Low Rank Matrix Completion using Alternating Minimization

Prateek Jain, Praneeth Netrapalli, Sujay Sanghavi

Presented by Chicheng Zhang University of California San Diego

Nov, 2016

Outline

Introduction

Alternating Minimization: Algorithm

Understanding Alternating Minimization

Summary

Recommender Systems

- ▶ Given *m* users and *n* items, order history
- ▶ Would like to recommend the users items they may like

Matrix Completion

- Statistical / machine learning problem setup
- Given a matrix with entries observed at random
- Fill out the missing entries

Linear Factor Model

- ► Assumption: the users' rating to items is determined by a few "linear factors"
- ▶ The users and the items are both modeled as vectors in \mathbb{R}^k $(k \ll m, n)$
- ▶ The rating of user $u_i \in \mathbb{R}^k$ to item $v_j \in \mathbb{R}^k$ is $\langle u_i, v_j \rangle$

Low Rank Matrix Completion: Formal Setup

- ▶ Matrix $Y \in \mathbb{R}^{m \times n}$ with rank k
- ▶ Observe entries Ω sampled from $[m] \times [n]$
- ▶ Goal: (Approximately) recover Y

Low Rank Matrix Completion: Performance Metrics

- ▶ Goal: recover Y
- ▶ Sample Complexity: how many entries needed
- Computational Complexity: how many arithmetic operations needed
- Trade off data efficiency and time efficiency

What makes matrix completion hard?

Observation 1: Sampling Probability

$$Y = \begin{bmatrix} Y_{11} & Y_{12} & - & - & \dots & - \\ Y_{21} & - & Y_{23} & - & \dots & - \\ - & - & - & - & \dots & - \\ & & \dots & & & \\ - & - & Y_{m3} & - & \dots & Y_{mn} \end{bmatrix}$$

- ▶ Completely miss column $j \Rightarrow$ large error on column j
- ▶ Need $\Omega(m+n)$ samples for small error

Observation 2: Coherence

A bad case:

$$Y = \begin{bmatrix} 1 & 0 & 0 & 0 & \dots & 1 \\ 0 & 1 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 \\ & & & \dots & & \\ 0 & 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$

- Y has rank 2
- ► For column *j*, even observing a constant fraction of its entries does not help
- ▶ Need $\Omega(mn)$ samples for small error

Incoherence Assumption

Rank k matrix Y has SVD:

$$Y = U^* \Sigma^* V^{*T} = \begin{bmatrix} u_1^* & u_2^* & \dots & u_k^* \end{bmatrix} \begin{bmatrix} \sigma_1^* & & & \\ & \sigma_2^* & & \\ & & \ddots & \\ & & & \sigma_k^* \end{bmatrix} \begin{bmatrix} v_1^{*T} \\ v_2^{*T} \\ \vdots \\ v_k^{*T} \end{bmatrix}$$

Definition

A subspace spanned by orthonormal $U \in \mathbb{R}^{m \times k}$ is μ -coherent if

$$\max_{i \in [m]} \|e_i^T U\| \le \mu \sqrt{\frac{k}{m}}$$

- ▶ Matrix Y is μ -coherent if both its row and column spaces (U^* and V^*) are μ -coherent.
- ▶ Enforces "denseness" of *Y*

Incoherence Assumption

$$\max_{i \in [m]} \|e_i^T U^*\| \le \mu \sqrt{\frac{k}{m}}$$

Ideally (
$$\mu = O(1)$$
):

Bad Example (
$$\mu = \sqrt{\frac{m}{2}}$$
):

$$U^* = \begin{bmatrix} O(\sqrt{\frac{1}{m}}) & \dots & O(\sqrt{\frac{1}{m}}) \\ O(\sqrt{\frac{1}{m}}) & \dots & O(\sqrt{\frac{1}{m}}) \\ & \dots & \\ O(\sqrt{\frac{1}{m}}) & \dots & O(\sqrt{\frac{1}{m}}) \end{bmatrix}$$

$$U^* = egin{bmatrix} 1 & 0 \ 0 & 1 \ 0 & 0 \ \cdots \ 0 & 0 \end{bmatrix}$$

- lacksquare $1 \leq \mu \leq \sqrt{rac{\max(m,n)}{k}};$ expect "easy case" if μ is constant
- Coherence is invariant under rotation, therefore a property of subspace

