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1 The PAC-Bayes Theorem and application in GP Classifica-

tion

1.1 The PAC-Bayes Theorem

McAllester’s PAC-Bayes theorem (strengthened by [4]) characterizes the convergence of a stochastic
classifier’s empirical error to its generalization error. Fixed one ”prior” distribution P (h) over hypothesis
space H, the theorem can hold for all ”posterior” distribution Q(h) over H simultaneously, so in practice
we can find a data-dependent posterior distribution overH as the distribution of final stochastic classifier,

and achieve data-dependent gap error bound
D(Q||P )+ln n+1

δ

n . These generalization error bounds can be
sharper than trivially using traditional uniform convergence to bound its performance.

Theorem 1. For any data distribution over X ×{−1,+1}, fix a ”prior” P (h) over the hypothesis space

H, then with probability 1 − δ over the random draw of training examples S = {(x1, y1), . . . , (xn, yn)},
we have for all ”posterior” Q(h):

DBer(Eh∼QerS(h)||Eh∼QerD(h)) ≤
D(Q||P ) + ln n+1

δ

n
(1)

The PAC-Bayes theorem is the cornerstone of our testing the generalization error bounds. In the
project, we assume each classifier h(x) correspond to a set of underlying real valued functions f(x), i.e.
all f(x) such that h(x) = sgn(f(x)). We assume the prior distribution over {f : X → R} is a Gaussian
process. Since we want to keep our calculation of the parameters of the bounds tractable, we concentrate
on posterior processes which is also Gaussian, so that the relative entropy of these two processes proves
to have a closed form. Since h is a deterministic function of f , log sum inequality implies the relative
entropy of prior and posterior of h is bounded by that of the relative entropy of prior and posterior of
f(aka chain rule of relative entropy, merging outcomes only decreases relative entropy), formally:

D(Q(h)||P (h)) ≤ D(Q(f)||P (f))

Although PAC-Bayes depends only on the LHS, we upper bound it using the RHS, which has a nice
closed form.

1.2 Generative Model and inference

Throughout the whole project, we assume the generative model as follows: first sample a function
f : X → R from the underlying Gaussian process(defined by mean function µ(x) ≡ 0, and covariance
function k(x, x′) as a kernel function), then sample labels y|x ∼ p(y|f(x)), which can be in probit noise
model p(y|f(x)) = Φ(y(λf(x) + b)) or logistic noise model p(y|f(x)) = σ(yf(x)) = 1

1+exp (−yf(x)) . One

view of this restricted to training data is:

(1) sample f(x1), . . . , f(xn) from the underlying Gaussian process, denoted as vector fS .
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(2.1) sample yi|f(xi) ∼ p(y|f(xi)), ∀i = 1, 2, . . . , n.

(2.2) sample f(x), x /∈ {x1, . . . , xn} from the conditional Gaussian Process given x1, . . . , xn, whose
finite dimensional distribution (abbrev. f.d.d.) is

fZ |fS ∼ N(k(Z, S)k(S, S)−1fS , k(S, S)− k(Z, S)k(S, S)−1k(S,Z))

In this view, the conditional independence can be easily seen:

(y1, . . . , yn) ⊥⊥ {f(x), x /∈ {x1, . . . , xn}}|(f(x1), . . . , f(xn))

So the posterior process can be broken to two parts: the first is purely the posterior distribution of
f values on training data. (We use Gaussian approximation to keep tractability.) The second is the
distribution of other data points’ f(x), x /∈ {x1, . . . , xn}, conditioned on f(x1), . . . , f(xn), which is the
same as the corresponding part of the prior, which cancels out in calculating the relative entropy. To see
this, we note:

Prior process’ f.d.d.(wlog, we always include fS in f.d.d., i.e S ⊂ Z):

P (fZ) = P (fS)× p(fZ\fS |fS)

Posterior process’s f.d.d.:
P (fZ |S) = P (fS |S)× p(fZ\fS |fS)

So the relative entropy of the two processes is essentially the relative entropy of their finite dimensional
distribution constrained on the training set x1, . . . , xn. So it can be evaluated in closed form; assume

P (fS |S) = N(fS |KαS ,ΣS) (2)

where K = (k(xi, xj))n×n. Then:

D(Q||P ) =
1

2
(lnΣ−1

S K + tr((Σ−1
S K)−1) + αT

SKαS − n)

which is the main term of the gap error bound in (1).
The classification rule of the GP is to produce a posterior distribution over the f values of the testing

examples. Traditionally only the mean is valuable to make a prediction, while in selective classification
problems the variance can also be taken into account, because combining mean and variance together can
potentially give better characterization of whether the algorithm is sure to classify the testing example
or not. Note that in traditional SVM based selective classification, the algorithm only care about the
decision values and does not produce variances of examples at all.
For a testing point x∗, denote f∗ = f(x∗), k∗ = (k(x∗, x1), . . . , k(x∗, xn))

T , according to standard
properties of Gaussian distribution:

P (f∗|fS) = N(kT∗ K
−1fS , k(x∗, x∗)− kT∗ K

−1k∗)

So the posterior distribution of f∗ is:

P (f∗|S) = N(kT∗ αS , k(x∗, x∗)− kT∗ (K
−1 −K−1ΣSK

−1)k∗) (3)

In sum, the key of our approach to find a suitable approximation of the αS and ΣS in (2), then the
generic result of (3) can be directly applied.

2 A first approximation: GP with logistic regression + Laplace

approximation

In logistic regression, we assume noise model to be

P (yi|f(xi)) = σ(yif(xi))
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Then the log posteior can be represented as:

ln(p(fS |S)) =
n
∑

i=1

lnσ(yif(xi))− fT
S K−1fT

S + const

The Laplace approximation essentially finds a mode of the posterior to be the mean, then relate the
Hessian of the log-posterior at mode to the precision matrix, combine these two together to get a
Gaussian distribution to approximate the true posterior. if we take

fS = KαS

then optimizing fS is equivalent to optimizing αS . Suppose we get an optimal αS , then the mode of fS
is KαS , the Hessian wrt fS at KαS is:

−
1

2
(K−1 + diag(yiσ(−yif(xi)))n×1) := −

1

2
(W +K−1)

So picking such KαS as mean, and
ΣS = (W +K−1)−1

as covariance of posterior process costrained on training set, the predictive distribution of a new data
point x∗ is as (3):

µ(x∗) = k(x∗)
TαS

σ(x∗)
2 = k(x∗, x∗)− k(x∗)

T (K +W−1)−1k(x∗)

Then the relative entropy can be evaluated in closed form. If we denote

A = I +W 1/2KW 1/2

Then [4]

D(Q||P ) =
1

2
(ln |A|+Tr(A−1) + αT

SKIαS − n)

3 Assumed Density Filtering and Sparse Approximation

Assumed Density Filtering keep the functional form of posterior process to be Gaussian. The approach
only processes one example and update the posterior mean and covariance once per round. One view of it
is that the classification problem is transformed into a regression problem, by transforming classification
dataset into a equivalent regression dataset. Throughout this section, we use probit noise model instead
of logistic noise model to maintain compuational tractability:

p(yi|f(xi)) = Φ(λyi(f(xi) + b))

In ADF, we want to approximate

p(fS)× p(y1|f1)× . . .× p(yn|fn)

Z

sequentially using Gaussian distribution in each step.
The 0th step is approximation of p(fS) using a Gaussian process q0(fS) = N(µ0,Σ0), minimizing

D(p(fS)||q0(fS)), which is trivial because p(fS) is already Gaussian.
The 1st step is approximation of

p1(fS) = q0(fS)×
p(y1|f1)

Z1

using a Gaussian process
q1(fS) = N(µ1,Σ1)

minimizing D(p1(fS)||q1(fS)), which can be calculated using sufficient statistics matching because of
property of exponential family, which will be given in detail in the next subsection.
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Applying the same procedure on data point (xi, yi), i = 2, 3, . . . , n, the nth step is approximation of

pn(fS) = qn−1(fS)×
p(yn|fn)

Zn

using a Gaussian process
qn(fS) = N(µn,Σn)

minimizing D(pn(fS)||qn(fS)) in the same manner.
For computational efficiency, sometimes only a subset of training data points need to be used to update

the posterior distribution. The key idea of [3, 1] is to keep track of the posterior process depending
on only a subset of examples. There are two views of the updated process in [3](implicit updating
posterior mean and covariance matrix on full training data), [1](build posterior mean and covariance
function incrementally). They turn out to be equivalent, except differences in data point selection and
deletion(See appendix A for details).

