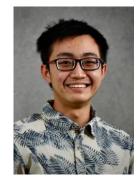
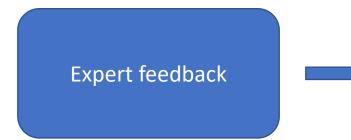
On Efficient Online Imitation Learning via Classification

Chicheng Zhang University of Arizona

Joint work with Yichen Li (University of Arizona)

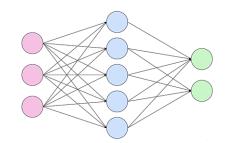


Imitation learning (IL)



Imitation learner

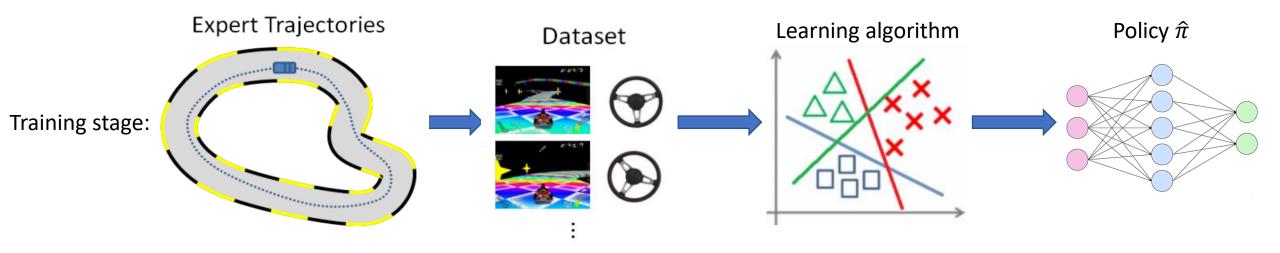
Policy $\hat{\pi}$

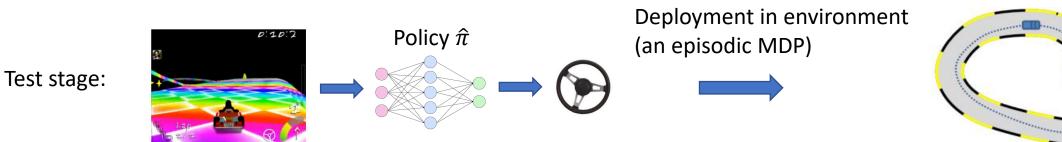


- Applications:
 - Autonomous driving
 - Robot control
 - Game playing

• Sidesteps exploration challenges in reinforcement learning

Example: learning to drive from demonstrations

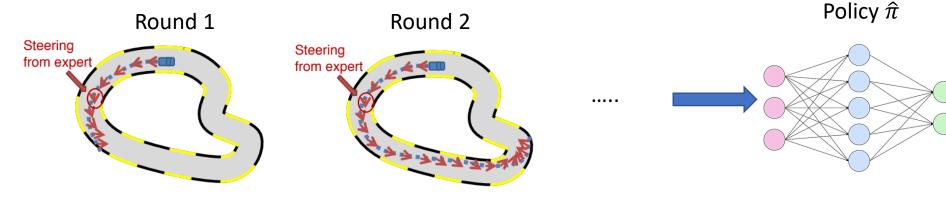




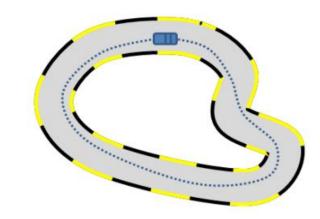
(Images from Stephane Ross's slides)

Offline vs. Interactive imitation learning

- Offline IL (behavior cloning): learner receives demonstrations ahead of time
- Interactive IL: learner adaptively *queries* expert for demonstrations



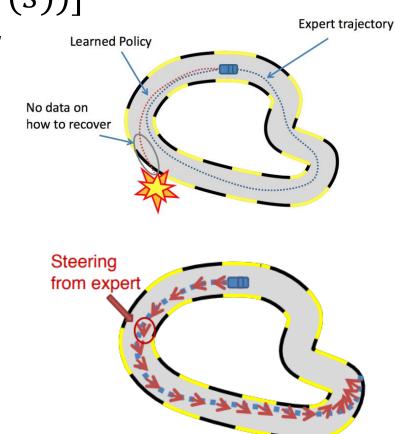
- Goal: learn a policy competitive with expert, with low:
 - Sample complexity (#expert demonstrations)
 - Interaction round complexity



