Interactive and Hybrid Imitation Learning: Provably Beating Behavior Cloning

Yichen Li and Chicheng Zhang

University of Arizona

Imitation Learning (IL)

Given: Expert Demonstrations.

Goal: Learn good policy for sequential decision making.

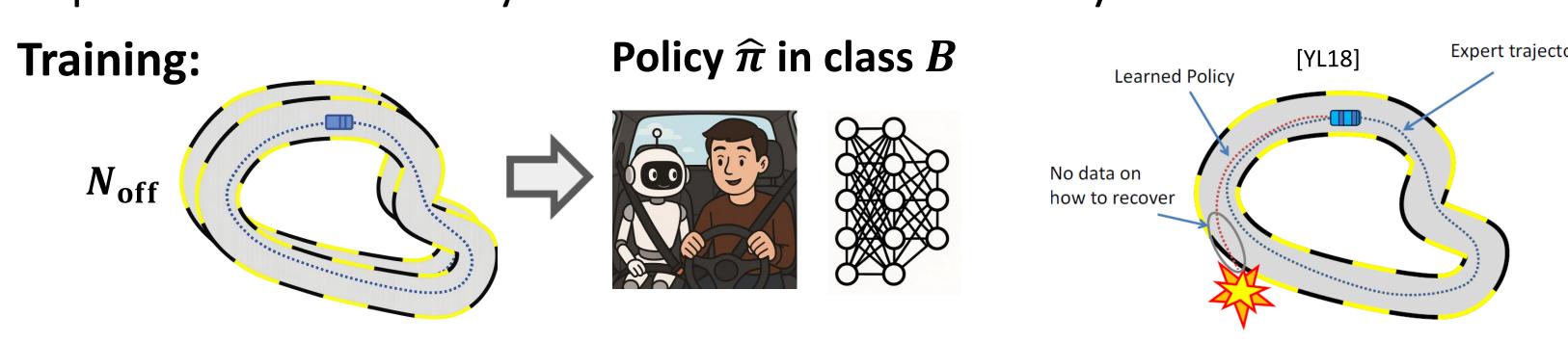
Our Contributions:

First to highlight the benefit of state-wise interactive annotation and hybrid feedback in imitation learning.

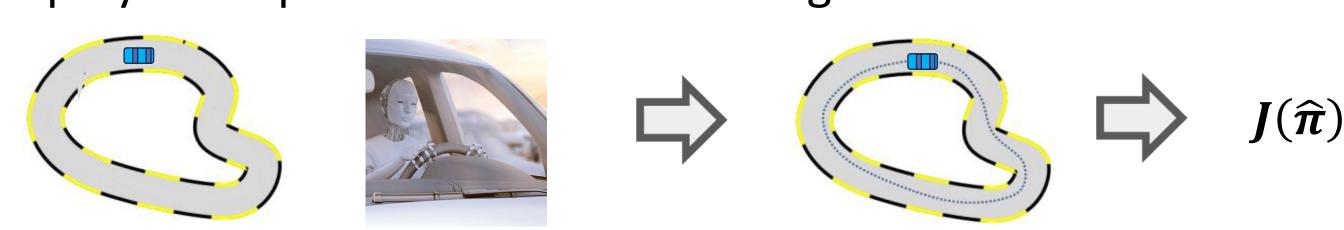
When annotation cost is measured per state, interactive IL algorithms can provably outperform Behavior Cloning (BC). (1) We show **Stagger**, a one-sample-per-round variant of DAgger, beats BC in low-recovery-cost settings; (2) We propose **Hybrid IL**, combining offline demonstrations with interactive annotations, and introduce **Warm-Stagger** (WS), which achieves lower annotation cost compared to BC and Stagger in a toy MDP motivated by practical applications; (3) Experiments on continuous-control tasks show that both interactive and hybrid methods outperform BC.