3.1 Update in IVM: implicit updating mean and covariance matrix of the
full data

The idea of Informative Vector Machine(abbrev. IVM)[3] is to keep the posterior mean vector and
covariance matrix of full data, although implicitly for computatonal efficiency. In sparse approximation,
instead of processing all n data points, we process a selected subset I ⊂ {1, 2, . . . , n} of data points.
The point selection rules are deferred in following sections. In ith step of approximation, without loss
of generality, we are going to add data point xi into the model(if not, we can swap the selected nth

i

example with the original ith example). Denote the (i, i)th element of Σj as ζj,i. Because we are going to
approximate the posterior with a Gaussian in each step, the sufficient statistics matching is essentially
the first and second moments matching. These moments with respect to the posterior distribution can
be evaluated in closed form, if we denote

Zi(µi−1,Σi−1) =

∫

N(f ;µi−1,Σi−1)p(yi|fi)df =

∫

N(fi;µi−1,i, ζi−1,i)p(yi|fi)dfi (4)

as the normalization factor in each round, then it turns out that the moment can be connected with the
derivative of lnZi wrt µi−1 (more specifically, only connect with first and second order derivative wrt
their ith coordinate, µi−1,i), so that they can be evaluated in closed form [3]. Let

gi =
∂ ln(Zi)

∂µi−1,i
, νi =

∂2 ln(Zi)

∂µ2
i−1,i

So if we assume probit noise model, then denote:

ui−1,i = ci−1,i(µi−1,i + b)

ci−1,i =
yi

√

λ−2 + ζi−1,i

they are:

gi =
ci−1,iN(ui−1,i; 0, 1)

Φ(ui−1,i)

νi = gi(gi + ui−1,ici−1,i)

Then the update of µ and Σ only involves:

µi = µi−1 + giΣi−1ei

Σi = Σi−1 + νiΣi−1eie
T
i Σi−1

(5)

where ei is the ith canonical basis vector.
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Another view of this approach is we reduce the classification problem into a regression problem, by
transforming the original classification example to a hypothetical regression example in round i to be
N(mi; fi, β

−1
i )

mi =
gi
νi

+ µi−1,i

βi =
νi

1− νiζi−1,i

Given the points selected (denoted as set I = {n1, n2, . . . , n|I|}), the posterior process only depends on
the mi, βi values of the points {xi} selected. So we can safely ignore other data points in the training
set and only concentrate on the set I, note that the complexity scales with O(n|I|2), instead of O(n2) if
we process all the data points unselectively. It can be proven that

qi(fI) ∝ N(fI ; 0,KI)N(mI ; fI , B
−1
I )

The final approximation is

P (fI |S) = N((K−1
I +BI)

−1BImI , (K
−1
I +BI)

−1)

We denote all notations in resemblance with section 2:

β = (B−1
I +KI)

−1mI

B = I +B
1/2
I KIB

1/2
I

Then the relative entropy can be evaluated in closed form:

D(Q||P ) =
1

2
(ln |B|+Tr(B−1) + βTKIβ − |I|)

So the predictive distribution of a testing point is:

µ(x∗) = kI(x∗)
Tβ

σ(x∗)
2 = k(x∗, x∗)− kI(x∗)

T (KI +B−1
I )−1kI(x∗)

3.2 Update in SOGP: incremental way to build the parameter of covariance

The idea of Sparse Online Gaussian Process (abbrev. SOGP)[1] is to keep track with the mean and
covariance function of posterior process, which is equivalent to moment matching. Assume we have
processed x1, . . . , xi, µi(x) and ki(x, x

′) are the mean and covariance function of approximate posterior
process qi(.), kx,i = (k(x, x1), . . . , k(x, xi))

T .

µi(x) = kTx,iαi = kTx

(

αi

0

)

ki(x, x
′) = k(x, x′) + kTx,iCikx′,i = k(x, x′) + kTx

(

Ci 0
0 0

)

kx

So using the reasoning of moment matching lemma, the first and second order moment of posterior
should be [1]:

µi(x) = µi−1(x) + giki−1(x, xi)

ki(x, x
′) = ki−1(x, x

′) + νiki−1(x, xi)ki−1(xi, x
′)

(6)

gi, νi are the first and second order derivatives of (4) wrt µi−1,i, same as that of IVM. Then all extending
updates can be presented in matrix form:

αi =

(

αi−1 + giCi−1ki
gi

)

Ci =

(

Ci−1 + νi(Ci−1ki)(Ci−1ki)
T νi(Ci−1ki)

νi(Ci−1ki)
T νi

) (7)
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3.3 The difference in the two approaches

