Revisiting Perceptron: Efficient and Label-Optimal Learning of Halfspaces

Songbai Yan yansongbai@eng.ucsd.edu UC San Diego
Chicheng Zhang chicheng.zhang@microsoft.com UC San Diego -> Microsoft Research New York City

ABSTRACT

- We propose an efficient Perceptron-based algorithm for actively learning homogeneous halfspaces. Specifically:
 - Under the bounded noise condition, our algorithm achieves computational efficiency and label-optimality, improving over the state-of-the-art algorithms [1-3].
 - Under the adversarial noise condition, our algorithm achieves near-optimal label complexity and computational efficiency over the state-of-the-art method [2].
 - In addition, our algorithm can be converted to an efficient passive learning algorithm with near-optimal sample requirement.

SETTING

- Active Learning
 - Goal: Find an \(h \in H \) such that \(P_0(h(X) \neq Y) \) is small while making only a few label queries.

- Noise Models:
 - \(\eta \)-bounded noise (\(0 \leq \eta < \frac{1}{2} \)): there is a halfspace \(\mathcal{H} \) such that for all \(x \), \(P_0(Y \neq \text{sign}(\langle u \cdot x \rangle | X = x) \) \(\leq \eta \).
 - \(\nu \)-adversarial noise (\(0 \leq \nu < 1 \)): there is a halfspace \(\mathcal{H} \) such that \(P_0(Y \neq \text{sign}(\langle u \cdot x \rangle | X = x) \) \(\leq \nu \).

- Label Complexity: the number of labels required to output a halfspace \(\mathcal{H} \) such that \(P_0(\langle \text{sign}(\langle u \cdot x \rangle | \mathcal{H} \rangle \neq \text{sign}(\langle u \cdot x \rangle | X = x) \)) \(\leq \epsilon \).

RELATED WORK

- Noise-free (\(\eta = 0 \) or \(\nu = 0 \))
 - Efficient and label-optimal solutions have been proposed (e.g. [3,5]).

- Bounded noise
 - [3]: a margin-based algorithm which is label-optimal but computationally inefficient.
 - [1]: combining the idea of [3] and polynomial regression. Efficient but requires \(\tilde{O}(d^{(1-2\gamma)^*} \ln \frac{1}{\epsilon}) \) labels.

- Adversarial noise
 - [4]: learning halfspaces with agnostic noise is computationally hard with unbounded \(\nu \), even if the unlabeled distribution is uniform.

- [2]: computationally efficient and label-optimal algorithms that tolerate a noise level of \(\nu = \Theta(\epsilon) \).

REFERENCES

ALGORITHM

- Input: target error \(\epsilon \); Output: learned halfspace \(w \).
 1. Initialize \(w \) uniformly at random from the unit sphere.
 2. Set sample schedule \(m_0, b_k, k \geq 1 \).
 3. In phases \(k = 1, 2, \ldots, \lceil \log \frac{1}{\epsilon} \rceil \): Repeat \(m_k \) times:
 - Sample \(x \) from \(\mathcal{D}_k \) and query its label \(y \);
 - Perform modified Perceptron update [5]: \(w \leftarrow w - 2(yw \cdot x \leq 0)(w \cdot x)x \).
 4. Return \(w \).

- Sample Schedule:
 - (\(\eta \)-Bounded Noise): \(m_k = \tilde{O}(\frac{d}{\eta} \ln \frac{1}{\epsilon}) \), \(b_k = \tilde{O}(\frac{d}{\eta} \ln \frac{1}{\epsilon}) \).
 - (Adversarial Noise): \(m_k = \tilde{O}(d) \), \(b_k = \tilde{O}(d) \).

- The Modified Perceptron Update: \(w_{\text{new}} \leftarrow w_{\text{old}} - 2(yw_{\text{old}} \cdot x \leq 0)(w_{\text{old}} \cdot x)x \)
 - Perceptron update with a careful tuning of step size
 - In the noiseless setting, the angle between \(w \) and \(w^* \) never increases; in the noisy setting, the angle never increases in expectation.

PERFORMANCE GUARANTEES

- \(\eta \)-Bounded Noise
 - Our algorithm has a lower running time than the state-of-the-art algorithms
 - \(O(\frac{d}{\eta} \ln \frac{1}{\epsilon}) \) labels.

- \(\nu \)-Adversarial Noise
 - Lower Bound: \(\Omega(\frac{d}{\nu} \ln \frac{1}{\epsilon}) \)

 - Our algorithm achieves optimal label complexity and computational efficiency simultaneously.

OPEN PROBLEMS

- Design efficient and label-optimal halfspace learning algorithms that:
 - adapt to unknown bounded noise parameter \(\eta \)
 - Work under broader unlabeled distributions, e.g. log-concave distributions
 - Work under weaker noise assumptions, e.g. Tsybakov noise condition