Behavior Cloning and Covariate Shift

Imperfect Trained Policy -> Unseen States -> Inability to Recover

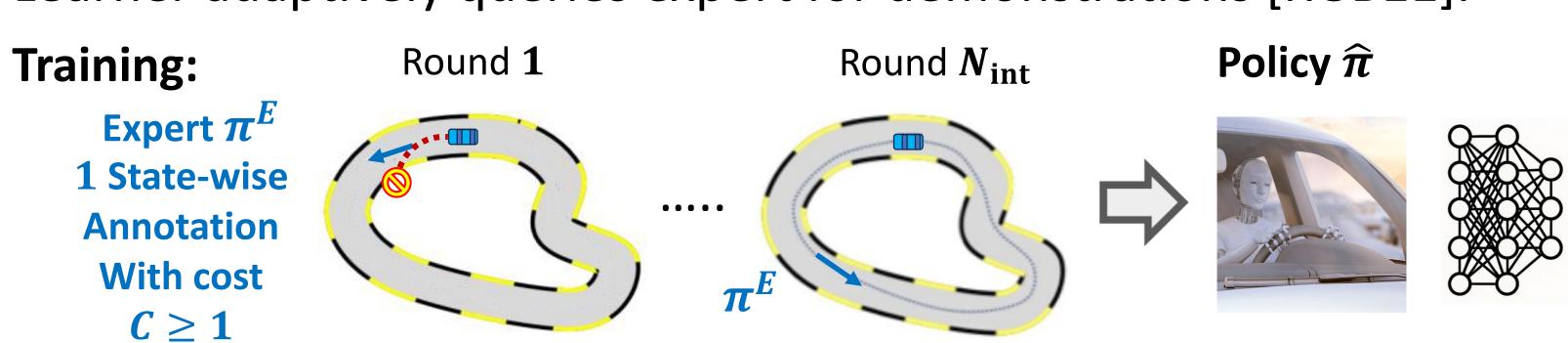


Test: Deploy $\widehat{\boldsymbol{\pi}}$ in Episodic MDP \mathcal{M} with length H.



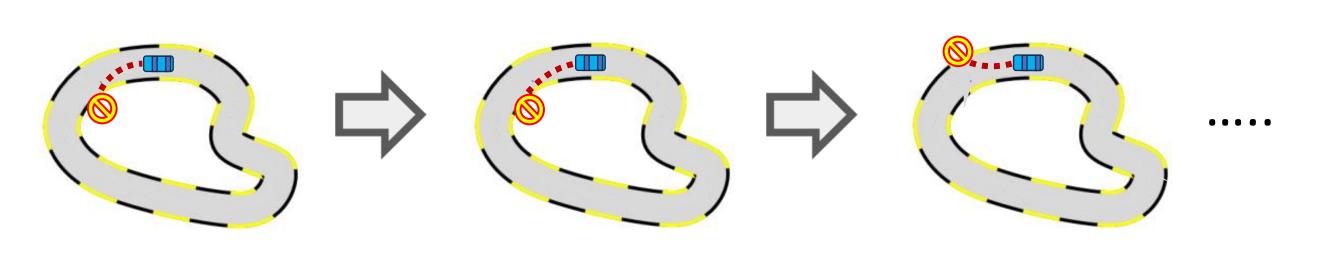
Interactive IL and State-wise DAgger (Stagger)

Learner adaptively queries expert for demonstrations [RGB11].



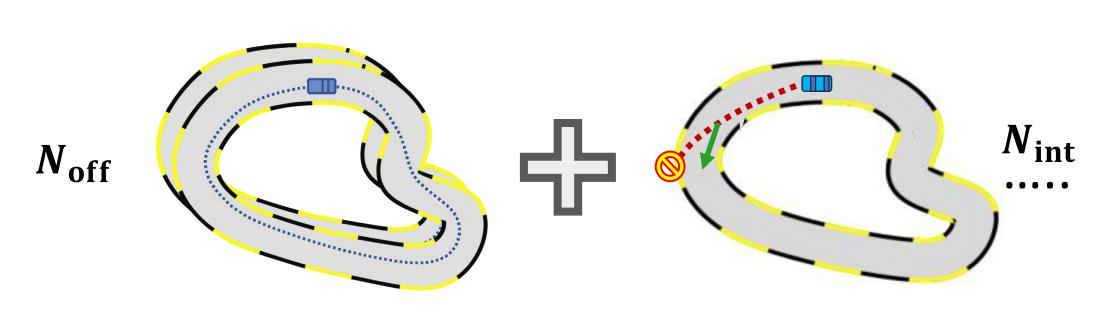
The Cold Start Problem in Interactive IL

