epsilon_k)$

Version Space Radius Shrinkage under Noise Models

Factor 2: Disagreement Coefficient

Relating $\mathbb{P}[DIS(V_k))]$ to V_k 's radius

Definition ([Han07, Ale87, RR11])

Given a concept class \mathcal{H} , data distribution D, the disagreement coefficient with respect to \mathcal{H} and D is defined as:

$$\theta = \sup_{h \in \mathcal{H}, r > 0} \frac{\mathbb{P}[\mathsf{DIS}(\mathsf{B}(h, r))]}{r}$$

Corollary

$$\mathbb{P}[\mathsf{DIS}(V)] \le \theta \cdot \mathsf{radius}(V).$$

Shrinkage of Disagreement Region

Relationship $\mathbb{P}[\text{DIS}(V_k)] \leq \theta \cdot \text{radius}(V_k)$ implies:

Noise Model	$\mathbb{P}[DIS(V_k)]$
Realizable	$ ilde{O}(heta \cdot \epsilon_k)$
η -RCN	$ ilde{O}(heta \cdot rac{\epsilon_k}{1-2\eta})$
β-ΤΝΟ	$ ilde{O}(heta \cdot \epsilon^{rac{1}{1+eta}})$
u-Agnostic	$ ilde{O}(heta \cdot (u + \epsilon_k))$

Disagreement Region Shrinkage under Noise Models

Label Complexity Analysis: Main Idea

Realizable Case

- Label complexity in phase k: $m_k = \tilde{O}(d \frac{\mathbb{P}[\mathsf{DIS}(V_{k-1})]}{\epsilon_k}) = \tilde{O}(d\theta)$
- Total label complexity: $\sum_{k=1}^{k_0} m_k = \tilde{O}(d\theta \ln \frac{1}{\epsilon})$

The analysis can be extended to non-realizable cases straightforwardly.

Label Complexity

Theorem

Suppose DBAL is run with parameters ϵ and δ . Then with probability $1 - \delta$, the number of label requests is:

Noise Model	Label Complexity
Realizable	$ ilde{O}(heta \cdot d \cdot \ln rac{1}{\epsilon})$
η-RCN	$ ilde{O}ig(heta \cdot rac{d}{(1-2\eta)^2} \cdot \ln rac{1}{\epsilon}ig)$
β-ΤΝΟ	$ ilde{O}(heta \cdot d \cdot \epsilon^{rac{2}{1+eta}-2})$
ν -Agnostic	$ ilde{O}(heta \cdot frac{(u+\epsilon)^2}{\epsilon^2})$

Comparison to Passive Learning

DBAL improves over passive learning if $\boldsymbol{\theta}$ is finite

Noise Model	Improvement Factor
Realizable	$ ilde{O}(heta\epsilon)$
η-RCN	$ ilde{O}(rac{ heta\epsilon}{1-2\eta})$
β-ΤΝΟ	$ ilde{O}(heta\epsilon^{rac{1}{1+eta}})$
u-Agnostic	$ ilde{O}(heta(u+\epsilon))$

Disagreement Coefficient: Examples

Thresholds

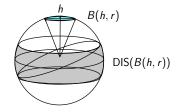
- ► *D*_{*X*} : Uniform([0, 1])
- *H*: threshold classifiers
 *h*_t(x) = *I*(x ≥ t), t ∈ [0, 1]
 θ ≤ 2

$\frac{r}{h}$ DIS(B(h, r))

Linear Classification

- $D_{\mathcal{X}}$: uniform over unit sphere
- → H: linear classifiers through the origin h_w = sign(w · x), w ∈ ℝ^d

•
$$\theta = O(\sqrt{d})$$



Outline

Introduction

Setting

Disagreement-based Active Learning(DBAL) Algorithm in Realizable Case Algorithm in Non-Realizable Case Analysis

Confidence-based Active Learning(CBAL)

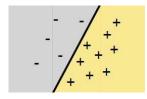
Conclusions and Open Problems

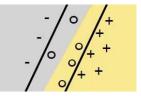
Confidence-based Active Learning(CBAL)

