Improved algorithms for efficient active learning halfspaces with Massart and Tsybakov noise

Chicheng Zhang University of Arizona Joint work with Yinan Li (University of Arizona)

Active learning for classification

- Find: Classifier *h* in a class *H* to predict *y* from *x*
 - With few interactive label queries
- Useful in practical settings where labels are expensive to obtain

Outline

- Active learning halfspaces with noise
- The algorithm
- Conclusion and open problems

Active learning in the PAC model [V84,BBL06]

• Setting:

- (x, y) drawn from a distribution D
- x drawn from a ``structured'' distribution [DKKTZ20] (e.g. Gaussian, Laplace, ..)

- Linear classifiers: $H = {sign(w \cdot x) : w \in \mathbb{R}^d}$
- Error $\operatorname{err}(w) = P(y \neq \operatorname{sign}(w \cdot x))$
- Optimal linear classifier $w^* = \operatorname{argmin}_w \operatorname{err}(w)$

Active learning in the PAC model [V84,BBL06]

• Goal: computationally efficient algorithm that returns a vector \widehat{w} , such that

$$\operatorname{err}(\widehat{w}) - \operatorname{err}(w^*) \leq \epsilon,$$

using a few label queries

- Challenge: noise tolerance
 - Agnostically learning halfspaces is computationally hard even when D has ``nice'' unlabeled data distribution [KK14, DKZ20]
 - Benign noise conditions

Learning halfspaces under benign noise

 Main assumption: there exists some halfspace w^{*} that is Bayes optimal, i.e. for all x, η(x): = P_D(y ≠ sign(w^{*} ⋅ x)|x) ≤ 1/2

- η -Massart [MN06]: for all $x, \eta(x) \le \eta < \frac{1}{2}$
- α -Tsybakov [T04] for $\alpha \in (0,1)$: for all t, $P_{\mathrm{D}}(1/2 - \eta(x) \le t) \le O(t^{\alpha/(1-\alpha)})$
- α -Geometric Tsybakov [e.g., CN08]: for all x, $\frac{1}{2} - \eta(x) \ge |w^* \cdot x|^{\frac{1-\alpha}{\alpha}}$

- Such efficient and label-optimal results for learning Massart halfspaces were previously only known for uniform distribution [YZ17]
 - Our work significantly relaxed the distributional requirements
- Some assumptions on unlabeled distribution seem necessary [CKMY20, DK20]

Algorithm	Efficient?	Label complexity in $\widetilde{\mathrm{O}}$
[BL13]	No	$d\left(\frac{1}{\epsilon}\right)^{2-2\alpha}$
[DKKTZ20]	Yes	$\operatorname{poly}(d)\left(\frac{1}{\epsilon}\right)^{O(1/\alpha)}$
This work $(\alpha \in \left(\frac{1}{2}, 1\right])$	Yes	$d\left(\frac{1}{\epsilon}\right)^{\frac{2-2\alpha}{2\alpha-1}}$
This work (Geometric Tsybakov)	Yes	$d\left(\frac{1}{\epsilon}\right)^{\frac{2-2\alpha}{\alpha}}$

• Our label complexity results improve over passive learning for a range of α values

Outline

- Active learning sparse halfspaces with noise
- The algorithm
- Conclusion and open problems

The algorithm: overview

• Main idea: maintain iterate $\{w_k\}$ such that $\theta(w_k, w^*)$ shrinks geometrically

// Initialization Acute initialization $w_1 \leftarrow$ Initialize(). // Refinement In phases $k = 1, 2, \dots, k_0 = \log(1/\epsilon)$: $w_{k+1} \leftarrow \text{Refine}(w_k, 2^{-(k+1)}).$ Ensuring w_k has angle $\leq 2^{-k}$ with w^* Return w_{k_0+1} .

Refine: design challenges

- A series of prior works combine margin-based sampling with loss minimization techniques to design Refine
- [BL13]: 0-1 loss minimization
 - Computationally inefficient
- [ABHU15, ABHZ16]: surrogate loss minimization + polynomial regression
 - Analysis only tolerates $\eta \leq$ small constant, or requires high label complexity
- [ZSA20]: SGD-like update rule + iteration-dependent sampling
 - Specialized to Massart noise (needs to know η)

The algorithm: Refine

Input: halfspace v_1 , target angle θ **Output:** halfspace v (that has angle $\leq \theta$ to w^*)

For
$$t = 1, 2, ..., T$$
:

1. **Sample:** $(x_t, y_t) \leftarrow$ example drawn from $D|_{B_t}$, where $B_t = \{x : |v_t \cdot x| \le b\}$.

2. **Update:**
$$v_{t+1} \leftarrow v_t - \alpha g_t$$
, where $g_t = -y_t x_t$

Return average:
$$v \leftarrow \frac{1}{T} \sum_{t=1}^{T} v_t$$

Key difference from [ZSA20]: simpler definition of g_t leads to broader noise tolerance

Refine: theoretical properties

- **Theorem:** If $\theta(v_1, w^*) \le 2\theta$, then with high probability, Refine (v_1, θ) returns a vector v with $\theta(v, w^*) \le \theta$, if T is of order:
 - $\frac{d}{(1-2\eta)^2}$, under η -Massart noise;

•
$$d\left(\frac{1}{\theta}\right)^{\frac{2-2\alpha}{2\alpha-1}}$$
, under α -Tsybakov noise with $\alpha \in \left(\frac{1}{2}, 1\right]$;

•
$$d\left(\frac{1}{\theta}\right)^{\frac{2-2\alpha}{\alpha}}$$
, under α -Geometric Tsybakov noise.

