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Introduction



Recommender Systems
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» Given m users and n items, order history

» Would like to recommend the users items they may like



Matrix Completion
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» Statistical / machine learning problem setup
» Given a matrix with entries observed at random

» Fill out the missing entries



Linear Factor Model
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preferences of a specific user

characteristics
of the user

» Assumption: the users’ rating to items is determined by a few
“linear factors”

» The users and the items are both modeled as vectors in R¥
(k < m,n)
» The rating of user u; € R¥ to item v; € R¥ is (u;, v})



Low Rank Matrix Completion: Formal Setup
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» Matrix Y € R™*" with rank k
» Observe entries Q sampled from [m] X [n]

» Goal: (Approximately) recover Y



Low Rank Matrix Completion: Performance Metrics

v

Goal: recover Y

v

Sample Complexity: how many entries needed

v

Computational Complexity: how many arithmetic
operations needed

v

Trade off data efficiency and time efficiency



What makes matrix completion hard?



Observation 1: Sampling Probability

Yii Yoo — - ... —
Yo1 — Y23 - ... —
Y=|- - - - ... -

- — Ym3 — ... Ym

» Completely miss column j = large error on column j

» Need Q(m + n) samples for small error



Observation 2: Coherence

A bad case: -~ _
10 0 O 1
1 1 0
Y=1/0 0 0 O 0
00 0 O 0

» Y has rank 2

» For column j, even observing a constant fraction of its entries
does not help

» Need Q(mn) samples for small error



Incoherence Assumption
Rank k matrix Y has SVD:

y =02 v = ow u;]

Definition
A subspace spanned by orthonormal U € R™*X is ji-coherent if

k
max [T UJ| < iy | <
i€[m] m

» Matrix Y is pu-coherent if both its row and column spaces (U*
and V*) are p-coherent.

» Enforces “denseness’ of Y



Incoherence Assumption

k
T *

max ||e; U*|| < —
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Ideally (1 = O(1)): Bad Example (1 = /%)
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» 1<pu< maxg(m’"); expect “easy case” if u is constant

» Coherence is invariant under rotation, therefore a property of
subspace
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Alternating Minimization: Algorithm



Objective Function
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Idea: formulate the matrix completion problem as a “factorization”
problem

min Fq(U,V
UERka,VER”Xk ( ’ )

where

Fo(U,V):= > (Yij— (UVT);;)?
(ij)eq



Algorithm: Part |

Algorithm AItMin(Q, Uy, T)
» Fort=1,2,..., T:
Vi <—arg min Fq(Ui—1, V),
VER"X"
Us < arg min Fqo(U, V4).

eRmxk

» Return (Ur, V1)



Algorithm: Part Il

Algorithm AltMinComplete
» Initialize: (Uo, Xo, Vo) < svdx(Pa(Y)),
Yij (i,j)€Q
0 (ihj)é¢Q
» (Ur, V1) « AitMin(Q, U, T)
» Return X = UTV-,T.

where Po(Y);; :=



Performance Guarantees

Theorem
Suppose matrix Y has rank k, pu-coherent, and Q) is a random

subset of [m] x [n] of size O(k(Y)*k*5u2n). Then,
AltMinComplete outputs X such that [| X — Y| <€ in
T = O(log 1) iterations.

» k(YY) = % is the condition number of Y

» Implication: If coherence i is constant, then only need O(1)
samples per row for recovery.

Comparison with Previous work:

Algorithms Time #Samples

Trace Norm Minimization | O(|Q|ny/1) O(ky?n)

€

AltMinComplete O(|Q|k%log 1) | O(k(Y)*k*®u2n)
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Understanding Alternating Minimization



Orthonormalization

Fo(U,V):= > (Yij— (UVT);;)?
(ij)eq

Claim

During the execution of AltMinComplete, any invertible column
linear transformations of the iterates Uy(V;) do not change the
final output X.

Proof.
If Ur had been transformed to U;R then Vi1 would become
Vt+1R_T in the next iteration to compensate. Vice versa. ]

Implications:

» Without loss of generality we can perform orthonormalization
after each iteration (Gram-Schmidt/QR/..)

» We are really learning subspaces of U* (V*)



What is AltMinComplete Doing?