Early Crashes -> Fail to Explore -> Limited Data Coverage -> Slow Learning



Hybrid IL

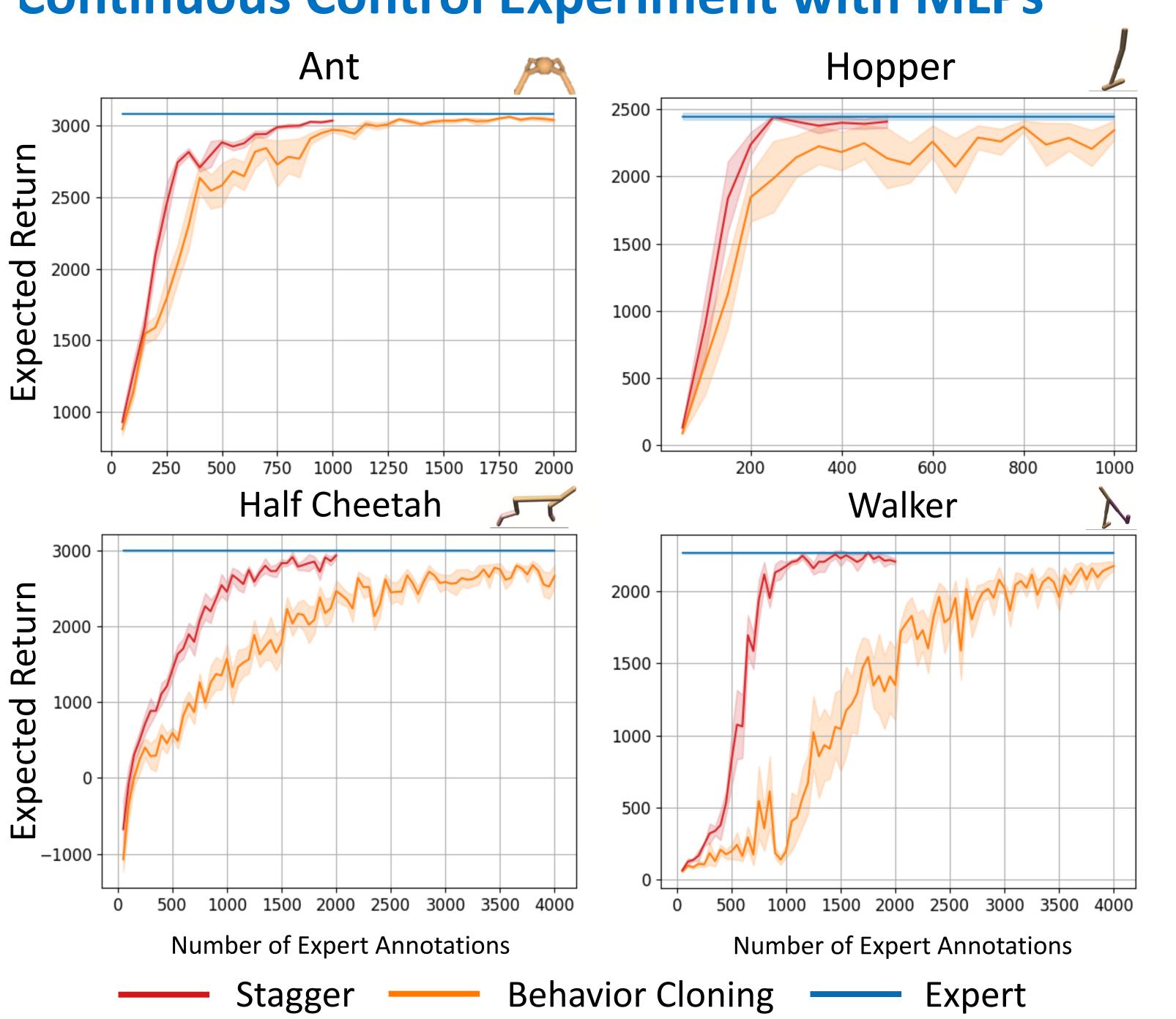
Learner has $N_{\rm off}$ offline expert trajectories and interactive state-wise annotations up to $N_{\rm int}$ times. Each offline (state, action) pair costs 1, and each interactive query costs $C \ge 1$.



