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Introduction

v

Problem: Linear Independent Component Analysis (ICA)

» x = As, A€ R"™"™ is a “mixing matrix” of full column rank,
s € R™ has independent entries

v

Given iid samples xq, ..., xyn

v

Goal: (approximately) recover A.



Motivation: Blind Source Separation

» m people talk at a cocktail party
> n speakers receive voices with mixing weights A
» Find A in order to “de-mix” the signals

Sources o Observation

x(t) = As(t)



Motivation: Feature Extraction [Hoyer and Hyvérinen]
» Linear image synthesis model

-l N

xX=5"-"-A1+5s5 A+

.+ s, Ap
» |CA as feature extracton tool
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Motivation: Learning a Parallelepiped [Frieze, Jerrum,
Kannan|

» Given: random samples uniformly from a parallelepiped
» Goal: identify its edges (columns of A)
» s; ~ U([ai, bi]) independent
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Comparison with Principal Component Analysis(PCA)

» PCA: Find linear transformation W, such that Wx is a set of
uncorrelated random variables that minimize the
reconstruction error miny E||x — UWx||?

» ICA: Find linear transformation W, such that Wx is a set of
independent random variables.

> As we will see PCA will be a preprocessing step of ICA
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Preprocessing: Centering

Lemma
We can assume that Es = 0.

Proof.
Since x — Ex = A(s — Es), let X :== x — Ex, 5§ := s — Es, we have
that § still has independent entries and

X = As
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Preprocessing: Whitening

Lemma
We can further assume that A is an m x m orthogonal matrix, and

each entry of s is of unit variance.

Proof.
Consider ¥ = Exx T that has reduced SVD ¥ = UDUT, and

A=TFEssT. Then let X := D"Y2UTx and § := A=1/2s | we have
that
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|dentifiability Problem

» Example:

X1\ 1 0 51
X2 o 01 S2
» Observation: If s1,s5 ~ N(0,1), then the plausible A’'s may

not be unique!
> An altenative explanation would be:

) T\L L)\

where z1, 2z, ~ N(0,1)

» Claim: so long as there are two Gaussian independent
components, cannot hope to recover the columns of A
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Previous Work [Hyvarinen, Oja; Frieze, Jerrum, Kannan]

» CLT implies that sums of independent random variables will
be Gaussian like

» Intuition: find transformation W such that each coordinate of
Wk is as far from Gaussian as possible

» e.g. Find w maximizing(minimizing) kurtosis of w ' x:

max E(w'x)* -3
wif|w]|=1




Previous Work: Method of Moments [Cardoso]

» Suppose the skewness of s;, i.e. skew(s;) = Es? are all

nonzero
» Then

E(x®3) — E(x®3) = Z skew(s,-)A,®3

i

» Decompose tensor [£(x®3) to recover A



Previous Work: Method of Moments [Cardoso]

v

Suppose the kurtosis of s;, i.e. kurt(s;) = Es} — 3 are all
nonzero

v

Then some statistic of x converges to

Z kurt(s;))A®*

v

Decompose the tensor to recover A

v

Sanity check: skew(s) =0, kurt(s) = 0 if s is Gaussian
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Algorithm Description

Fourier PCA
> Input: samples xi, ..., xy.
» Qutput: columns of mixing matrix A, AL
» 1. Fourier Weights:
. T
2 _ el X
Draw u ~ N(0,0’ /m), let w; = W, where

j = +/—1 is the imaginary unit, for i =1,2,..., N.



Algorithm Description (Cont'd)

» 2. Fourier Covariance:
Let M, = &S iwi(xi — Aju)(xi — M) T, where
mju = % Zi WiX;.
» 3. Eigendecomposition:
Let Eq,..., E;, be the unit eigenvectors of Mju.
» 4. Postprocessing:
For each E;, find 6; € [0,27) such that ||Re(E;e/%)]| is
maximized. Let A; = Re(E,-efa").



Key Observation: Cumulant Generating Function

Definition
The cumulant generating function (c.g.f.) of m-dimensional
random variable X is ¢x : C™ — C

Yx(t) =In Eet'X

Observation: in ICA problem, the c.g.f. of x is decomposable.

Pe(t) = In Eet
— InEet'As
= In(IEetTAlsl . -EetTA"’S"’)

m
= Y InEet'As
i=1

= Z wSi(AiTt)
i=1



Key Observation: Cumulant Generating Function

Consider the Hessian of ,(t):
D?x(t) = D D?¢s(Alt)
i=1

= Zw;’,(A,T t)AAT

= Adlag(w (Al ),--~,¢s,,,( AT
= Adlag(¢ ( )7"'7¢sm( t)) AT

Observation: D?i)x(t)'s eigenvectors are precisely columns of A



The Hessian

Lemma
The Hessian D*1x(t) can be written as

M; = Ewe(X)(X — me)(X — m) T

where wy(x) = % is the “exponential” weight, m; = Ew; (X)X

is the “exponential” weighted mean.

Proof.

By standard calculus.

O

Note that M; can be estimated by M, using random samples.



Why Complex Numbers?

Key idea: Concentration of I\A/It towards M;
> ie. Bwe(x)(x — me)(x — M) T = Bwe(x)(x — me)(x — my)T

» We would like the concentration applicable to a broad family
of distributions

» For heavy tailed x, Eet'* may even be undefined for any real t

» Solution: take t = ju, where u € R™ and j is the imaginary
unit



Additional Remarks

v

Random choice of u: affect Mj,’s eigenvalue spacings

v

If all s;'s are non-Gaussian, then with proabability 1,
(1/1;’1 (AT u),... ,zﬁgm(jALu)), the eigenvalues of Mj,, are
distinct

This is crucial to ensure the eigenvector recovery

v

More general results: tensor decomposition of DYy (t)]¢—jy
for d > 2.

v
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Consistency Theorem

Theorem (Informal)

Suppose we have N iid samples drawn from model x = As, where
A € R™*™M s an orthogonal matrix and s;'s are independent.
Moreover, each s; is far from Gaussian. Then with high probability
(over the random draw of u and the samples), Algorithm Fourier
PCA recovers the columns of A such that

1A; — Ajl| = o(1)

foralli=1,2,...,m, as N — co.



Discussion

» Provides a systematic way of utilizing non-Gaussianity in ICA
problem

» Cumulant generating function viewpoint unifies method of
moments approaches

» New computationally efficient algorithm using only
second-order moments

» Open problem: independent subspace analysis: subsets of {s;}
are independent, recovering the respective subspaces of A.



Thank you! Questions?
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