3.3.1 The selection rule of IVM

The selection of training examples into active set is based on using differential entropy score, i.e. selecting
the data point into the subset which make the posterior differential entropy smallest. Since we update
the posterior based on one example each time, then the update can be evaluated efficiently: The point
selection rule is to achieve minimum differential entropy in the updated distribution, to minimize ln |Σi|,
i.e. to maximize

− ln |Σ−1
i−1Σi| = −

1

2
ln(1− νi,ni

ζi−1,ni
)

3.3.2 The selection and deletion rule of SOGP

A major difference between SOGP and IVM is that SOGP is online, i.e. it has to decide whether to
keep an example immediately it sees the example. In contrast, in each round, IVM can look at all
training data in a batch to decide which example to add in the next round. If SOGP exceeds its memory
constraint, it will delete an example in the active set. Since SOGP’s online manner, one heuristic may
be to do several sweeps of data to take full advantage of data. Note in this approach the posterior may
highly overfit if #sweeps are large, because the example swept are not fresh.

If the new data point xi lies approximately in the span of the selected examples(in feature space
view):

k(x, xi) = kTx,i−1êi

Then the updates(call it a reduced update) can be performed without extending the α and C matrix:

αi = αi−1 + giCi−1ki + êi

Ci = Ci−1 + νi(Ci−1ki + êi)(Ci−1ki + êi)
T

If xi does not exactly lies in span, the approximate êi vector can be easily evaluated:

êi = K−1
i−1ki

If the number of point stored exceeds the memory constraint d, we need to perform a deletion, i.e.
to delete a basis vector. Firstly we select the point that has the minimum square error if it is deleted,
which turns out to be

i = argmin
|αi|

Qi,i

where Q = K−1. Wlog, suppose i = d + 1, it needs to delete the (d + 1)th element because of memory
constraint (otherwise swap the to-be-deleted element with the (d+1)th one), while the current parameters
are as follows:

Q =

(

Q(d) Q∗

Q∗T q∗

)

= K−1, C =

(

C(d) C∗

C∗T c∗

)

α =

(

α(d)

α∗

)

(8)

Then we perform the deletion, but still doing the reduced update on this data point to take advantage
of it [1]:

α = α(d) − α∗Q
∗

q∗

C = C(d) + c∗
Q∗Q∗T

q∗2
−

1

q∗
[Q∗C∗T + C∗Q∗T ]

Q = Q(d) −
Q∗Q∗T

q∗
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Figure 1: point selected by IVM
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Figure 2: point selected by SOGP

3.4 Illustrative example in point selection

Here we present an illustrative synthetic example in a synthetic 2d data to demonstrate the point
selection rule in the IVM as a sanity check of the experiments in next section. The problem is a binary
classification one, with three components: normal distribution N((−5, 0), I2), N((0, 0), I2), N((5, 0), I2),
each component with mixing weights 1/3. We assign the component N((0, 0), I2) to one class, and
the rest to the other. The experiment uses RBF kernel, Setting the hyperparameters with bandwidth
parameter 1, and function scale parameter 1, probit noise variance 1 and offset 0. Using 200 training
data. Sparsity parameter |I|(#points selected in final approximation) is set 50. The red and blue points
are from two classes, the green(resp. cyan) points are from blue(resp. red) class and marked as points
selected in final approximation. The points selected by IVM(resp. SOGP) is shown in Figure 1(resp.
Figure 2).

As shown by the figures, the ”informative vectors” selected tend to lie close to the boundary of a
certain class. What is more interesting, there are not only points close to decision boundary, but also
points that are close to the boundary of support set.

4 Experiments Implementation

4.1 Testing the PAC-Bayesian Bounds of Gibbs classifier

In this project we conducted some experiments on UCI dataset: breast, bupa, haberman, hepatitis, hypo,
pima. All experiments are based on nonoverlapping sets of 100 training examples and 200 testing exam-
ples, each dimension of features normalized to have mean 0 and standard deviation 1. All experiments
uses RBF kernels, where the x-scale and y-scale factor is set to 1. Using the IVM [3], whose posterior
relative entropy proved empirically favorable compared with full logistic regression based on full training
set in [4]. The full logistic regression can also produce similar results, but much more time consuming.

