Fourier PCA and Robust Tensor Decomposition

Navin Goyal, Santosh Vempala and Ying Xiao

Presented by Chicheng Zhang

Nov. 2015

Outline

Introduction

Background

Previous Work

Main Algorithm

Results

Introduction

- ► Problem: Linear Independent Component Analysis (ICA)
- ▶ x = As, $A \in \mathbb{R}^{n \times m}$ is a "mixing matrix" of full column rank, $s \in \mathbb{R}^m$ has independent entries
- Given iid samples x_1, \ldots, x_N
- ► Goal: (approximately) recover A.

Motivation: Blind Source Separation

- m people talk at a cocktail party
- n speakers receive voices with mixing weights A
- ► Find A in order to "de-mix" the signals

Motivation: Feature Extraction [Hoyer and Hyvärinen]

► Linear image synthesis model

$$= s_1 \cdot + s_2 \cdot + \cdots + s_n \cdot$$

$$x = s_1 \cdot A_1 + s_2 \cdot A_2 + \ldots + s_n \cdot A_n$$

► ICA as feature extracton tool

Motivation: Learning a Parallelepiped [Frieze, Jerrum, Kannan]

- Given: random samples uniformly from a parallelepiped
- ► Goal: identify its edges (columns of A)
- $s_i \sim U([a_i, b_i])$ independent

Comparison with Principal Component Analysis(PCA)

- ▶ PCA: Find linear transformation W, such that Wx is a set of uncorrelated random variables that minimize the reconstruction error min $_U \mathbb{E} ||x UWx||^2$
- ▶ ICA: Find linear transformation *W*, such that *Wx* is a set of *independent* random variables.
- ► As we will see PCA will be a preprocessing step of ICA

Outline

Introduction

Background

Previous Work

Main Algorithm

Results

Preprocessing: Centering

Lemma

We can assume that $\mathbb{E}s = 0$.

Proof.

Since $x - \mathbb{E}x = A(s - \mathbb{E}s)$, let $\tilde{x} := x - \mathbb{E}x$, $\tilde{s} := s - \mathbb{E}s$, we have that \tilde{s} still has independent entries and

$$\tilde{x} = A\tilde{s}$$

Preprocessing: Whitening

Lemma

We can further assume that A is an $m \times m$ orthogonal matrix, and each entry of s is of unit variance.

Proof.

Consider $\Sigma = \mathbb{E} x x^T$ that has reduced SVD $\Sigma = UDU^T$, and $\Lambda = \mathbb{E} s s^T$. Then let $\tilde{x} := D^{-1/2} U^T x$ and $\tilde{s} := \Lambda^{-1/2} s$, we have that

$$\tilde{x} = \tilde{A}\tilde{s}$$

where $\tilde{A} = D^{-1/2}U^TA\Lambda^{1/2}$ is a $m \times m$ orthogonal matrix.

Identifiability Problem

Example:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix}$$

- ▶ Observation: If $s_1, s_2 \sim N(0, 1)$, then the plausible A's may not be unique!
- ► An altenative explanation would be:

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} z_1 \\ z_2 \end{pmatrix}$$

where $z_1, z_2 \sim N(0,1)$

Claim: so long as there are two Gaussian independent components, cannot hope to recover the columns of A

Outline

Introduction

Background

Previous Work

Main Algorithm

Results

Previous Work [Hyvärinen, Oja; Frieze, Jerrum, Kannan]

- ► CLT implies that sums of independent random variables will be Gaussian like
- ► Intuition: find transformation W such that each coordinate of Wx is as far from Gaussian as possible
- e.g. Find w maximizing(minimizing) kurtosis of w^Tx :

$$\max_{w:||w||=1} \mathbb{E}(w^T x)^4 - 3$$

Previous Work: Method of Moments [Cardoso]

- ▶ Suppose the skewness of s_i , i.e. $\mathsf{skew}(s_i) = \mathbb{E} s_i^3$ are all nonzero
- ► Then

$$\hat{\mathbb{E}}(x^{\otimes 3}) \to \mathbb{E}(x^{\otimes 3}) = \sum_{i} \mathsf{skew}(s_i) A_i^{\otimes 3}$$

▶ Decompose tensor $\hat{\mathbb{E}}(x^{\otimes 3})$ to recover A

Previous Work: Method of Moments [Cardoso]

- ▶ Suppose the kurtosis of s_i , i.e. $kurt(s_i) = \mathbb{E}s_i^4 3$ are all nonzero
- ▶ Then some statistic of *x* converges to

$$\sum_{i} \operatorname{kurt}(s_i) A_i^{\otimes 4}$$

- Decompose the tensor to recover A
- ▶ Sanity check: skew(s) = 0, kurt(s) = 0 if s is Gaussian

Outline

Introduction

Background

Previous Work

Main Algorithm

Results

Algorithm Description

Fourier PCA

- ▶ Input: samples $x_1, ..., x_N$.
- ▶ Output: columns of mixing matrix $\hat{A}_1, \ldots, \hat{A}_m$
- ▶ 1. Fourier Weights:

Draw
$$u \sim N(0, \sigma^2 I_m)$$
, let $w_i = \frac{e^{ju^T x_i}}{\frac{1}{N} \sum_i e^{ju^T x_i}}$, where $j = \sqrt{-1}$ is the imaginary unit, for $i = 1, 2, \dots, N$.