- The label query policy of DBAL is too conservative
 - perform label query as long as an example is in disagreement region
- Idea of CBAL: select a subset of disagreement region using confidence-rated predictors

Confidence-based Active Learning(CBAL)

Confidence-rated predictor(CRP): classifiers that can say "Don't know" (⊥)





Output of a binary classifier

Output of a CRP

- Main idea of CBAL:
 - Maintain a confidence-rated predictor ${\cal P}$
 - Use P to make label query decision: Query the label of x if P says "Don't know" on x

CBAL: Algorithmic Framework

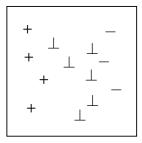
- Inputs: target excess error ϵ , failure probability δ .
- Initialization: $V_0 \leftarrow \mathcal{H}$.
- For phase k = 1 to $k_0 = \lceil \log \frac{1}{\epsilon} \rceil$:
 - Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$.
 - ► Transduction: Draw a set of Õ(^d/_{e²_k}) unlabeled examples U_k iid from D_X.
 - Selection: Run Algorithm CRP on U_k with error guarantee $O(\epsilon_k)$ with uncertainty set V_{k-1} , get abstention probability $\{\gamma_i\}_{i=1}^{n_k}$, normalize it to a distribution Γ_k . Let $\phi_k = abs_{U_k}(\mathcal{P}) = \frac{1}{n_k} \sum_{i=1}^{n_k} \gamma_i$.
 - Label Query: S_k ← Adaptively sample just enough examples to get target excess error O(^{ϵ_k}/_{φ_k}) on Γ_k and query their labels.
 - Prune Candidate Set: Update candidate set

$$V_k \leftarrow \left\{ h \in V_{k-1} : \operatorname{err}(h, S_k) - \min_{h \in V_{k-1}} \operatorname{err}(h, S_k) \le O\left(\frac{\epsilon_k}{\phi_k}\right) \right\}$$

• Return $\hat{h} \leftarrow$ an arbitrary classifier in V_{k_0} .

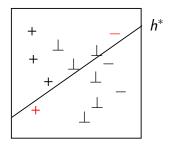
• Given *x*, $\mathcal{P}(x) \in \{-1, +1, \bot\}$

• Given x,
$$\mathcal{P}(x) \in \{-1, +1, \bot\}$$

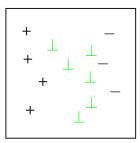


• Given x,
$$\mathcal{P}(x) \in \{-1, +1, \bot\}$$

• Error: $\operatorname{err}_D(\mathcal{P}) = \mathbb{P}_D[\mathcal{P}(x) \neq h^*(x), \mathcal{P}(x) \neq \bot]$



- Given x, $\mathcal{P}(x) \in \{-1, +1, \bot\}$
- Error: $\operatorname{err}_D(\mathcal{P}) = \mathbb{P}_D[\mathcal{P}(x) \neq h^*(x), \mathcal{P}(x) \neq \bot]$
- Abstention: $abs_D(\mathcal{P}) = \mathbb{P}_D[\mathcal{P}(x) = \bot]$



Confidence-rated Predictor in Transductive Setting

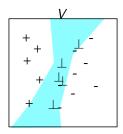
Transductive Setting: given unlabeled examples
 U = {x₁,..., x_n} drawn from D_X, make predictions on U

• "Soft" prediction:
$$\mathcal{P}(x_i) = \begin{cases} +1 & \text{w.p. } \xi_i \\ -1 & \text{w.p. } \zeta_i \\ \bot & \text{w.p. } \gamma_i \end{cases}$$

- A confidence-rated predictor *P* on *U* is described as *n* 3-tuples: {(ξ_i, ζ_i, γ_i)}ⁿ_{i=1}
- Error: $\operatorname{err}_U(\mathcal{P}) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}[h^*(x_i) = -1]\xi_i + \mathbb{1}[h^*(x_i) = +1]\zeta_i$
- Abstention: $abs_U(\mathcal{P}) = \frac{1}{n} \sum_{i=1}^n \gamma_i$