Outline

Introduction

Alternating Minimization: Algorithm

Understanding Alternating Minimization

Summary

Objective Function

Idea: formulate the matrix completion problem as a "factorization" problem

$$\min_{U \in \mathbb{R}^{m \times k}, V \in \mathbb{R}^{n \times k}} F_{\Omega}(U, V)$$

where

$$F_{\Omega}(U, V) := \sum_{(i,j) \in \Omega} (Y_{i,j} - (UV^T)_{i,j})^2$$

Algorithm: Part I

Algorithm **AltMin**(Ω , U_0 , T)

▶ For t = 1, 2, ..., T:

$$V_t \leftarrow \arg\min_{V \in \mathbb{R}^{n \times k}} F_{\Omega}(U_{t-1}, V),$$
 $U_t \leftarrow \arg\min_{U \in \mathbb{R}^{m \times k}} F_{\Omega}(U, V_t).$

▶ Return (U_T, V_T)

Algorithm: Part II

Algorithm AltMinComplete

- Initialize: $(U_0, \Sigma_0, V_0) \leftarrow \operatorname{svd}_k(P_\Omega(Y)),$ where $P_\Omega(Y)_{i,j} := \begin{cases} Y_{i,j} & (i,j) \in \Omega \\ 0 & (i,j) \notin \Omega \end{cases}$
- ▶ $(U_T, V_T) \leftarrow \mathsf{AltMin}(\Omega, U, T)$
- Return $X = U_T V_T^T$.

Performance Guarantees

Theorem

Suppose matrix Y has rank k, μ -coherent, and Ω is a random subset of $[m] \times [n]$ of size $\tilde{O}(\kappa(Y)^4 k^{4.5} \mu^2 n)$. Then, AltMinComplete outputs X such that $\|X - Y\|_F \le \epsilon$ in $T = \tilde{O}(\log \frac{1}{\epsilon})$ iterations.

- $\blacktriangleright \kappa(Y) := \frac{\sigma_1^*}{\sigma_{\iota}^*}$ is the condition number of Y
- Implication: If coherence μ is constant, then only need $\tilde{O}(1)$ samples per row for recovery.

Comparison with Previous work:

Algorithms	Time	#Samples
Trace Norm Minimization	, , , v c,	$\tilde{O}(k\mu^2n)$
AltMinComplete	$O(\Omega k^2\log\frac{1}{\epsilon})$	$\tilde{O}(\kappa(Y)^4 k^{4.5} \mu^2 n)$

Outline

Introduction

Alternating Minimization: Algorithm

Understanding Alternating Minimization

Summary

Orthonormalization

$$F_{\Omega}(U, V) := \sum_{(i,j) \in \Omega} (Y_{i,j} - (UV^T)_{i,j})^2$$

Claim

During the execution of AltMinComplete, any invertible column linear transformations of the iterates $U_t(V_t)$ do not change the final output X.

Proof.

If U_t had been transformed to U_tR then V_{t+1} would become $V_{t+1}R^{-T}$ in the next iteration to compensate. Vice versa. Implications:

- ► Without loss of generality we can perform orthonormalization after each iteration (Gram-Schmidt/QR/..)
- We are really learning subspaces of $U^*(V^*)$

What is AltMinComplete Doing?