According to PAC-Bayes Theorem (1), the estimate of upper bound of generalization Gibbs error
depend on the empirical Gibbs error and the gap error bound. In the experiments, we set the IVM con-
taining 30 active examples for a relatively sparse model. δ value is set to be 0.5. The following plots’ x axis

is testing error, and y axis is the estimated upper bound D−1
Ber(Ew∼QerS(w),

D(Q||P )+ln n+1

δ

n )(D−1(p, ǫ) =
inf{q ≥ p : DBer(p||q) ≥ ǫ}), and the line is y = x as a reference. The experiments are over 100 runs
and each pair of (test error, estimated upper bound) is plotted as a point in the scatterplot. From the
plots we see although some bounds tend to be trivial (exceeding 0.5), but they still have some linear
relationship with the test error, although different method’s strength of linear relationship are different.

Figures 3-8 provide a comparison among the three algorithms. For full logistic regression and SOGP,
their Gibbs error is almost the same, both less than the IVM’s Gibbs error. This is not surprising because
they both incorporate full training data information into the posterior process, while IVM completely
ignore the part of point not selected in the model. Taking a closer look at the upper bound estimate,
we can see that the relative entropy term of IVM is slightly less than that of SOGP and full logistic
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Figure 3: breast
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Figure 4: bupa
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Figure 5: bupa
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Figure 6: hepatitis
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Figure 7: hypo
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Figure 8: pima

regression, and the Gibbs training error is greater(not shown in report). In the datasets above, the
empirical Gibbs error dominates. But in some medium scale and easier datasets(like MNIST 2v3), the
gap error bound term dominates, we will see IVM is more favorable than full logistic regression because
of dominance of relative entropy term.

4.2 Using validation set to determine hyperparameters

The following experiments are based on using IVM setting |I| = 300, with nonoverlapping sets of 3000
training examples and 3000 validation examples, using MNIST 2v3 dataset. The preprocessing might
be different from [4] because we employ PCA and normalized every vector in preprocessing. We used a
grid of parameter candidate set w,C for kernel

k(x, x′) = C exp (−
w||x− x′||2

2d
)

d is the dimensionality of x. The range of w,C is {10−4, 10−3, . . . , 103}×{101, 102, . . . , 108}. We list the
Gibbs training and test error, 0-1 training and test error, gap error bound and Gibbs test upper bound
estimate as follows (Tables 1-6):

Table 1: Gibbs training error

w\C 101 102 103 104 105 106 107 108

10−4 0.4994 0.4935 0.4424 0.2719 0.1269 0.0836 0.0712 0.0675
10−3 0.4932 0.4412 0.2742 0.1281 0.0793 0.0724 0.0654 0.0495
10−2 0.4395 0.2723 0.1284 0.0777 0.0689 0.0535 0.0282 0.0204
10−1 0.2729 0.1220 0.0782 0.0510 0.0253 0.0167 0.0157 0.0160
100 0.1246 0.0615 0.0290 0.0169 0.0147 0.0143 0.0137 0.0140
101 0.0489 0.0245 0.0204 0.0196 0.0204 0.0197 0.0203 0.0201
102 0.2829 0.2752 0.2743 0.2742 0.2746 0.2768 0.2731 0.2726
103 0.4541 0.4487 0.4492 0.4486 0.4489 0.4487 0.4498 0.4492
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Table 2: Gibbs test error

w\C 101 102 103 104 105 106 107 108

10−4 0.4998 0.4932 0.4411 0.2669 0.1204 0.0779 0.0665 0.0622
10−3 0.4930 0.4398 0.2701 0.1214 0.0730 0.0671 0.0615 0.0488
10−2 0.4377 0.2682 0.1220 0.0721 0.0654 0.0530 0.0354 0.0312
10−1 0.2685 0.1152 0.0734 0.0512 0.0327 0.0284 0.0274 0.0271
100 0.1186 0.0612 0.0360 0.0290 0.0290 0.0284 0.0281 0.0276
101 0.0569 0.0400 0.0380 0.0369 0.0381 0.0373 0.0378 0.0378
102 0.3189 0.3147 0.3140 0.3139 0.3136 0.3155 0.3139 0.3118
103 0.4999 0.4999 0.4999 0.4999 0.5000 0.4999 0.5000 0.4999