» Given orthonormal U € R™*k Q sampled from [m] x [n],

Vi arg min ,%(Y” — (V)
> If Q = [m] x [n], then the update is:
V—YTu Power lteration
> If Q C [m] x [n], expect the update to be

V< YTU+G,|G|~0  Approximate Power Iteration



Detour: Classical Power lteration and Analysis



Classical Power lteration

» Problem: Given matrix A € R™*" (m < n) with SVD

* *T
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A = UV :[u; u o u;';,] 2 2
* T

Om v;;

= UnviT+uizveT

» Goal: approximately compute the subspace spanned by its top
k singular vectors U} = [ui‘ uﬂ

» Has a wide range of applications, e.g. PCA



Classical Power lteration

» Algorithm:
» Randomly initialize Uy € R™*k.
» Fort=1,2,...,T:
V, « orth(AT U;_1),
U < orth(AV;)
» Return Ur, V7.
» How do we analyze this algorithm?

» What is the notion of closeness between subspaces?



Angles between Linear Subspaces

» Given two linear subspaces spanned by orthonormal bases
E,F e R™K
» The angle between E and F is defined as:

O(E,F) = in 0
(E,F) L LN (x,¥);

|(x)
[y 1

where 6(x, y) = arccos

Examples for k =1, 2:



Properties of Subspace Angles

cos#(E,F) = min max |y’ FTEx|
lIx[I=1 [lyll=1

= ok(FTE)

> Invariant under rotation
= O(E, F) is a property on subspaces
» Symmetry: 0(E,F) = 6(F,E)
> tan0(E, F) = ||(F] E)(FTE)~}|
where E does not have to be orthonormal in the last equation



Classical Analysis of Power lteration
Suppose A= U*T*V*T = UiV T + Ui s Vi T

Lemma
IfV =ATU, then

tan0(V, V;) < 4L rano(U, UY)

Ok

Proof.

tand(V, Vi) = [I(VITV)(VZTV)7|



Classical Analysis of Power lteration
Suppose A= U*T*V*T = UiV T + Ui s Vi T

Lemma
IfV =ATU, then

tanO(V, V) < 2L vang(u, Up)
Ok
Proof.

tand(V, Vi) = [I(VI"V)(VZTV) 7|
= I(VITATU)(VTATU) Y



Classical Analysis of Power lteration
Suppose A = U*T*V*T = Uiz Vi T+ Uiz Vi T

Lemma
IfV =ATU, then

tan0(V, V;) < 4L rano(U, UY)

Ok

Proof.

tand(V,Vy) = |[(ViTV )( Vit vy
= (VI )(V*TAT U
= H(ZLUJU)(Z‘LUETU)‘IH



Classical Analysis of Power lteration
Suppose A = U*T*V*T = Uiz Vi T+ Uiz Vi T

Lemma
IfV =ATU, then

tan0(V, V;) < 4L rano(U, UY)

Ok

Proof.

tanf(V, Vi) = [I(VI )( V)7
= [I(vE )(V*TAT U
= H(ZJ_UJ_TU)(ZXU;TU)_IH
= [I=L - (ULTO)GETO) T 5T



Classical Analysis of Power lteration
Suppose A= U*T*V*T = UiV T + Ui s Vi T

Lemma
IfV =ATU, then

tan0(V, V;) < 4L rano(U, UY)

Ok

Proof.

and(V, Vi) = [(VITV)(VZTV)
I(ViTATU)(VETATU) Y|
I(EL UL TU)ERUETO) Y|
DR (VIR [(VANV) R v
O—kHtanH(U,U;‘) O

Ok

IN



Classical Analysis of Power lteration

» The lemma above implies linear convergence of tan §( V¢, V})
and tan 0( U, Uf) in power iteration.

> After T = O(5—2— In 1) iterations:

Ok—0k+1

(I — UrUL)Ug|| = sin0(UT, U;) < tan0(Ut, U;) < €

» Subspace angle is a handy tool for analyzing power
iteration-type updates



..Back to Matrix Completion



Convergence of AltMinComplete: High Level Idea

» Base Case: Initialization Uy falls into “basin of attraction” Z.
» Inductive Case:
1. If iterate U;_1 is in Z, then V; improves over U;_; and is still
in Z;
2. Similarly if V; is in Z, then U; improves over V; and is still in
Z.

Vi <—arg min Fq(U;—1,V),
VGR”Xk

Ur <—arg min Fq(U, V4).

UecRmxk



Local Convergence of AltMinComplete

Y = U*T*V*, U* € R™*k v* € R™K is y-coherent
Let pu1 = 4uvkr(Y).