▶ Given orthonormal $U \in \mathbb{R}^{m \times k}$, Ω sampled from $[m] \times [n]$,

$$V \leftarrow \arg\min_{V \in \mathbb{R}^{n \times k}} \sum_{i,j \in \Omega} (Y_{i,j} - (UV^T)_{i,j})^2$$

▶ If $\Omega = [m] \times [n]$, then the update is:

$$V \leftarrow Y^T U$$
 Power Iteration

▶ If $\Omega \subset [m] \times [n]$, expect the update to be

$$V \leftarrow Y^T U + G, ||G|| \approx 0$$
 Approximate Power Iteration

Detour: Classical Power Iteration and Analysis

Classical Power Iteration

▶ Problem: Given matrix $A \in \mathbb{R}^{m \times n}$ $(m \le n)$ with SVD

$$A = U^* \Sigma^* V^{*T} = \begin{bmatrix} u_1^* & u_2^* & \dots & u_m^* \end{bmatrix} \begin{bmatrix} \sigma_1^* & & & & \\ & \sigma_2^* & & & \\ & & \dots & & \\ & & & \sigma_m^* \end{bmatrix} \begin{bmatrix} v_1^{*T} \\ v_2^{*T} \\ \dots \\ v_m^{*T} \end{bmatrix}$$
$$= U_{\nu}^* \Sigma_{\nu}^* V_{\nu}^{*T} + U_{\nu}^* \Sigma_{\nu}^* V_{\nu}^{*T}$$

- Goal: approximately compute the subspace spanned by its top k singular vectors $U_k^* = \begin{bmatrix} u_1^* & \dots & u_k^* \end{bmatrix}$
- ► Has a wide range of applications, e.g. PCA

Classical Power Iteration

- Algorithm:
 - ▶ Randomly initialize $U_0 ∈ \mathbb{R}^{m \times k}$.
 - For t = 1, 2, ..., T: $V_t \leftarrow \operatorname{orth}(A^T U_{t-1}),$ $U_t \leftarrow \operatorname{orth}(AV_t)$
 - ▶ Return U_T , V_T .
- How do we analyze this algorithm?
- What is the notion of closeness between subspaces?

Angles between Linear Subspaces

- ▶ Given two linear subspaces spanned by orthonormal bases $E, F \in \mathbb{R}^{n \times k}$
- ▶ The angle between *E* and *F* is defined as:

$$\theta(E, F) = \max_{x \in \text{span}(E)} \min_{y \in \text{span}(F)} \theta(x, y),$$

where
$$\theta(x, y) = \arccos \frac{|\langle x, y \rangle|}{\|x\| \|y\|}$$
.

Examples for k = 1, 2:

Properties of Subspace Angles

$$\cos \theta(E, F) = \min_{\|x\|=1} \max_{\|y\|=1} |y^T F^T E x|$$
$$= \sigma_k(F^T E)$$

- Invariant under rotation ⇒ θ(E, F) is a property on subspaces
- ▶ Symmetry: $\theta(E, F) = \theta(F, E)$
- ▶ $\tan \theta(E, F) = \|(F_{\perp}^T E)(F^T E)^{-1}\|$ where E does not have to be orthonormal in the last equation

Suppose
$$A = U^* \Sigma^* V^{*T} = U_k^* \Sigma_k^* {V_k^*}^T + U_\perp^* \Sigma_\perp^* {V_\perp^*}^T$$

Lemma If $V = A^T U$, then
$$\tan \theta(V, V_k^*) \leq \frac{\sigma_{k+1}}{\sigma_k} \tan \theta(U, U_k^*)$$

$$\tan \theta(V, V_k^*) = \|(V_\perp^{*T} V)(V_k^{*T} V)^{-1}\|$$

Suppose
$$A = U^* \Sigma^* V^{*T} = U_k^* \Sigma_k^* {V_k^*}^T + U_\perp^* \Sigma_\perp^* {V_\perp^*}^T$$

Lemma If $V = A^T U$, then
$$\tan \theta(V, V_k^*) \leq \frac{\sigma_{k+1}}{\sigma_k} \tan \theta(U, U_k^*)$$

$$\tan \theta(V, V_k^*) = \|(V_{\perp}^{*T}V)(V_k^{*T}V)^{-1}\| = \|(V_{\perp}^{*T}A^TU)(V_k^{*T}A^TU)^{-1}\|$$

