
PopArt: Efficient Sparse Regression and Experimental Design 
for Optimal Sparse Linear Bandits

Chicheng Zhang

University of Arizona

Joint work with Kyoungseok Jang (NYU) and Kwang-Sung Jun (UArizona)



Problem: sparse linear bandits

• For time step 𝑡 = 1,2, . . 𝑇:

• Take an action 𝑎𝑡 from action space 𝒜 ⊆ −1, +1 𝑑

• Receive reward 𝑟𝑡 = ⟨𝜃∗, 𝑎𝑡⟩ + 𝜂𝑡 

• Goal: minimize cumulative regret  σ𝑡=1
𝑇 max

𝑎∈𝒜
𝜃∗, 𝑎 − ⟨𝜃∗, 𝑎𝑡⟩

• Tradeoff between exploration and exploitation

• 𝜃∗ is sparse
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Problem: experimental design for sparse 
recovery
• For time step 𝑡 = 1,2, . . 𝑇:

• Make a measurement 𝑎𝑡 from 𝒜 ⊆ −1, +1 𝑑

• Receive noisy response 𝑟𝑡 = ⟨𝜃∗, 𝑎𝑡⟩ + 𝜂𝑡

• Goal: output መ𝜃, such that መ𝜃 − 𝜃∗ 1
 is small 

• Assumption: 𝜃∗ is sparse

• No exploration / exploitation tradeoff
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Main result: experimental design for sparse recovery 

• Assumption: 𝜃∗ is 𝑠-sparse (𝑠 ≪ 𝑑)

• ℓ1-recovery error guarantee:

• 𝐶∗ = ma𝑥
𝜋∈Δ 𝒜

𝜆min(𝑄(𝜋)),   𝑄(𝜋) = 𝔼𝑎∼𝜋[𝑎𝑎⊤]

• 𝑁∗ is a new measurement set-dependent quantity
• 𝑁∗ ≥ 𝐶∗ and can be ≫ 𝐶∗

Lasso (e.g. Bickel, Ritov, Tsybakov ’09)
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Main result: sparse linear bandits in data-
poor regime
• Assumption: 𝜃∗ is 𝑠-sparse (𝑠 ≪ 𝑑) and 𝑇 is small (𝑇 ≪ 𝑑)

• Additional result: 

• ෩Θ 𝑠2/3 𝑇2/3𝑁∗
−1/3

 regret upper and lower bounds
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PopArt: new algorithm for sparse estimation

• Sparse estimation
• Given: iid (𝑎𝑡 , 𝑟𝑡)’s such that 𝑟𝑡 = ⟨𝜃∗, 𝑎𝑡⟩ + 𝜂𝑡, 𝜃∗ is 𝑠-sparse
• Goal: recover 𝜃∗

• Predominant approach: Lasso (Tibshirani’96) 

 min
𝜃

σ𝑡 𝑟𝑡 − 𝜃, 𝑎𝑡
2 + 𝜆 𝜃 1 

• Our approach: POPulation covariance regression with hARd Thresholding 
(PopArt) 
• Key insight: in many applications, the population covariance matrix, 𝑄 = 𝔼 𝑎𝑎⊤  is 

known and can be utilized



PopArt: the algorithm

• Key insight (Dani, Hayes, Kakade ‘07): 

        ෨𝜃𝑡 = 𝑄−1 𝑎𝑡𝑟𝑡  is an unbiased estimator of 𝜃∗

•  𝐻𝑠: hard thresholding operator
• Brings ෨𝜃 closer to 𝜃∗ in ℓ1 distance, by exploiting sparsity of 𝜃∗ 

PopArt

Compute ෨𝜃𝑡, 𝑡 = 1, … , 𝑇
For 𝑖 =  1,2, . . , 𝑑:

 ෨𝜃𝑖 ← Robust-mean-estimator( ෨𝜃1
𝑖 , … , ෨𝜃𝑇

𝑖 )    (Catoni ’12) 
Return 𝐻𝑠( ෨𝜃).
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PopArt: recovery guarantee

• Theorem: (some variant of) PopArt outputs መ𝜃 that has ℓ1 recovery error

   መ𝜃 − 𝜃∗ 1
≤  ෨𝑂 𝑠 max

𝑖
 (𝑄−1)𝑖𝑖
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   with high probability.