A Confidence-rated Predictor with Guaranteed Error

- ► Given set of unlabeled examples U
- Given uncertainty set of classifiers V, h^* is known to be in V
- Error guarantee η : $err_U(\mathcal{P}) \leq \eta$



A Confidence-rated Predictor with Guaranteed Error

Algorithm CRP

- ▶ Input: uncertainty set V, unlabeled set U, error guarantee η
- Construct a linear program:

$$\min \frac{1}{n} \sum_{i=1}^{n} \gamma_i$$

subject to:

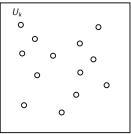
$$\begin{aligned} \forall i, \ \xi_i + \zeta_i + \gamma_i &= 1\\ \forall i, \ \xi_i, \zeta_i, \gamma_i &\geq 0\\ \forall h \in V, \ \frac{1}{n} \sum_{i=1}^n \mathbb{1}[h(x_i) = -1]\xi_i + \mathbb{1}[h(x_i) = +1]\zeta_i \leq \eta \end{aligned}$$

► Confidence-rated predictor P returned is described as the optimal solution of the LP {(ξ^{*}_i, ζ^{*}_i, γ^{*}_i)}ⁿ_{i=1}

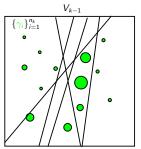
- Inputs: target excess error ϵ , failure probability δ .
- Initialize candidate set $V_0 = \mathcal{H}$.

- For phase k = 1 to $k_0 = \lceil \log \frac{1}{\epsilon} \rceil$:
 - Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$

- For phase k = 1 to $k_0 = \lceil \log \frac{1}{\epsilon} \rceil$:
 - Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$
 - ► **Transduction**: Draw a set of $\tilde{O}(\frac{d}{\epsilon_k^2})$ unlabeled examples U_k iid from $D_{\mathcal{X}}$.



- For phase k = 1 to $k_0 = \lceil \log \frac{1}{\epsilon} \rceil$:
 - Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$
 - ► Transduction: Draw a set of Õ(^d/_{ε²_k}) unlabeled examples U_k iid from D_X.
 - Selection: Run Algorithm CRP on U_k with error guarantee $O(\epsilon_k)$ with uncertainty set V_{k-1} , get abstention probability $\{\gamma_i\}_{i=1}^{n_k}$, normalize it to a distribution Γ_k . Let $\phi_k = \frac{1}{n_k} \sum_{i=1}^{n_k} \gamma_i$.



• For phase k = 1 to $k_0 = \lceil \log \frac{1}{\epsilon} \rceil$:

- Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$
- ► Transduction: Draw a set of Õ(^d/_{ε²_k}) unlabeled examples U_k iid from D_X.
- Selection: Run Algorithm CRP on U_k with error guarantee $O(\epsilon_k)$ with uncertainty set V_{k-1} , get abstention probability $\{\gamma_i\}_{i=1}^{n_k}$, normalize it to a distribution Γ_k . Let $\phi_k = \frac{1}{n_k} \sum_{i=1}^{n_k} \gamma_i$.
- Label Query:

Where to query? Query on the examples drawn from distribution Γ_k

- For phase k = 1 to $k_0 = \lceil \log \frac{1}{\epsilon} \rceil$:
 - Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$
 - ► Transduction: Draw a set of Õ(^d/_{ε²_k}) unlabeled examples U_k iid from D_X.
 - ► Selection: Run Algorithm CRP on U_k with error guarantee $O(\epsilon_k)$ with uncertainty set V_{k-1} , get abstention probability $\{\gamma_i\}_{i=1}^{n_k}$, normalize it to a distribution Γ_k . Let $\phi_k = \frac{1}{n_k} \sum_{i=1}^{n_k} \gamma_i$.
 - Label Query:

How many labels to query?