Suppose
$$A = U^* \Sigma^* V^{*T} = U_k^* \Sigma_k^* {V_k^*}^T + U_\perp^* \Sigma_\perp^* {V_\perp^*}^T$$

Lemma If $V = A^T U$, then
$$\tan \theta(V, V_k^*) \leq \frac{\sigma_{k+1}}{\sigma_k} \tan \theta(U, U_k^*)$$

$$\tan \theta(V, V_k^*) = \|(V_{\perp}^{*T}V)(V_k^{*T}V)^{-1}\|
= \|(V_{\perp}^{*T}A^TU)(V_k^{*T}A^TU)^{-1}\|
= \|(\Sigma_{\perp}U_{\perp}^{T}U)(\Sigma_k^{*}U_k^{*T}U)^{-1}\|$$

Suppose
$$A = U^* \Sigma^* V^{*T} = U_k^* \Sigma_k^* {V_k^*}^T + U_\perp^* \Sigma_\perp^* {V_\perp^*}^T$$

Lemma
If $V = A^T U$, then
$$\tan \theta(V, V_k^*) \leq \frac{\sigma_{k+1}}{\sigma_k} \tan \theta(U, U_k^*)$$

$$\tan \theta(V, V_k^*) = \|(V_{\perp}^* V)(V_k^* V)^{-1}\|
= \|(V_{\perp}^* A^T U)(V_k^* A^T U)^{-1}\|
= \|(\Sigma_{\perp} U_{\perp}^T U)(\Sigma_k^* U_k^* U)^{-1}\|
= \|\Sigma_{\perp} \cdot (U_{\perp}^T U)(U_k^* U)^{-1} \cdot \Sigma_k^{*-1}\|$$

Suppose
$$A = U^* \Sigma^* V^{*T} = U_k^* \Sigma_k^* V_k^{*T} + U_\perp^* \Sigma_\perp^* V_\perp^{*T}$$

Lemma If $V = A^T U$, then
$$\tan \theta(V, V_k^*) \leq \frac{\sigma_{k+1}}{\sigma_k} \tan \theta(U, U_k^*)$$

$$\begin{array}{lll} \tan \theta(V, V_k^*) & = & \|({V_\perp^*}^T V)({V_k^*}^T V)^{-1}\| \\ & = & \|({V_\perp^*}^T A^T U)({V_k^*}^T A^T U)^{-1}\| \\ & = & \|({\Sigma_\perp U_\perp}^T U)({\Sigma_k^* U_k^*}^T U)^{-1}\| \\ & = & \|{\Sigma_\perp \cdot (U_\perp^T U)(U_k^*}^T U)^{-1} \cdot {\Sigma_k^*}^{-1}\| \\ & \leq & \frac{\sigma_{k+1}}{\sigma_k} \tan \theta(U, U_k^*) & \Box \end{array}$$

- ► The lemma above implies linear convergence of $\tan \theta(V_t, V_k^*)$ and $\tan \theta(U_t, U_k^*)$ in power iteration.
- ▶ After $T = O(\frac{\sigma_k}{\sigma_k \sigma_{k+1}} \ln \frac{1}{\epsilon})$ iterations:

$$\|(I - U_T U_T^T) U_k^*\| = \sin \theta(U_T, U_k^*) \le \tan \theta(U_T, U_k^*) \le \epsilon$$

 Subspace angle is a handy tool for analyzing power iteration-type updates ..Back to Matrix Completion

Convergence of AltMinComplete: High Level Idea

- **Base Case:** Initialization U_0 falls into "basin of attraction" Z.
- ► Inductive Case:
 - 1. If iterate U_{t-1} is in Z, then V_t improves over U_{t-1} and is still in Z;
 - 2. Similarly if V_t is in Z, then U_t improves over V_t and is still in Z.

$$egin{aligned} V_t \leftarrow \arg\min_{V \in \mathbb{R}^{n imes k}} F_{\Omega}(U_{t-1}, V), \ U_t \leftarrow \arg\min_{U \in \mathbb{R}^{m imes k}} F_{\Omega}(U, V_t). \end{aligned}$$

Local Convergence of AltMinComplete

$$Y=U^*\Sigma^*V^*$$
, $U^*\in\mathbb{R}^{m\times k}$, $V^*\in\mathbb{R}^{n\times k}$ is μ -coherent Let $\mu_1=4\mu\sqrt{k}\kappa(Y)$.