Refine: analysis

• **Key observation:** Refine can be viewed as optimizing the following ``proximity function" in a nonstandard way:

- $\psi_b(v) = E[(1 2\eta(x)) | w^* \cdot x | | | v \cdot x | \le b]$ Different from ``nonconvex optimization'' views [GCB09, DKTZ20], although algorithmically similar
- Idea: rewriting OGD's regret guarantees over g_t 's:

$$\frac{1}{T} \sum_{t=1}^{I} \langle -w^*, g_t \rangle \leq \frac{1}{T} \sum_{t=1}^{I} \langle -v_t, g_t \rangle + O\left(\frac{1}{\sqrt{T}}\right)$$

Concentrates to $\frac{1}{\tau} \sum_{t=1}^{T} \psi_b(v_t)$ Can be made small by tuning b, T

The ``proximity function'' ψ_b

•
$$\psi_b(v) = \mathbb{E}\left[\left(1 - 2\eta(x)\right)|w^* \cdot x| \mid |v \cdot x| \le b\right]$$

• Lemma (simplified): For ``structured'' D, $\psi_b(v)$ is at least (of order):

b

- $(1 2\eta)\theta(v, w^*)$, under η -Massart noise;
- $b^{(1-\alpha)/\alpha}\theta(v,w^*)$, under α -Tsybakov noise;
- $\theta(v, w^*)^{1/\alpha}$, under α -Geometric Tsybakov noise.
- Optimizing $\psi_b(v) \Rightarrow$ optimizing $\theta(v, w^*)$

Initialize: design challenges and resolution

- [ZSA20]: average-based initialization label inefficient 🟵
 - e.g. results in $O\left(\frac{d}{(1-2\eta)^4}\right)$ label complexity under η -Massart noise
- This work: a new initialization procedure
 - Key observation: Refine with arbitrary initialization label-efficiently returns a halfspace with acute angle with w^* , with constant probability
 - ``Boosting the confidence'' using a repeat-and-select procedure
 - Results in optimal label complexity under η -Massart noise \bigcirc

Outline

- Active learning sparse halfspaces with noise
- The algorithm
- Discussions

Discussions

- Under Massart noise, our work significantly relaxes the distributional requirements for efficient and label-optimal learning halfspaces
 - Can they be further relaxed, e.g., to *s*-concave distributions [BZ17]?
- Under (Geometric) Tsybakov noise, our analysis pays a large price when doing angle-excess error conversion
 - Can we get around this?
- Under Tsybakov noise, our algorithm has a higher label complexity than computationally inefficient algorithms, and cannot handle $\alpha \leq 1/2$
 - Can we achieve efficiency and label-optimality simultaneously?

References

- [ABHU15] Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, and Ruth Urner. Efficient learning halfspaces with bounded noise. COLT 2015.
- [ABHZ16] Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, and Hongyang Zhang. Learning and 1-bit compressed sensing under asymmetric noise. COLT 2016.
- [BBL06] Maria-Florina Balcan, Alina Beygelzimer, and John Langford. Agnostic active learning. ICML 2006.
- [BL13] Maria-Florina Balcan and Philip M. Long. Active and passive learning of linear separators under logconcave distributions.
- [CKMY20] Sitan Chen, Frederic Koehler, Ankur Moitra, and Morris Yau. Classification under misspecification: Halfspaces, generalized linear models, and connections to evolvability. NeurIPS 2020.
- [DK20] Ilias Diakonikolas and Daniel M Kane. Hardness of learning halfspaces with massart noise.arXiv preprintarXiv:2012.09720, 2020.
- [DKKTZ20] Ilias Diakonikolas, Daniel M. Kane, Vasilis Kontonis, Christos Tzamos, Nikos Zarifis. A Polynomial Time Algorithm for Learning Halfspaces with Tsybakov Noise. ArXiv 2020.
- [DKTZ20] Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis. Learning halfspaces with massart noise under structured distributions. COLT 2020.
- [DKZ20] Ilias Diakonikolas, Daniel M Kane, and Nikos Zarifis. Near-optimal sq lower bounds for agnostically learning halfspaces and relus under gaussian marginals. NeurIPS 2020.
- [GCB09] A Guillory, E Chastain, J Bilmes, Active learning as non-convex optimization. AISTATS 2009.
- [KK14] Adam Klivans and Pravesh Kothari. Embedding hard learning problems into gaussian space.
- [V84] Valiant. A Theory of the Learnable. JACM, 1984
- [YZ17] Songbai Yan and Chicheng Zhang. Revisiting perceptron: Efficient and label-optimal learning of halfspaces, NeurIPS 2017.
- [ZSA20] Chicheng Zhang, Jie Shen, and Pranjal Awasthi. Efficient active learning of sparse halfspaces with arbitrary bounded noise. NeurIPS 2020.

Thank you! arXiv: 2102.05312