Table 3: Gap error bound

w\C 101 102 103 104 105 106 107 108

10−4 0.0040 0.0044 0.0049 0.0068 0.0106 0.0155 0.0223 0.0298
10−3 0.0040 0.0046 0.0063 0.0102 0.0152 0.0221 0.0304 0.0421
10−2 0.0042 0.0060 0.0098 0.0150 0.0227 0.0347 0.0503 0.0600
10−1 0.0056 0.0097 0.0156 0.0275 0.0442 0.0553 0.0578 0.0571
100 0.0100 0.0201 0.0368 0.0494 0.0532 0.0532 0.0541 0.0529
101 0.0280 0.0452 0.0498 0.0512 0.0507 0.0511 0.0507 0.0507
102 0.0458 0.0526 0.0534 0.0534 0.0535 0.0536 0.0534 0.0535
103 0.0461 0.0527 0.0534 0.0535 0.0535 0.0535 0.0535 0.0535

Table 4: Estimated Gibbs error upper bound

w\C 101 102 103 104 105 106 107 108

10−4 0.5453 0.5419 0.4934 0.3268 0.1824 0.1427 0.1402 0.1476
10−3 0.5397 0.4901 0.3276 0.1818 0.1369 0.1412 0.1458 0.1395
10−2 0.4864 0.3244 0.1813 0.1344 0.1371 0.1358 0.1164 0.1131
10−1 0.3228 0.1736 0.1358 0.1215 0.1033 0.1002 0.1012 0.1015
100 0.1777 0.1229 0.1010 0.0947 0.0945 0.0932 0.0926 0.0919
101 0.1185 0.1036 0.1017 0.1019 0.1026 0.1020 0.1025 0.1024
102 0.4307 0.4331 0.4339 0.4338 0.4341 0.4365 0.4321 0.4318
103 0.6057 0.6109 0.6124 0.6119 0.6121 0.6120 0.6128 0.6123

Table 5: 0-1 training error

w\C 101 102 103 104 105 106 107 108

10−4 0.5013 0.4357 0.0507 0.0460 0.0453 0.0477 0.0443 0.0457
10−3 0.3803 0.0587 0.0500 0.0480 0.0467 0.0490 0.0420 0.0250
10−2 0.1030 0.0487 0.0487 0.0433 0.0423 0.0193 0.0103 0.0083
10−1 0.0423 0.0497 0.0400 0.0180 0.0090 0.0053 0.0057 0.0060
100 0.0380 0.0167 0.0087 0.0053 0.0040 0.0027 0.0030 0.0043
101 0.0057 0.0017 0.0010 0.0007 0.0010 0.0010 0.0007 0.0003
102 0 0 0 0 0 0 0 0
103 0 0 0 0 0.0007 0 0 0
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Table 6: 0-1 test error

w\C 101 102 103 104 105 106 107 108

10−4 0.5113 0.4353 0.0450 0.0397 0.0403 0.0383 0.0403 0.0390
10−3 0.3583 0.0513 0.0423 0.0413 0.0383 0.0410 0.0373 0.0247
10−2 0.1017 0.0443 0.0427 0.0403 0.0410 0.0207 0.0160 0.0147
10−1 0.0407 0.0407 0.0353 0.0217 0.0150 0.0140 0.0123 0.0110
100 0.0330 0.0200 0.0113 0.0110 0.0113 0.0117 0.0120 0.0113
101 0.0113 0.0103 0.0103 0.0103 0.0097 0.0103 0.0097 0.0093
102 0.0093 0.0070 0.0077 0.0097 0.0097 0.0080 0.0090 0.0080
103 0.0370 0.0410 0.0427 0.0447 0.0460 0.0380 0.0403 0.0450

The tables shows the relationship of training and test error with respect to kernel paramameter. Seen
from Gibbs test error, w ≈ 0.1, C ≈ 108 achieve the best Gibbs test error, which might exceed the limit
of our grid search. It is interesting that when w is large, the Gibbs error is large, but the 0-1 error is
still relatively small. What is more, the 0-1 training error monotonically decrease to 0 and 0-1 test error
first decrease then increase, which gives a hint of overfitting as C fixed, and keep w increasing. On the
other hand, both training Gibbs error and testing Gibbs error first decrease then increase, indicating the
increasing uncorrelatedness of training data point and test data point, as w increasing.

Taking a closer look at each value, fix C = 100, let w varies, then we get a plot of relevant quantities
as Figure 4.2. The figure shows the estimated Gibbs error upper bound is a good indicator of the true
Gibbs error. It may be promising to use the upper bound to do hyperparameter selection as well, which
may be a future direction.