Enough s.t. excess error of each h in V_k is at most ϵ_k Adaptively draw enough examples to achieve error at most $O(\frac{\epsilon_k}{\phi_k})$ on Γ_k

• For phase k = 1 to $k_0 = \lceil \log \frac{1}{\epsilon} \rceil$:

- Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$
- ► Transduction: Draw a set of Õ(^d/_{ε²_k}) unlabeled examples U_k iid from D_X.
- ► Selection: Run Algorithm **CRP** on U_k with error guarantee $O(\epsilon_k)$ with uncertainty set V_{k-1} , get abstention probability $\{\gamma_i\}_{i=1}^{n_k}$, normalize it to a distribution Γ_k . Let $\phi_k = \frac{1}{n_k} \sum_{i=1}^{n_k} \gamma_i$.
- Label Query:

 $S_k \leftarrow \text{Adaptively sample just enough examples to get target excess error <math>O(\frac{\epsilon_k}{\phi_k})$ on Γ_k and query their labels.

• For phase k = 1 to $k_0 = \lceil \log \frac{1}{\epsilon} \rceil$:

- Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$
- ► Transduction: Draw a set of Õ(^d/_{ϵ²_k}) unlabeled examples U_k iid from D_X.
- Selection: Run Algorithm **CRP** on U_k with error guarantee $O(\epsilon_k)$ with uncertainty set V_{k-1} , get abstention probability $\{\gamma_i\}_{i=1}^{n_k}$, normalize it to a distribution Γ_k . Let $\phi_k = \frac{1}{n_k} \sum_{i=1}^{n_k} \gamma_i$.
- Label Query:

 $S_k \leftarrow \text{Adaptively sample just enough examples to get target excess error <math>O(\frac{\epsilon_k}{\phi_k})$ on Γ_k and query their labels.

Prune Candidate Set:

- For phase k = 1 to $k_0 = \lceil \log \frac{1}{\epsilon} \rceil$:
 - Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$
 - ► Transduction: Draw a set of Õ(^d/_{ε²_k}) unlabeled examples U_k iid from D_X.
 - Selection: Run Algorithm **CRP** on U_k with error guarantee $O(\epsilon_k)$ with uncertainty set V_{k-1} , get abstention probability $\{\gamma_i\}_{i=1}^{n_k}$, normalize it to a distribution Γ_k . Let $\phi_k = \frac{1}{n_k} \sum_{i=1}^{n_k} \gamma_i$.
 - Label Query:

 $S_k \leftarrow \text{Adaptively sample just enough examples to get target excess error <math>O(\frac{\epsilon_k}{\phi_k})$ on Γ_k and query their labels.

Prune Candidate Set:

How to do the pruning?

Remove from V_{k-1} the classifiers that have a large empirical error on S_k

- For phase k = 1 to $k_0 = \lceil \log \frac{1}{\epsilon} \rceil$:
 - Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$
 - ► Transduction: Draw a set of Õ(^d/_{ε²_k}) unlabeled examples U_k iid from D_X.
 - Selection: Run Algorithm **CRP** on U_k with error guarantee $O(\epsilon_k)$ with uncertainty set V_{k-1} , get abstention probability $\{\gamma_i\}_{i=1}^{n_k}$, normalize it to a distribution Γ_k . Let $\phi_k = \frac{1}{n_k} \sum_{i=1}^{n_k} \gamma_i$.
 - Label Query:

 $S_k \leftarrow \text{Adaptively sample just enough examples to get target excess error } O(\frac{\epsilon_k}{\phi_k}) \text{ on } \Gamma_k \text{ and query their labels.}$

Prune Candidate Set:

Update candidate set

$$V_k \leftarrow \left\{h \in V_{k-1} : \operatorname{err}(h, S_k) - \min_{h \in V_{k-1}} \operatorname{err}(h, S_k) \le O\left(\frac{\epsilon_k}{\phi_k}\right)\right\}$$

- For phase k = 1 to $k_0 = \lceil \log \frac{1}{\epsilon} \rceil$:
 - Candidate set V_{k-1} , target excess error $\epsilon_k = 2^{-k}$
 - ► Transduction: Draw a set of Õ(^d/_{ε²_k}) unlabeled examples U_k iid from D_X.
 - Selection: Run Algorithm **CRP** on U_k with error guarantee $O(\epsilon_k)$ with uncertainty set V_{k-1} , get abstention probability $\{\gamma_i\}_{i=1}^{n_k}$, normalize it to a distribution Γ_k . Let $\phi_k = \frac{1}{n_k} \sum_{i=1}^{n_k} \gamma_i$.
 - Label Query:

 $S_k \leftarrow \text{Adaptively sample just enough examples to get target excess error } O(\frac{\epsilon_k}{\phi_k}) \text{ on } \Gamma_k \text{ and query their labels.}$

Prune Candidate Set:

Update candidate set

$$V_k \leftarrow \left\{ h \in V_{k-1} : \operatorname{err}(h, S_k) - \min_{h \in V_{k-1}} \operatorname{err}(h, S_k) \le O\left(\frac{\epsilon_k}{\phi_k}\right) \right\}$$

• Return $\hat{h} \leftarrow$ an arbitrary classifier in V_{k_0} .

CBAL: Statistical Consistency

Theorem

Suppose CBAL is run with parameters ϵ and δ . Then with probability $1 - \delta$, the output \hat{h} satisfies that

$$\operatorname{err}(\hat{h}) - \operatorname{err}(h^*) \leq \epsilon.$$

CBAL: Label Complexity

- Φ(V, η): the minimum abstention probability of a confidence-rated predictor with uncertainty set V with error guarantee η under distribution D_X
- $\Phi(V,\eta) \leq \Phi(V,0) \leq \mathbb{P}_D[\mathsf{DIS}(V)]$
- Define confidence coefficient $\sigma(\eta) := \sup_{r>0} \frac{\Phi(B(h^*, r), \eta)}{r}$
- $\sigma(\eta) \leq \theta$ and can sometimes be much smaller

CBAL: Shrinkage of Uncertainty Region

The size of the sampling region again depends on:

- radius of confidence set V_k
- confidence coefficient σ

Noise Model	Size of Uncertainty Region
Realizable	$ ilde{O}(\sigma(\epsilon_k)\cdot\epsilon_k)$
η -RCN	$ ilde{O}(\sigma(\epsilon_k) \cdot rac{\epsilon_k}{1-2\eta})$
β -TNC	$ ilde{O}(\sigma(\epsilon_k)\cdot\epsilon_k^{rac{1}{1+eta}})$
ν -Agnostic	$ ilde{O}(\sigma(\epsilon_k) \cdot (u + \epsilon_k))$

Uncertainty Region Shrinkage in CBAL

CBAL: Label Complexity

Theorem

Suppose CBAL is run with parameters ϵ and δ . With probability $1 - \delta$, the number of label requests is

Noise Model	Label Complexity
Realizable	$ ilde{O}(\sigma(\epsilon) \cdot d \cdot \ln rac{1}{\epsilon})$
η-RCN	$ ilde{O}(\sigma(\epsilon) \cdot rac{d}{(1-2\eta)^2} \cdot \ln rac{1}{\epsilon})$
β-ΤΝΟ	$ ilde{O}(\sigma(\epsilon) \cdot d \cdot \epsilon^{rac{2}{1+eta}-2})$
ν -Agnostic	$ ilde{O}(\sigma(\epsilon) \cdot d \cdot rac{(u+\epsilon)^2}{\epsilon^2})$

Comparison

CBAL improves over DBAL by replacing θ with $\sigma(\epsilon)$ in label complexity

Noise Model	DBAL	CBAL
Realizable	$ ilde{O}(heta \cdot d \cdot \ln rac{1}{\epsilon})$	$ ilde{O}(\sigma(\epsilon) \cdot d \cdot \ln rac{1}{\epsilon})$
η -RCN	$ ilde{O}ig(heta \cdot rac{d}{(1-2\eta)^2} \cdot \ln rac{1}{\epsilon}ig)$	$ ilde{O}(\sigma(\epsilon) \cdot rac{d}{(1-2\eta)^2} \cdot \ln rac{1}{\epsilon})$
β-ΤΝΟ	$\tilde{O}(heta \cdot d \cdot \epsilon^{rac{2}{1+eta}-2})$	$\tilde{O}(\sigma(\epsilon) \cdot d \cdot \epsilon^{\frac{2}{\kappa}-2})$
u-Agnostic	$ ilde{O}(heta \cdot frac{(u+\epsilon)^2}{\epsilon^2})$	$ ilde{O}(\sigma(\epsilon) \cdot d \cdot rac{(u+\epsilon)^2}{\epsilon^2})$