Experimental design for PopArt

• Given measurement set 𝒜, minimize recovery bound by design sampling 
distribution 

                                             𝜇∗ = argmin
𝜋∈Δ(𝒜)

 max
𝑖

 (𝑄(𝜋)−1)𝑖𝑖

• New experimental design criterion -> computationally tractable

• Corollary: PopArt with 𝑇 samples from has ℓ1 recovery error ෨𝑂
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𝑁∗ = max
𝜋∈Δ(𝒜)

min
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1
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Sparse linear bandits: algorithm & lower bounds

• New algorithm & regret upper bound: explore-then-commit
• Use PopArt with 𝜇∗ for exploration

• New regret lower bound: 
• Main idea: reducing to lower bound sample complexity of estimating support(𝜃∗) 

• Prior work (Hao et al, 2020): use binary hypothesis testing 

• This work: using symmetrization to improve lower bound by a 𝑠1/3 factor
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Numerical simulations

• Sparse recovery algorithms evaluated:
• PopArt with 𝜇∗ experimental design
• Lasso with 𝜇∗ experimental design
• Lasso with E-optimal design

• Experiment 1: 𝑑 = 10, 𝑠 = 2

   an 𝒜 with 𝑁∗ ≫ 𝐶∗

• Experiment 2: 𝑑 = 30, 𝑠 = 2

   𝒜 consists of 90 unit vectors (𝑁∗ ≈ 𝐶∗)



Conclusions & future work

• We propose PopArt, a new sparse estimation algorithm that can have better recovery 
guarantees than classical Lasso

• PopArt motivates a new experimental design criterion, and yields an optimal sparse linear bandit 
algorithm (in data-poor regime)

• Ongoing work: new estimator & experimental design for low-rank matrix regression

• Open questions: 

• (experimental design) Fixed measurement set 𝒜 and budget 𝑇, can we design estimators 
with even lower recovery error?

• (bandits) what’s the minimax regret for sparse linear bandits in all regimes of parameters?

• Thank you! Paper: https://arxiv.org/abs/2210.15345 

https://arxiv.org/abs/2210.15345
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Main result: experimental design for sparse recovery 

• Assumption: 𝜃∗ is 𝑠-sparse

• ℓ1-recovery error guarantee:

• 𝑀∗ = ma𝑥
𝜋∈Δ 𝒜

𝜙0
2(𝑄 𝜋 , 𝑠) – restricted eigenvalue

• Intractable Experimental design criterion (Bandeira et al, 2012)

• Proposition: exists 𝒜, such that 
1

𝑁∗
≪

1

𝑀∗
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Definition of 𝑁∗

• 𝑁∗ = max𝜋∈Δ(𝒜) min
𝑖

1

(𝑄(𝜋)−1)𝑖𝑖

• max
𝜋∈Δ(𝒜)

min
𝑖

1

(𝑄(𝜋)−1)𝑖𝑖



PopArt: recovery guarantee

• Theorem: (some variant of) PopArt outputs መ𝜃 that has ℓ1 recovery error

   መ𝜃 − 𝜃∗ 1
≤  ෨𝑂 𝑠 max

𝑖
 (𝑄−1)𝑖𝑖

ln 𝑑

𝑇
 

   with high probability.

• Key idea of analysis: 
• establish bounds on ෨𝜃𝑖 − 𝜃∗

𝑖  for all coordinate 𝑖

• To this end, analyze variance of ෨𝜃𝑡
𝑖

෨𝜃𝑖 ← Robust-mean-estimator( ෨𝜃1
𝑖 , … , ෨𝜃𝑇

𝑖 )



Sparse linear bandits: algorithm & lower bounds

• New algorithm & regret upper bound: explore-then-commit

• New regret lower bound: 
• Main idea: reducing to lower bound sample complexity of estimating support(𝜃∗) 

• Prior work (Hao et al, 2020): use binary hypothesis testing 

• This work: using symmetrization to improve lower bound by 𝑠 factor

First 𝑇1 rounds: 
     take 𝑎𝑡 ∼ 𝜋∗, see 𝑟𝑡

use PopArt to compute መ𝜃 

Remaining 𝑇 − 𝑇1 rounds: 

     take 𝑎𝑡 = argmax𝑎∈𝒜⟨ መ𝜃, 𝑎⟩
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