Figure 9: red: PAC-Bayes upper bound, blue: test Gibbs error, green: training Gibbs error, yellow: gap
error bound values
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4.3 Using type II maximum likelihood to determine hyperparameters

There are 4 hyperparameters in the model: the horizontal/vertical scale of kernel, C and w, and the
probit noise offset and variance b and λ. the type II maximum likelihood is a reasonable approach to
determine them, because marginal likelihood automatically provide the trade-off of model fitting and
model complexity. It turns out that using some approximation, all marginal likelihood (and their deriva-
tives wrt hyperparameters) can be evaluated in closed form, thus grid search of hyperparameters(curse
of dimensionality) can be avoided. But it is not clear whether the result here is comparable with that of
previous section, because Gibbs error in that may not be a good criterion for model comparison.
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4.3.1 Determining the kernel parameters

Unfortunately directly evaluating the full data likelihood is intractable, because it can be seen as an
integration on a rectangle area over a Gaussian density. In ADF framework, since we have converted the
classification examples to equivlent hypothetical regression example, maximizing the likelihood of these
example is a reasonable choice, which can be evaluated in closed form:

p(m) =

∫

N(f ; 0,K)N(m; f,B−1)df = N(m; 0,K +B−1)

Taking derivatives of ln p(m) wrt Σ = K +B−1, we get

∂ ln p(m)

∂Σ
=

1

2
(−Σ−1 +Σ−1mmTΣ−1)

then because Σ = K +B−1 is only a linear relationship,

∂Σi,j

∂C
= exp (−

w||xi − xj ||
2

2d
),
∂Σi,j

∂w
= C(−

||xi − xj ||
2

2d
) exp (−

w||xi − xj ||
2

2d
)

so the derivative can be evaluated:

∂ ln p(m)

∂C
=

∂ ln p(m)

∂Σ
·
∂Σ

∂C
,
∂ ln p(m)

∂w
=

∂ ln p(m)

∂Σ
·
∂Σ

∂w

We can alternate between optimizing the kernel parameter and the IVM to do hyperparameter selection.

4.3.2 Determining the noise parameters

maximizing ln p(m) seem hard, because the parameters only indirectly depend on b and λ value. One
way is to provide a variational lower bound of the true likelihood ln p(y) and maximize the lower bound.

ln p(y)

= ln (

∫

p(y1|f1) . . . p(yN |fN )p(f)df)

= ln (

∫

p(y1|f1) . . . p(yN |fN )p(f)
q(f1) . . . q(fn)

q(f1) . . . q(fn)
df)

≥

∫

ln (
p(y1|f1) . . . p(yN |fN )p(f)

q(f1) . . . q(fn)
)q(f1) . . . q(fn)df

=

N
∑

n=1

∫

ln (p(yn|fn))q(fn)dfn + const

The relevant term can be upper bounded:

N
∑

n=1

∫

ln p(yn|fn)q(fn)dfn ≤

N
∑

n=1

ln (

∫

p(yn|fn)q(fn)dfn) =

N
∑

n=1

lnZn

Taking derivatives of
∑N

n=1 lnZn wrt u (recall notation in section 3), we get

∂ lnZn

∂un
=

N(un)

Φ(un)

then because
∂un

∂b
= cn,

∂un

∂λ
= −

1

2
unc

2
n(−2λ−3)

so the derivative can be evaluated:

∂
∑N

n=1 lnZn

∂b
=

N
∑

n=1

gn,
∂
∑N

n=1 lnZn

∂λ
= λ−3

N
∑

n=1

gnuncn
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Figure 10: breast

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 

 
GPC w/o var
GPC w/ var
SVM

Figure 11: bupa
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Figure 12: haberman
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Figure 13: hepatitis
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Figure 14: hypo
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Figure 15: pima

The experiments are based on using IVM setting |I| = 300, with 3000 training examples, using MNIST
2v3 dataset, same as previous section. When considering only the two kernel hyperparameters (fixed
b = 0, λ = 1), after 20 rounds of iteration the results have been stable, those selected are approximately:
w = 21.84, C grows unbounded. When considering all four hyperparameters, it seems the b, λ parameters
quite depend on the C values and does not converge.

