
• 𝝂-Adversarial Noise

• Our algorithm has a lower running time than the 
state-of-the-art algorithms

• η-Bounded Noise

• Our algorithm achieves optimal label complexity 
and computational efficiency simultaneously
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ABSTRACT
• We propose an efficient Perceptron-based algorithm for actively learning homogeneous halfspaces. Specifically:

• Under the bounded noise condition, our algorithm achieves computational efficiency and label-optimality, improving over 
the state-of-the-art algorithms [1,3].

• Under the adversarial noise condition, our algorithm achieves a near-optimal label complexity and requires less time than 
the state-of-the-art method [2].

• In addition, our algorithm can be converted to an efficient passive learning algorithm with near-optimal sample requirement.

SETTING
• Active Learning

Given:
(1) A distribution 𝐷 over 𝑋 × 𝑌, a set of classifiers 𝐻;
(2) Ability to draw unlabeled examples 𝑥~𝐷 ;
(3) Ability to make interactive queries to get label 𝑦~𝐷 ∣ for example 𝑥;

Goal: 
Find an ℎ ∈ 𝐻 such that P (ℎ 𝑋 ≠ 𝑌) is small while making only a few label queries.

• Learning homogeneous halfspaces: 𝐻 = {sign 𝑣 ⋅ 𝑥 : 𝑣 ∈ 𝑅 , 𝑣 = 1}.
• Unlabeled distribution 𝐷 : uniform over the unit sphere {𝑥 ∈ 𝑅 : 𝑥 = 1}.
• Noise Models: 

• 𝜂-bounded noise (0 ≤ 𝜂 < ): there is a halfspace 𝑢 such that for all 𝑥, P Y ≠ sign 𝑢 ⋅ 𝑥 ∣ 𝑋 = 𝑥 ≤ 𝜂.

• 𝜈-adversarial noise (0 ≤ 𝜈 < 1): there is a halfspace 𝑢 such that P Y ≠ sign 𝑢 ⋅ 𝑋 ≤ 𝜈.

• Label Complexity: the number of labels required to output a halfspace 𝑣 such that P sign 𝑣 ⋅ 𝑋 ≠ sign 𝑢 ⋅ 𝑋 ≤ 𝜖.
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• Design efficient and label-optimal halfspace learning algorithms that:
• adapt to unknown bounded noise parameter 𝜂
• Work under broader unlabeled distributions, e.g. log-concave distributions
• Work under weaker noise assumptions, e.g. Tsybakov noise condition
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• Input: target error 𝜖;
• Output: learned halfspace 𝑤.

• 1. Initialize 𝑤 uniformly at random from the unit sphere.
• 2. Set sample schedule 𝑚 , 𝑏 , 𝑘 ≥ 1.

• 3. In phases 𝑘 = 1,2, … , ⌈log ⌉:

• Repeat 𝑚 times:
- Sample 𝑥 from 𝐷 |{ : / ⋅ } and query its label 𝑦;
- Perform modified Perceptron update [5]: 𝑤 ← 𝑤 − 2𝐼 𝑦 𝑤 ⋅ 𝑥 ≤ 0 𝑤 ⋅ 𝑥 𝑥.

• 4. Return 𝑤.

• Sample Schedule:

• (η-Bounded Noise): 𝑚 = 𝑂 ( ), 𝑏 = Θ(
( )

);

• (Adversarial Noise): 𝑚 = 𝑂 (𝑑), 𝑏 = Θ( ).

• The Modified Perceptron Update: 𝑤 ← 𝑤 − 2𝐼 𝑦 𝑤 ⋅ 𝑥 ≤ 0 𝑤 ⋅ 𝑥 𝑥

• Perceptron update with a careful tuning of step size
• In the noiseless setting, the angle between 𝑤 and 𝑤∗ never increases; in the noisy setting, the angle never 

increases in expectation.
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• Noise-free (𝜼 = 𝟎 or 𝝂 = 𝟎)
• Efficient and label-optimal solutions have been proposed (e.g. [3,5]) 

• Bounded noise
• [3]: a margin-based algorithm which is label-optimal but computationally inefficient.

• [1]: combining the idea of [3] and polynomial regression. Efficient but requires 𝑂 𝑑 ln labels.

• Adversarial noise
• [4]: learning halfspaces with agnostic noise is computationally hard with unbounded 𝜈, even if the unlabeled 

distribution is uniform.
• [2]: computationally efficient and label-optimal algorithms that tolerates a noise level of 𝜈 = Θ(𝜖) . 
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