Lemma

Suppose

- 1. $\tan \theta(U^*, U) \le 1/2$,
- 2. U is μ_1 -coherent,
- 3. Ω is a random subset of $[m] \times [n]$ of size $\tilde{O}(\kappa(Y)^4 k^{4.5} \mu^2 n)$.

Then, update rule $V \leftarrow \arg\min F_{\Omega}(U,V)$ has the guarantee that:

- 1. $\tan \theta(V^*, V) \leq \frac{\tan \theta(U^*, U)}{4}$,
- 2. *V* is μ_1 -coherent.

Local Convergence of AltMinComplete

$$Y=U^*\Sigma^*V^*$$
, $U^*\in\mathbb{R}^{m\times k}$, $V^*\in\mathbb{R}^{n\times k}$ is μ -coherent Let $\mu_1=4\mu\sqrt{k}\kappa(Y)$.

Lemma

Suppose

- 1. $\tan \theta(U^*, U) \leq 1/2$, 2. U is μ_1 -coherent, U is in Z
- 3. Ω is a random subset of $[m] \times [n]$ of size $\tilde{O}(\kappa(Y)^4 k^{4.5} \mu^2 n)$.

Then, update rule $V \leftarrow \arg \min F_{\Omega}(U, V)$ has the guarantee that:

- 1. $\tan \theta(V^*, V) \leq \frac{\tan \theta(U^*, U)}{4}$
- 2. V is μ_1 -coherent.

Local Convergence of AltMinComplete

$$Y=U^*\Sigma^*V^*$$
, $U^*\in\mathbb{R}^{m imes k}$, $V^*\in\mathbb{R}^{n imes k}$ is μ -coherent Let $\mu_1=4\mu\sqrt{k}\kappa(Y)$.

Lemma

Suppose

- 1. $\tan \theta(U^*, U) \leq 1/2$, 2. U is μ_1 -coherent, U is in Z
- 3. Ω is a random subset of $[m] \times [n]$ of size $\tilde{O}(\kappa(Y)^4 k^{4.5} \mu^2 n)$.

Then, update rule $V \leftarrow \arg \min F_{\Omega}(U, V)$ has the guarantee that:

- 1. $\tan \theta(V^*, V) \leq \frac{\tan \theta(U^*, U)}{V}$, 2. V is μ_1 -coherent. V is in Z and V improves over U

Proof Idea 1: Incoherence \Rightarrow Low Noise with Low Sample Complexity

Claim

If U is μ_1 -coherent, and Ω is a random subset of $[m] \times [n]$ of size $\tilde{O}(\kappa(Y)^4 k^{4.5} \mu^2 n)$, then least squares update $V = \arg\min F_{\Omega}(U, V)$ can be written as:

$$V = Y^T U + G$$
, $\|G\| \le \sigma_k^* \tan \theta(U, U^*)$

Proof.

By standard matrix concentration.

- ▶ The update is Approximate Power Iteration
- ▶ If μ is large $(O(\sqrt{\frac{n}{k}}))$ then the sample complexity can be $O(n^2)$

$$\tan \theta(V^*, V) = \|(V_{\perp}^{*T}V)(V^{*T}V)^{-1}\|$$

$$\tan \theta(V^*, V) = \|(V_{\perp}^{*T}V)(V^{*T}V)^{-1}\|$$

$$\leq \frac{\sigma_1(V_{\perp}^{*T}V)}{\sigma_k(V^{*T}V)}$$

$$\tan \theta(V^*, V) = \|(V_{\perp}^{*T}V)(V^{*T}V)^{-1}\|
\leq \frac{\sigma_1(V_{\perp}^{*T}V)}{\sigma_k(V^{*T}V)}
= \frac{\sigma_1(V_{\perp}^{*T}G)}{\sigma_k(\Sigma^*V^{*T}V + V_{\perp}^{*T}G)}$$