Algorithm Description (Cont'd)

▶ 2. Fourier Covariance:

Let
$$\hat{M}_{ju} = \frac{1}{N} \sum_{i} w_{i} (x_{i} - \hat{m}_{ju}) (x_{i} - \hat{m}_{ju})^{T}$$
, where $\hat{m}_{ju} = \frac{1}{N} \sum_{i} w_{i} x_{i}$.

3. Eigendecomposition:

Let E_1, \ldots, E_m be the unit eigenvectors of \hat{M}_{ju} .

▶ 4. Postprocessing:

For each E_i , find $\theta_i \in [0, 2\pi)$ such that $\|\text{Re}(E_i e^{j\theta_i})\|$ is maximized. Let $\hat{A}_i = \text{Re}(E_i e^{j\theta_i})$.

Key Observation: Cumulant Generating Function

Definition

The cumulant generating function (c.g.f.) of *m*-dimensional random variable X is $\psi_X:\mathbb{C}^m\to\mathbb{C}$

$$\psi_X(t) = \ln \mathbb{E} e^{t^T X}$$

Observation: in ICA problem, the c.g.f. of \boldsymbol{x} is decomposable.

$$\psi_{x}(t) = \ln \mathbb{E}e^{t^{T}x}$$

$$= \ln \mathbb{E}e^{t^{T}As}$$

$$= \ln(\mathbb{E}e^{t^{T}A_{1}s_{1}} \cdot \cdot \mathbb{E}e^{t^{T}A_{m}s_{m}})$$

$$= \sum_{i=1}^{m} \ln \mathbb{E}e^{t^{T}A_{i}s_{i}}$$

$$= \sum_{i=1}^{m} \psi_{s_{i}}(A_{i}^{T}t)$$

Key Observation: Cumulant Generating Function

Consider the Hessian of $\psi_{\mathsf{x}}(t)$:

$$D^{2}\psi_{x}(t) = \sum_{i=1}^{m} D^{2}\phi_{s_{i}}(A_{i}^{T}t)$$

$$= \sum_{i=1}^{m} \psi_{s_{i}}^{"}(A_{i}^{T}t)A_{i}A_{i}^{T}$$

$$= A \operatorname{diag}(\psi_{s_{1}}^{"}(A_{1}^{T}t), \dots, \phi_{s_{m}}^{"}(A_{m}^{T}t))A^{T}$$

$$= A \operatorname{diag}(\psi_{s_{1}}^{"}(A_{1}^{T}t), \dots, \phi_{s_{m}}^{"}(A_{m}^{T}t))A^{-1}$$

Observation: $D^2\psi_X(t)$'s eigenvectors are precisely columns of A

The Hessian

Lemma

The Hessian $D^2\psi_X(t)$ can be written as

$$M_t = \mathbb{E}w_t(X)(X - m_t)(X - m_t)^T$$

where $w_t(x) = \frac{e^{t^T x}}{\mathbb{E}e^{t^T X}}$ is the "exponential" weight, $m_t = \mathbb{E}w_t(X)X$ is the "exponential" weighted mean.

Proof.

By standard calculus.

Note that M_t can be estimated by \hat{M}_t using random samples.

Why Complex Numbers?

Key idea: Concentration of \hat{M}_t towards M_t

- ▶ i.e. $\hat{\mathbb{E}}w_t(x)(x-\hat{m}_t)(x-\hat{m}_t)^T \to \mathbb{E}w_t(x)(x-m_t)(x-m_t)^T$
- We would like the concentration applicable to a broad family of distributions
- ▶ For heavy tailed x, $\mathbb{E}e^{t^Tx}$ may even be undefined for any real t
- Solution: take t = ju, where $u \in \mathbb{R}^m$ and j is the imaginary unit

Additional Remarks

- ▶ Random choice of u: affect M_{ju} 's eigenvalue spacings
- If all s_i 's are non-Gaussian, then with proabability 1, $(\psi_{s_1}''(jA_1^Tu), \ldots, \psi_{s_m}''(jA_m^Tu))$, the eigenvalues of M_{ju} , are distinct
- ▶ This is crucial to ensure the eigenvector recovery
- ▶ More general results: tensor decomposition of $D^d \psi_x(t)|_{t=ju}$ for d>2.

Outline

Introduction

Background

Previous Work

Main Algorithm

Results

Consistency Theorem

Theorem (Informal)

Suppose we have N iid samples drawn from model x = As, where $A \in \mathbb{R}^{m \times m}$ is an orthogonal matrix and s_i 's are independent. Moreover, each s_i is far from Gaussian. Then with high probability (over the random draw of u and the samples), Algorithm **Fourier PCA** recovers the columns of A such that

$$\|\hat{A}_i - A_i\| = o(1)$$

for all i = 1, 2, ..., m, as $N \to \infty$.

Discussion

- Provides a systematic way of utilizing non-Gaussianity in ICA problem
- Cumulant generating function viewpoint unifies method of moments approaches
- New computationally efficient algorithm using only second-order moments
- ▶ Open problem: independent subspace analysis: subsets of $\{s_i\}$ are independent, recovering the respective subspaces of A.

Thank you! Questions?