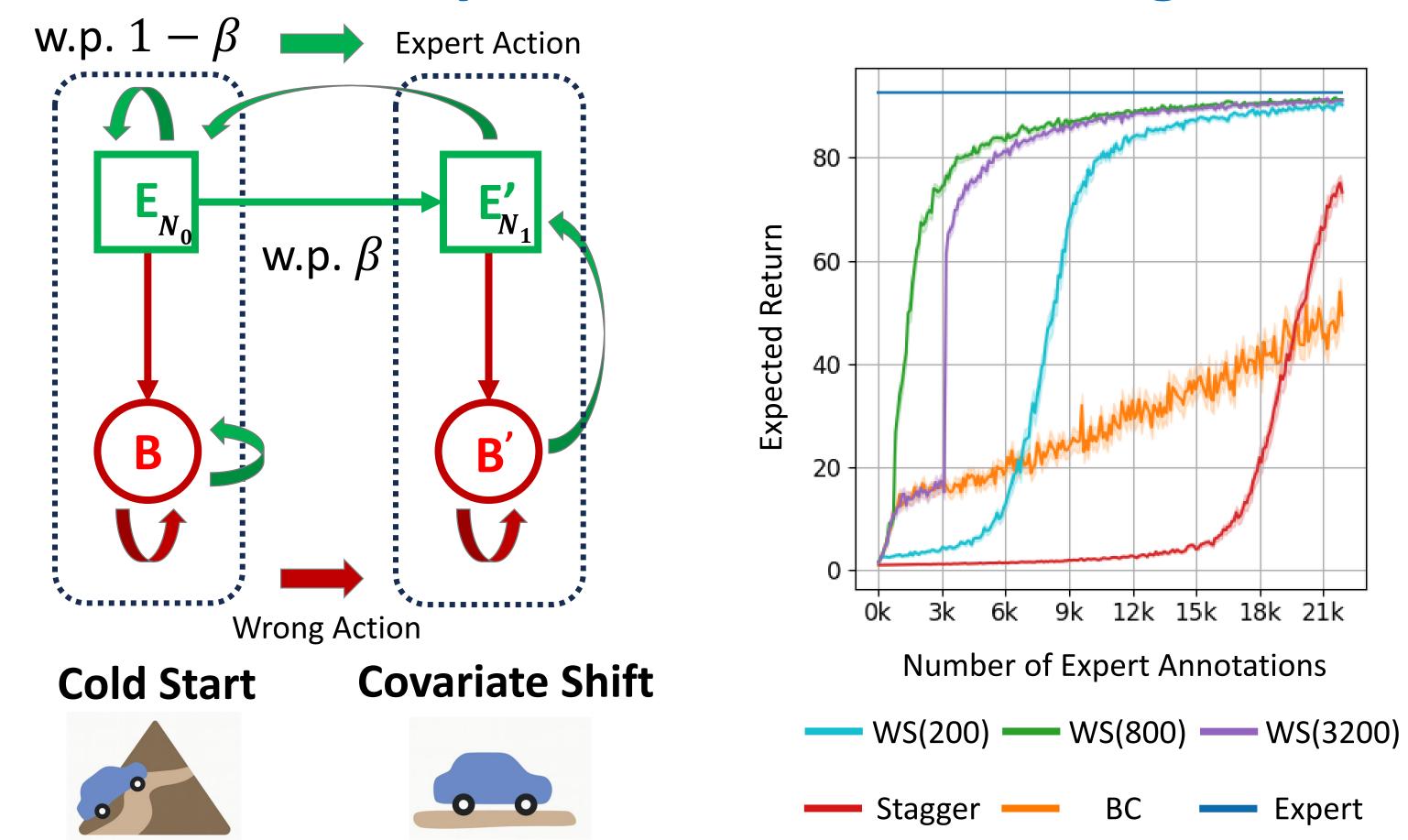
Sample Efficiency and Annotation Cost μ : recoverability

Real	lizable Expert	Policy Suboptimality	Annotation Cost	Type
	avior Cloning BC) [FBM24]	$\frac{H\log(B)}{N_{\text{off}}}$	HN _{off}	Offline Trajectories
St	agger (ours)	$\frac{\mu H \log(B)}{N_{\text{int}}}$	CN_{int}	Interactive State-wise
Warr	n-Stagger (WS) (ours)	$\min\left(H^2\frac{\log(B)}{N_{\text{off}}}, \mu H\frac{\log(B)}{N_{\text{int}}}\right)$	$HN_{off} + CN_{int}$	Hybrid

