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Active learning for classification

• Given:               𝑥1, 𝑦1 , … 𝑥𝑛, 𝑦𝑛         

 

• Find: Classifier ℎ in a class 𝐻 to predict 𝑦 from 𝑥
• With few interactive label queries

• Useful in practical settings where labels are expensive to obtain

features interactive label queries
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Active learning in the PAC model [V84,BBL06]

• Setting:
• (𝑥, 𝑦) drawn from a distribution 𝐷

• 𝑥 drawn from a ``structured’’ distribution [DKKTZ20] (e.g. 
Gaussian, Laplace, ..)

• Linear classifiers: 𝐻 = {sign 𝑤 ⋅ 𝑥 : 𝑤 ∈ R𝑑}

• Error err 𝑤 =  𝑃 𝑦 ≠ sign 𝑤 ⋅ 𝑥

• Optimal linear classifier 𝑤∗ = argmin𝑤 err 𝑤

−

+ 𝑤∗



Active learning in the PAC model [V84,BBL06]

• Goal: computationally efficient algorithm that returns a vector ෝ𝑤, 
such that 

                          err ෝ𝑤  − err 𝑤∗ ≤ 𝜖, 

   using a few label queries

• Challenge: noise tolerance
• Agnostically learning halfspaces is computationally hard even when 𝐷 has 

``nice’’ unlabeled data distribution [KK14, DKZ20]
• Benign noise conditions

−

+ ෝ𝑤 𝑤∗



Learning halfspaces under benign noise

• Main assumption: there exists some halfspace 𝑤∗ 

   that is Bayes optimal, i.e. for all 𝑥, 

        𝜂 𝑥 : = 𝑃𝐷 𝑦 ≠ sign 𝑤∗ ⋅ 𝑥 𝑥 ≤ 1/2

• 𝜂-Massart [MN06]: for all 𝑥, 𝜂 𝑥 ≤ 𝜂 <
1

2

• 𝛼-Tsybakov [T04] for 𝛼 ∈ (0,1): for all 𝑡,
𝑃D 1/2 − 𝜂 𝑥 ≤ 𝑡 ≤ 𝑂 𝑡𝛼/(1−𝛼)

• 𝛼-Geometric Tsybakov [e.g., CN08]: for all 𝑥,
1

2
− 𝜂 𝑥 ≥ 𝑤∗ ⋅ 𝑥
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Main results - Massart noise

• Such efficient and label-optimal results for learning Massart halfspaces were 
previously only known for uniform distribution [YZ17]
• Our work significantly relaxed the distributional requirements

• Some assumptions on unlabeled distribution seem necessary [CKMY20, DK20]

Algorithm Efficient? Label complexity in ෩O 

[BL13] No
𝑑

1 − 2𝜂 2 polylog(1/𝜖)
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Main results – Tsybakov noise

• Our label complexity results improve over passive learning for a range of 𝛼 values

Algorithm Efficient? Label complexity in ෩O 
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The algorithm: overview

• Main idea: maintain iterate {𝑤𝑘} such that 𝜃 𝑤𝑘 , 𝑤∗  shrinks 
geometrically

// Initialization
𝑤1 ← Initialize().

// Refinement 
In phases 𝑘 =  1,2, . . , 𝑘0 = log(1/𝜖):

  𝑤𝑘+1 ← Refine(𝑤𝑘 , 2−(𝑘+1)).

Return 𝑤𝑘0+1.

Acute initialization

Ensuring 𝑤𝑘 has angle ≤ 2−𝑘 with 𝑤∗



Refine: design challenges

• A series of prior works combine margin-based sampling with 
loss minimization techniques to design Refine

• [BL13]: 0-1 loss minimization 
• Computationally inefficient

• [ABHU15, ABHZ16]: surrogate loss minimization + polynomial 
regression 
• Analysis only tolerates 𝜂 ≤ small constant, or requires high label 

complexity

• [ZSA20]: SGD-like update rule + iteration-dependent sampling
• Specialized to Massart noise (needs to know 𝜂)

𝑅𝑘

𝑤𝑘

𝑤∗

𝑤𝑘+1



The algorithm: Refine

Input: halfspace 𝑣1, target angle 𝜃 
Output: halfspace 𝑣 (that has angle ≤ 𝜃 to 𝑤∗)   

For 𝑡 =  1,2, … , 𝑇:
1.  Sample: (𝑥𝑡 , 𝑦𝑡) ← example drawn from 𝐷|𝐵𝑡

,           

where 𝐵𝑡 = {𝑥: |𝑣𝑡⋅ 𝑥| ≤ 𝑏}.

