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Introduction

I Problem: Linear Independent Component Analysis (ICA)
I x = As, A ∈ Rn×m is a “mixing matrix” of full column rank,

s ∈ Rm has independent entries
I Given iid samples x1, . . . , xN
I Goal: (approximately) recover A.



Motivation: Blind Source Separation
I m people talk at a cocktail party
I n speakers receive voices with mixing weights A
I Find A in order to “de-mix” the signals



Motivation: Feature Extraction [Hoyer and Hyvärinen]
I Linear image synthesis model

x = s1 · A1 + s2 · A2 + . . .+ sn · An

I ICA as feature extracton tool



Motivation: Learning a Parallelepiped [Frieze, Jerrum,
Kannan]

I Given: random samples uniformly from a parallelepiped
I Goal: identify its edges (columns of A)
I si ∼ U([ai , bi ]) independent



Comparison with Principal Component Analysis(PCA)

I PCA: Find linear transformation W , such that Wx is a set of
uncorrelated random variables that minimize the
reconstruction error minU E‖x − UWx‖2

I ICA: Find linear transformation W , such that Wx is a set of
independent random variables.

I As we will see PCA will be a preprocessing step of ICA
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Preprocessing: Centering
Lemma
We can assume that Es = 0.

Proof.
Since x − Ex = A(s − Es), let x̃ := x − Ex , s̃ := s − Es, we have
that s̃ still has independent entries and

x̃ = As̃



Preprocessing: Whitening
Lemma
We can further assume that A is an m ×m orthogonal matrix, and
each entry of s is of unit variance.

Proof.
Consider Σ = ExxT that has reduced SVD Σ = UDUT , and
Λ = EssT . Then let x̃ := D−1/2UT x and s̃ := Λ−1/2s , we have
that

x̃ = Ãs̃

where Ã = D−1/2UTAΛ1/2 is a m ×m orthogonal matrix.



Identifiability Problem
I Example: (

x1
x2

)
=

(
1 0
0 1

)(
s1
s2

)
I Observation: If s1, s2 ∼ N(0, 1), then the plausible A’s may

not be unique!
I An altenative explanation would be:(

x1
x2

)
=

( 1√
2 − 1√

2
1√
2

1√
2

)(
z1
z2

)
where z1, z2 ∼ N(0, 1)

I Claim: so long as there are two Gaussian independent
components, cannot hope to recover the columns of A
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Previous Work [Hyvärinen, Oja; Frieze, Jerrum, Kannan]
I CLT implies that sums of independent random variables will

be Gaussian like
I Intuition: find transformation W such that each coordinate of

Wx is as far from Gaussian as possible
I e.g. Find w maximizing(minimizing) kurtosis of wT x :

max
w :‖w‖=1

E(wT x)4 − 3



Previous Work: Method of Moments [Cardoso]

I Suppose the skewness of si , i.e. skew(si ) = Es3
i are all

nonzero
I Then

Ê(x⊗3)→ E(x⊗3) =
∑

i
skew(si )A⊗3

i

I Decompose tensor Ê(x⊗3) to recover A



Previous Work: Method of Moments [Cardoso]

I Suppose the kurtosis of si , i.e. kurt(si ) = Es4
i − 3 are all

nonzero
I Then some statistic of x converges to∑

i
kurt(si )A⊗4

i

I Decompose the tensor to recover A
I Sanity check: skew(s) = 0, kurt(s) = 0 if s is Gaussian
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Algorithm Description

Fourier PCA
I Input: samples x1, . . . , xN .
I Output: columns of mixing matrix Â1, . . . , Âm
I 1. Fourier Weights:

Draw u ∼ N(0, σ2Im), let wi = ejuT xi
1
N
∑

i ejuT xi
, where

j =
√
−1 is the imaginary unit, for i = 1, 2, . . . ,N.



Algorithm Description (Cont’d)

I 2. Fourier Covariance:
Let M̂ju = 1

N
∑

i wi (xi − m̂ju)(xi − m̂ju)T , where
m̂ju = 1

N
∑

i wixi .
I 3. Eigendecomposition:

Let E1, . . . ,Em be the unit eigenvectors of M̂ju.
I 4. Postprocessing:

For each Ei , find θi ∈ [0, 2π) such that ‖Re(Eiejθi )‖ is
maximized. Let Âi = Re(Eiejθi ).



Key Observation: Cumulant Generating Function
Definition
The cumulant generating function (c.g.f.) of m-dimensional
random variable X is ψX : Cm → C

ψX (t) = lnEetT X

Observation: in ICA problem, the c.g.f. of x is decomposable.

ψx (t) = lnEetT x

= lnEetT As

= ln(EetT A1s1 · ·EetT Amsm )

=
m∑

i=1
lnEetT Ai si

=
m∑

i=1
ψsi (AT

i t)



Key Observation: Cumulant Generating Function

Consider the Hessian of ψx (t):

D2ψx (t) =
m∑

i=1
D2φsi (AT

i t)

=
m∑

i=1
ψ

′′
si (A

T
i t)AiAT

i

= A diag(ψ
′′
s1(AT

1 t), . . . , φ
′′
sm (AT

mt))AT

= A diag(ψ
′′
s1(AT

1 t), . . . , φ
′′
sm (AT

mt))A−1

Observation: D2ψX (t)’s eigenvectors are precisely columns of A



The Hessian

Lemma
The Hessian D2ψX (t) can be written as

Mt = Ewt(X )(X −mt)(X −mt)T

where wt(x) = etT x

EetT X is the “exponential” weight, mt = Ewt(X )X
is the “exponential” weighted mean.

Proof.
By standard calculus.
Note that Mt can be estimated by M̂t using random samples.



Why Complex Numbers?

Key idea: Concentration of M̂t towards Mt
I i.e. Êwt(x)(x − m̂t)(x − m̂t)T → Ewt(x)(x −mt)(x −mt)T

I We would like the concentration applicable to a broad family
of distributions

I For heavy tailed x , EetT x may even be undefined for any real t
I Solution: take t = ju, where u ∈ Rm and j is the imaginary

unit



Additional Remarks

I Random choice of u: affect Mju’s eigenvalue spacings
I If all si ’s are non-Gaussian, then with proabability 1,

(ψ
′′
s1(jAT

1 u), . . . , ψ
′′
sm (jAT

mu)), the eigenvalues of Mju, are
distinct

I This is crucial to ensure the eigenvector recovery
I More general results: tensor decomposition of Ddψx (t)|t=ju

for d > 2.
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Consistency Theorem

Theorem (Informal)
Suppose we have N iid samples drawn from model x = As, where
A ∈ Rm×m is an orthogonal matrix and si ’s are independent.
Moreover, each si is far from Gaussian. Then with high probability
(over the random draw of u and the samples), Algorithm Fourier
PCA recovers the columns of A such that

‖Âi − Ai‖ = o(1)

for all i = 1, 2, . . . ,m, as N →∞.



Discussion

I Provides a systematic way of utilizing non-Gaussianity in ICA
problem

I Cumulant generating function viewpoint unifies method of
moments approaches

I New computationally efficient algorithm using only
second-order moments

I Open problem: independent subspace analysis: subsets of {si}
are independent, recovering the respective subspaces of A.



Thank you! Questions?
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