Example: linear classification under uniform distribution

- $\sigma(\epsilon) = O(\min(\sqrt{d}, \ln \frac{1}{\epsilon}))$ [BBZ07, BL13], whereas $\theta = O(\sqrt{d})$
- ► CBAL improves over DBAL by a factor of Õ(√d) in label complexity

Outline

Introduction

Setting

Disagreement-based Active Learning(DBAL) Algorithm in Realizable Case Algorithm in Non-Realizable Case

Analysis

Confidence-based Active Learning(CBAL)

Conclusions and Open Problems

Conclusions and Open Problems

- DBAL: general, statistically consistent, relatively high label complexity
- CBAL: general, statistically consistent, lower label complexity
- Open Problems:
 - Better algorithms for statistically consistent active learning
 - Computationaly efficiency
 - New notion of soft confidence in active learning

Thank you! Questions?

References I

Kenneth S Alexander.

Rates of growth and sample moduli for weighted empirical processes indexed by sets.

Probability Theory and Related Fields, 75(3):379–423, 1987.

- M.-F. Balcan, A. Beygelzimer, and J. Langford. Agnostic active learning.
 J. Comput. Syst. Sci., 75(1):78–89, 2009.
- M.-F. Balcan, A. Z. Broder, and T. Zhang. Margin based active learning. In COLT, 2007.
- A. Beygelzimer, S. Dasgupta, and J. Langford. Importance weighted active learning. In *ICML*, 2009.

References II

- A. Beygelzimer, D. Hsu, J. Langford, and T. Zhang. Agnostic active learning without constraints. In NIPS, 2010.
- M.-F. Balcan and P. M. Long.

Active and passive learning of linear separators under log-concave distributions. In *COLT*, 2013.

- D. A. Cohn, L. E. Atlas, and R. E. Ladner. Improving generalization with active learning. *Machine Learning*, 15(2), 1994.
- S. Dasgupta and D. Hsu. Hierarchical sampling for active learning. In *ICML*, 2008.

References III

- S. Dasgupta, D. Hsu, and C. Monteleoni.
 A general agnostic active learning algorithm. In NIPS, 2007.
- R. El-Yaniv and Y. Wiener.

On the foundations of noise-free selective classification. *JMLR*, 2010.

Tzu-Kuo Huang, Alekh Agarwal, Daniel J Hsu, John Langford, and Robert E Schapire.

Efficient and parsimonious agnostic active learning.

In Advances in Neural Information Processing Systems, pages 2755–2763, 2015.

S. Hanneke.

A bound on the label complexity of agnostic active learning. In *ICML*, 2007.

References IV

S. Hanneke.

Theoretical Foundations of Active Learning. PhD thesis, Carnegie Mellon University, 2009.

Steve Hanneke.

Theory of disagreement-based active learning. Foundations and Trends® in Machine Learning, 7(2-3):131–309, 2014.

 S. Hanneke and L. Yang.
 Surrogate losses in passive and active learning. CoRR, abs/1207.3772, 2012.

V. Koltchinskii.

Rademacher complexities and bounding the excess risk in active learning.

JMLR, 2010.

References V

- Maxim Raginsky and Alexander Rakhlin.
 Lower bounds for passive and active learning.
 In Advances in Neural Information Processing Systems, pages 1026–1034, 2011.
- R. Urner, S. Wulff, and S. Ben-David.
 Plal: Cluster-based active learning.
 In COLT, 2013.
- V. N. Vapnik and A. Ya. Chervonenkis.

On the uniform convergence of relative frequencies of events to their probabilities.

Theory of Probability and its Applications, 16(2):264–280, 1971.

C. Zhang and K. Chaudhuri.
 Beyond disagreement-based agnostic active learning.
 In *NIPS*, 2014.