$$\tan \theta(V^*, V) = \|(V_{\perp}^{*T}V)(V^{*T}V)^{-1}\|$$

$$\leq \frac{\sigma_1(V_{\perp}^{*T}V)}{\sigma_k(V^{*T}V)}$$

$$= \frac{\sigma_1(V_{\perp}^{*T}G)}{\sigma_k(\Sigma^*V^{*T}V + V_{\perp}^{*T}G)}$$

$$\leq \frac{\|G\|}{\sigma_k^* - \|G\|}$$

$$\tan \theta(V^*, V) = \|(V_{\perp}^{*T}V)(V^{*T}V)^{-1}\|
\leq \frac{\sigma_1(V_{\perp}^{*T}V)}{\sigma_k(V^{*T}V)}
= \frac{\sigma_1(V_{\perp}^{*T}G)}{\sigma_k(\Sigma^*V^{*T}V + V_{\perp}^{*T}G)}
\leq \frac{\|G\|}{\sigma_k^* - \|G\|}
\leq \frac{\tan \theta(U^*, U)}{4}$$

Proof Idea 3: Bounding the Coherence

Claim

The subspace spanned by V is μ_1 -coherent.

Proof Idea.

With sufficiently many samples, $V \approx Y^T U$, thus

$$\operatorname{span}(V) \approx \operatorname{span}(Y^T) = \operatorname{span}(V^*)$$

therefore μ_1 -coherent.

Technical Details Omitted

- Initialization: taking SVD on $P_{\Omega}(Y)$ ensures that U_0 falls into Z (basin of attraction)
 - 1. $\tan \theta(U_0, U^*) \leq \frac{1}{2}$,
 - 2. U_0 is μ_1 -coherent.
- Shown by standard matrix concentration and serves as the inductive basis
- ▶ Recovery: Closeness of Subspace ⇒ Closeness of Completed Matrix

Outline

Introduction

Alternating Minimization: Algorithm

Understanding Alternating Minimization

Summary

Summary

- This paper rigorously analyzes alterating minimization for matrix completion, a well-known heuristic
- ► Key idea: the optimzation algorithm can be seen as Approximate Power Iteration (See also [Hardt'14])
- Key tool: subspace angles measuring the closeness between subspaces

Thank you!

Explicit Form of Update

Taking derivatives yields the following normal equation:

$$\underbrace{\begin{bmatrix} (\langle u_s, u_t \rangle_{\Omega_1}) & & \\ & \ddots & \\ & & (\langle u_s, u_t \rangle_{\Omega_n}) \end{bmatrix}}_{B_{\Omega}} \underbrace{\begin{bmatrix} v^1 \\ \ddots \\ v^n \end{bmatrix}}_{\text{vec}(V)} = \underbrace{\begin{bmatrix} (\langle u_s, u_t^* \rangle_{\Omega_1}) & & \\ & \ddots & \\ & & (\langle u_s, u_t^* \rangle_{\Omega_n}) \end{bmatrix}}_{C_{\Omega}} \underbrace{\begin{bmatrix} \sum^* v^{*1} \\ \ddots \\ \sum^* v^{*n} \end{bmatrix}}_{\text{vec}(\Sigma V^*)}$$

where $\Omega_j = \{i \in [m] : (i,j) \in \Omega\}$, and $\langle x,y \rangle_S = \sum_{i \in S} x_i y_i$.

- ▶ Sanity Check: if $\Omega = [m] \times [n]$, then:
 - \triangleright $B_0 = I$
 - $C_{\Omega} = \operatorname{diag}(U^{T}\underline{U}^{*}, \dots, U^{T}U^{*})$
 - $V \leftarrow V^* \widetilde{\Sigma}^* U^*^T U = Y^T U$
- ▶ Row-wise Form: for all $j \in [n]$, $(U^T P_j U)v^j = (U^T P_j U^*)\Sigma^* v^{*j}$.