4.4 Trials in using mean and standard deviation of posterior function value
for selective classification

For selective classification problems, given a coverage c, we need to select c-fraction of examples to make
decision so that its testing error is as small as possible. For a specific testing point (x∗, y∗), Gaussian
Process produces not only the mean µ(x∗) but also the standard deviation σ(x∗) of posterior function
value of the f(x∗) (which is clearly a Gaussian distribution), so intuitively if the distribution of f(x∗) is
not only have large absolute value, but also highly concentrated, it is good. The Gibbs error of such a
point is

eGibbs(x∗, t∗) = Φ(
−y∗µ(x∗)

σ(x∗)
)

For the ratio |µ(x∗)
σ(x∗)

|, if it is closer to zero, then we should regard it as more uncertain. So a heuristic

may be sorting the testing examples in descending order of the ratio and always pick top c-quantile of
the examples to be classified and reject the remaining examples to achieve coverage c.

we employ this strategy and compared it to using purely |µ(x∗)| values for sorting, and the traditional
SVM margin approach. Below is the risk-coverage tradeoff curve, averaged over 100 runs of experiment,
the setting are exactly the same as section 4.1: x axis is the coverage requirement Pr(makes a prediction),
y axis is the risk, i.e. the estimate of Pr(the prediction mistakes|makes a prediction) in testing data. Note
the comparison of GP with SVM may be unfair, because not only the sorting rule but also the classifier
is different. The conclusions we draw from these figures are too weak; there is only some improvements
in bupa dataset, and the other datasets are either unfair or indistinguishable.
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A The equivalence of the two approaches

Since IVM and SOGP are both rooted from the ADF framework, processing one data at a time, it
is no surprise that they are equivalent. At first glance the update formula of the two approaches are
quite different. IVM maintains the covariance matrix of full training data(although implicitly), while
SOGP maintains the parameters (related to only a subset of data) of mean and covariance function. For
completeness, we point out the equivalence of these two views.

The IVM maintains the posterior mean and covariance of the training example implicitly: in each
step it updates as (5) while in Sparse Online maintains the Ci and αi to track posterior mean function
and covariance function explicitly, in each step is updates as (6), more specifically the parameters are
updated as (7).

We can prove by induction that µi = (µi(xs), s = 1, 2, . . . , n), Σi = (ki(xs, xt), s, t = 1, 2, . . . , n).

A.1 From mean/covariance function to mean/covariance matrix of training
data

Base case: for i = 0, µ(x) ≡ 0, k0(x, x
′) ≡ k(x, x′), so plugging in the training data X, µ0 = 0,Σ0 = K.

Inductive case: assume the function view is equivalent to matrix view before i−1, we have ki−1(X,xi) =
Σi−1ei. Then if we have the function update, the matrix update can be performed by plugging the x, x′

values to be the whole training data,

µi = µi−1 + giki−1(X,xi) = µi−1 + giΣi−1ei

Σi = Σi−1 + νiki−1(X,xi)ki−1(xi, X) = Σi−1(νieie
T
i )Σi−1

A.2 From mean/covariance matrix of training data to mean/covariance func-
tion

Base case: for i = 0, µ0 = 0,Σ0 = K with no data seen, so the posterior mean and covariance function
stay the same: µ(x) ≡ 0, k0(x, x

′) ≡ k(x, x′).
Inductive case: assume the function view is equivalent to matrix view before i−1, we have ki−1(X,xi) =
Σi−1ei. Then if we have the matrix update, the αt, Ct parameters of the function update can be figured
out. Because

fx|fS ∼ N(fx; k
T
xK

−1fS ; k(x, x)− kTxK
−1kx)

So the mean function and covariance function deducted by the matrix update is:

µi(x) = kTxK
−1µi = kTx k

−1µi−1 + kTxK
−1Σi−1giei

ki(x) = k(x, x)−kTxK
−1kx+kTxK

−1ΣiK
−1kx = k(x, x)−kTxK

−1kx+kTxK
−1Σi−1K

−1kx+kTxK
−1Σi−1νΣi−1K

−1kx

Because ki−1(x, xi) = kTxK
−1Σi−1, the predictive process is equivalent to directly function updates.
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A.3 The equivalence of the update formulae

We can also show that the update formulae are equivalent. The update essentially keep the connection
of

µi = K

(

αi

0

)

Σi = K +K

(

Ci 0
0 0

)

K

In this view it can be easily proved by induction that the two kinds of updates:
(1) update wrt µ, Σ:

µi = µi−1 + giΣi−1ei

Σi = Σi−1 + νiΣi−1eie
T
i Σi−1

(2) update wrt α, C(note that αi, Ci has one more dimension than αi−1, Ci−1):

(

αi

0

)

=





αi−1

0
0



+ gi





Ci−1ki
1
0





(

Ci 0
0 0

)

=





Ci−1 0 0
0 0 0
0 0 0



+ νi





Ci−1ki
1
0





(

(Ci−1ki)
T 1 0

)

are equivalent.

14