2.  Update: 𝑣𝑡+1 ← 𝑣𝑡 − 𝛼𝑔𝑡, where 𝑔𝑡 = −𝑦𝑡𝑥𝑡

Return average: 𝑣 ←
1

𝑇
σ𝑡=1

𝑇 𝑣𝑡

𝐵𝑡

𝑤∗

𝑣𝑡𝑣𝑡+1

Key difference from [ZSA20]: simpler definition of 𝑔𝑡 leads to broader noise tolerance 



Refine: theoretical properties

• Theorem: If 𝜃 𝑣1, 𝑤∗ ≤ 2𝜃, then with high probability, Refine 𝑣1, 𝜃  
returns a vector 𝑣 with 𝜃 𝑣, 𝑤∗ ≤ 𝜃,if 𝑇 is of order:

•
𝑑

1−2𝜂 2 , under 𝜂-Massart noise;

• 𝑑
1

𝜃

2−2𝛼

2𝛼−1
, under 𝛼-Tsybakov noise with 𝛼 ∈

1

2
, 1 ;

• 𝑑
1

𝜃

2−2𝛼

𝛼
, under 𝛼-Geometric Tsybakov noise. 



Refine: analysis

• Key observation: Refine can be viewed as optimizing the following ``proximity 
function’’ in a nonstandard way:

𝜓𝑏 𝑣 = E 1 − 2𝜂 𝑥 𝑤∗ ⋅ 𝑥 ∣ 𝑣 ⋅ 𝑥 ≤ 𝑏

• Different from ``nonconvex optimization’’ views [GCB09, DKTZ20], 

   although algorithmically similar

• Idea: rewriting OGD’s regret guarantees over 𝑔𝑡’s: 

1

𝑇
 

𝑡=1

𝑇

−𝑤∗, 𝑔𝑡 ≤
1

𝑇
 

𝑡=1

𝑇

−𝑣𝑡 , 𝑔𝑡 + 𝑂
1

𝑇

𝑏

𝑤∗
𝑣

Can be made small by tuning 𝑏, 𝑇 Concentrates to 
1

𝑇
σ𝑡=1

𝑇 𝜓𝑏 𝑣𝑡



The ``proximity function’’ 𝜓𝑏

• 𝜓𝑏 𝑣 = E 1 − 2𝜂 𝑥 𝑤∗ ⋅ 𝑥 ∣ 𝑣 ⋅ 𝑥 ≤ 𝑏

• Lemma (simplified): For ``structured’’ 𝐷, 𝜓𝑏 𝑣  is at least (of order):
• 1 − 2𝜂 𝜃(𝑣, 𝑤∗), under 𝜂-Massart noise;

• 𝑏(1−𝛼)/𝛼𝜃(𝑣, 𝑤∗), under 𝛼-Tsybakov noise;

• 𝜃 𝑣, 𝑤∗ 1/𝛼, under 𝛼-Geometric Tsybakov noise. 

• Optimizing 𝜓𝑏 𝑣  ⇒ optimizing 𝜃(𝑣, 𝑤∗)

𝑏

𝑤∗
𝑣



Initialize: design challenges and resolution

• [ZSA20]: average-based initialization – label inefficient 

• e.g. results in O
𝑑

1−2𝜂 4  label complexity under 𝜂-Massart noise

• This work: a new initialization procedure
• Key observation: Refine with arbitrary initialization label-efficiently returns a 

halfspace with acute angle with 𝑤∗, with constant probability

• ``Boosting the confidence’’ using a repeat-and-select procedure

• Results in optimal label complexity under 𝜂-Massart noise ☺
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Discussions

• Under Massart noise, our work significantly relaxes the distributional 
requirements for efficient and label-optimal learning halfspaces 
• Can they be further relaxed, e.g., to 𝑠-concave distributions [BZ17]?

• Under (Geometric) Tsybakov noise, our analysis pays a large price when 
doing angle-excess error conversion
• Can we get around this?

• Under Tsybakov noise, our algorithm has a higher label complexity than 
computationally inefficient algorithms, and cannot handle 𝛼 ≤ 1/2 
• Can we achieve efficiency and label-optimality simultaneously?
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