Lemma
Suppose

1. tanO(U*, U) < 1/2,

2. U is pi-coherent,

3. Q is a random subset of [m] x [n] of size O(r(Y)*k*312n).
Then, update rule V < argmin Fo(U, V) has the guarantee that:

1. tang(V*, V) < EnfUnU)

2. V is pi-coherent.



Local Convergence of AltMinComplete

Y = U*T*V*, U* € R™*k v* € R™K is y-coherent
Let pu1 = 4uvkr(Y).

Lemma
Suppose

1. tanO(U*, U) < 1/2

2. U is pi-coherent,

3. Q is a random subset of [m] x [n] of size O(r(Y)*k*312n).
Then, update rule V < argmin Fo(U, V) has the guarantee that:

1. tang(V*, V) < EnfUnU)

2. V is pi-coherent.

}UisinZ



Local Convergence of AltMinComplete

Y = U*T*V*, U* € R™*k v* € R™K is y-coherent
Let pu1 = 4uvkr(Y).

Lemma
Suppose

1. tanO(U*, U) < 1/2

2. U is pi-coherent,

3. Q is a random subset of [m] x [n] of size O(r(Y)*k*312n).
Then, update rule V < argmin Fo(U, V) has the guarantee that:

1. tang(V*, V) < 2n0UU)
2V is yy-coherent V isin Z and V improves over U
. 1- .

}UisinZ



Proof Idea 1: Incoherence = Low Noise with Low Sample
Complexity

Claim

If U is py-coherent, and 2 is a random subset of [m] x [n] of size
O(K(Y)*k*512n), then least squares update

V = argmin Fo(U, V) can be written as:

V=YTU+G, |G| <o}tand(U,U")

Proof.

By standard matrix concentration. O

» The update is Approximate Power lteration

> If 1 is large (O(,/7)) then the sample complexity can be
0O(n?)



Proof Idea 2: Angle Contraction

» Following the analysis in classical power iteration,

tan6(V*5, V) = |[(VITV)(VTV)



Proof Idea 2: Angle Contraction

» Following the analysis in classical power iteration,
and(V*, V) = [(VI"V)(V* V)Y

o (ViTV)
o (V*TV)



Proof Idea 2: Angle Contraction

» Following the analysis in classical power iteration,

tanf(V*:, V) = [(ViTV)(v*TV)T
ol(ViTV)
o (V*TV)
o1 (ViTG)

o (ZV*TV + ViTG)



Proof Idea 2: Angle Contraction

» Following the analysis in classical power iteration,

tanf(V*:, V) = [(ViTV)(v*TV)T
ol(ViTV)
o (V*TV)
o1 (ViTG)

o (ZV*TV + ViTG)
Gl
— ol



Proof Idea 2: Angle Contraction

» Following the analysis in classical power iteration,

tanO(V*, V)

IN

IN

I(vET V(v Tv) |
ol(ViTV)
o (V*TV)

o1 (ViTG)

o (ZV*TV + ViTG)
Gl
o — Gl
tan9(U*, U)
4



Proof Idea 3: Bounding the Coherence

Claim
The subspace spanned by V is uy-coherent.

Proof Idea.
With sufficiently many samples, V ~ YT U, thus

span(V) ~ span(Y ) = span(V*)

therefore pi1-coherent.



Technical Details Omitted

» Initialization: taking SVD on Pq(Y') ensures that Uj falls into
Z (basin of attraction)
1. tan6(Uo, U*) < 1,
2. Uy is p1-coherent.
» Shown by standard matrix concentration and serves as the
inductive basis

» Recovery: Closeness of Subspace = Closeness of Completed
Matrix
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Summary



Summary

» This paper rigorously analyzes alterating minimization for
matrix completion, a well-known heuristic

» Key idea: the optimzation algorithm can be seen as
Approximate Power Iteration (See also [Hardt'14])

> Key tool: subspace angles measuring the closeness between
subspaces



Thank you!



Explicit Form of Update

Taking derivatives yields the following normal equation:

((us, ug)a,) ] H l(<us,u:>m) yrvrt
(e uday)] [V (s uf)e)] e
—_—

—_——
Bq vec(V) Ca vec(TV*)

where Q; = {i € [m] : (i,j) € Q}, and (x,y)s = > ;cs Xi¥i-
> Sanity Check: if Q = [m] x [n], then:

» Bog=1
» Cq =diag(UTU*,...,UTUY)
» Ve ViUt Tu=YTU.

» Row-wise Form: for all j € [n], (UTP;U)v/ = (UT P;U*)Z*v*.
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