Continuous Control Experiment with MLPs



The Benefit of Hybrid Imitation Learning



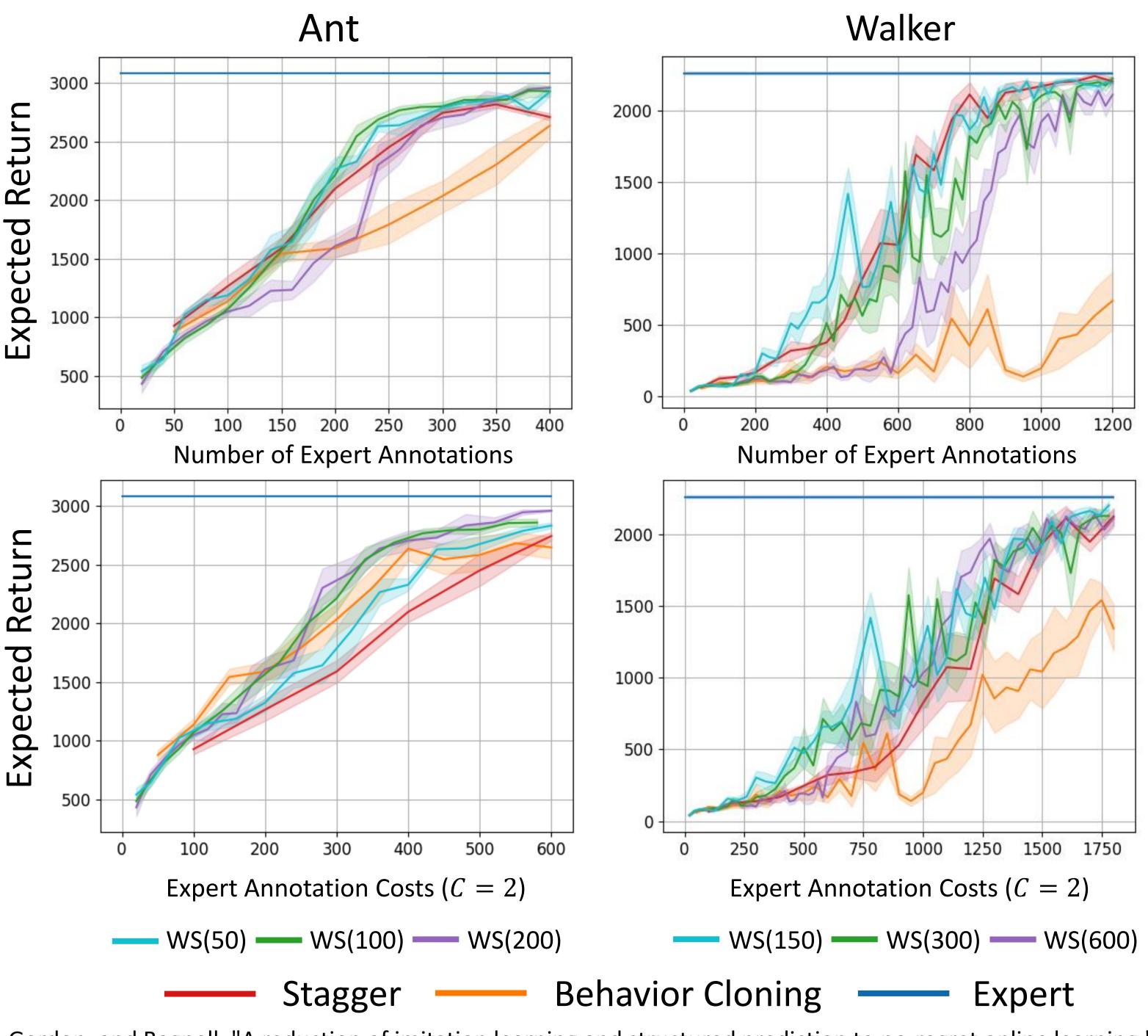
Theorem: For the above MDP, the following happens:

BC with $N_{\text{off}} = \Omega(S)$ offline trajectories is $\Omega(H)$ suboptimal.

Stagger with $N_{\mathrm{int}} = \Omega(HS)$ interactive annotations is $\Omega(H)$ suboptimal.

Warm-Stagger with $N_{\rm off} = O\left(\frac{S}{H}\right)$, $N_{\rm int} = O(1)$ achieves expert's performance.

Continuous Control with Different Annotation Costs



[RGB11] Ross, Gordon, and Bagnell. "A reduction of imitation learning and structured prediction to no-regret online learning." AISTATS, 2011. [FBM24] Foster, Block, and Misra. "Is behavior cloning all you need? under standing horizon in imitation learning." NeurIPS, 2024. [YL18] Yisong Yue, Hoang M Le https://sites.google.com/view/icml2018-imitation-learning