Loss choice in imitation learning

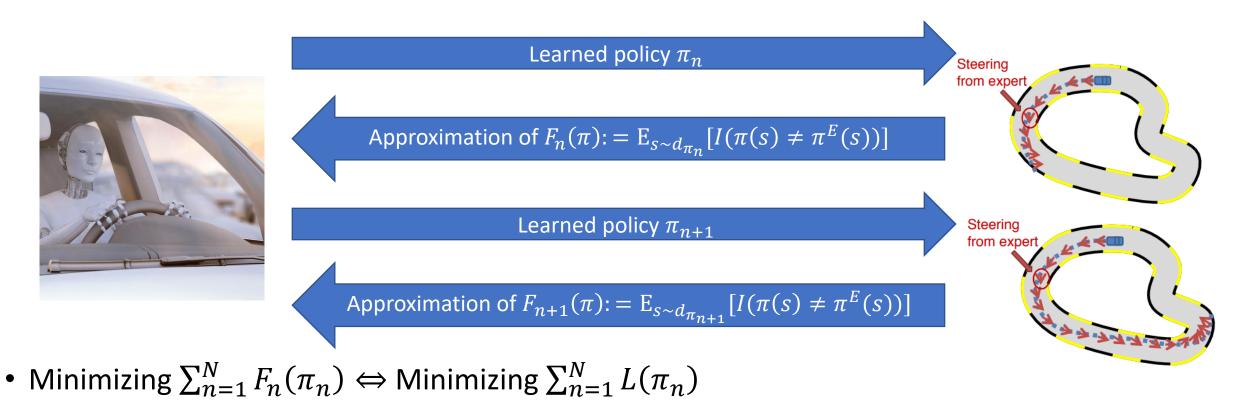
- Assume discrete action space
- Offline IL objective: $L_0(\pi) = E_{s \sim d_{\pi E}}[I(\pi(s) \neq \pi^E(s))]$
- d_{π^E} : average state distribution experienced by π^E
- Issue: compounding error (covariate shift)

- A better objective (e.g. Ke et al, 2020): $L(\pi) = E_{s \sim d_{\pi}}[I(\pi(s) \neq \pi^{E}(s))]$
- Can be optimized in *interactive IL*



The DAgger reduction framework for interactive IL (Ross-Gordon-Bagnell'11)

- Goal: optimize imitation loss $L(\pi) = E_{s \sim d_{\pi}}[I(\pi(s) \neq \pi^{E}(s))]$
- DAgger (Data Aggregation) simulates a *N*-round online learning game:



DAgger: guarantees & limitations

• Theorem (simplified): if the sequence of policies $\{\pi_n\}_{n=1}^N$ satisfies that

SReg
$$(N) = \sum_{n=1}^{N} F_n(\pi_n) - \min_{\pi \in B} \sum_{n=1}^{N} F_n(\pi) \le R(N),$$

 $E_{s \sim d_{\pi_n}}[I(\pi(s) \neq \pi^E(s))]$
then outputting $\hat{\pi} \sim \text{Uniform}(\{\pi_n\}_{n=1}^N)$ has $L(\hat{\pi}) \le \text{bias}(B, \pi^E) + \frac{R(N)}{N}.$
Approximability of π^E using B

- How to achieve (*) with small R(N)?
 - (Ross-Gordon-Bagnell'11) and subsequent works: Assume some parametrization of π , and optimize for a convex surrogate of $F_n(\pi)$
- Issues:
 - convex surrogate may result in poor approximation of 0-1 error minimizer [Ben-David et al '12]

(*)

• π may not have a parametrization amenable for optimization (e.g. decision trees)

This work: provable regret minimization in classification-based IL

Question: how can we provably achieve SReg(N) = $\sum_{n=1}^{\infty} F_n(\pi_n) - \min_{\pi \in B} \sum_{n=1}^{\infty} F_n(\pi) \le R(N), (*)$ $\mathbf{E}_{s \sim d_{\pi_n}}[I(\pi(s) \neq \pi^E(s))]$

A classical online classification problem?

We show:

?

- any (possibly randomized) proper learning algorithm must have $R(N) = \Omega(N)$ in the worst case
- an improper learning framework, *Logger*, that allows the design of IL algorithms with R(N) = o(N)
- efficient improper learning algorithms with sample complexity / interaction round complexity guarantees, using *Logger*, using *offline classification oracle*

Result 1: failure of proper learning

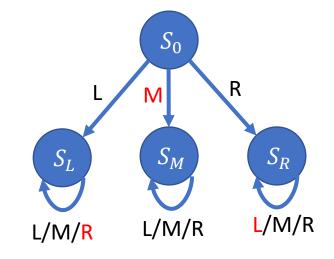
• **Theorem:** there exists an episodic MDP and benchmark policy class B, such that for any $\{\pi_n\}_{n=1}^N \subset B$,

SReg(N) =
$$\sum_{n=1}^{N} F_n(\pi_n) - \min_{\pi \in B} \sum_{n=1}^{N} F_n(\pi) = \Omega(N)$$

- Key observation: different from standard online classification, in online IL, F_n may (adversarially) adapt to the choice of π_n
- Similar to (Cover'66)'s impossibility result

Result 1: failure of proper learning

- Episodic MDP M with episode length $H \ge 2$
- Expert π^E
- Benchmark policy class $B = \{h_L \equiv L, h_R \equiv R\}$
- For $\{\pi_n\}_{n=1}^N \subset B$:
- For every n, $F_n(\pi_n) = 1$ (e.g. $\pi_n = h_L$, trajectory = ($S_0, S_L, ..., S_L$))
- Meanwhile, $\min(F_n(h_L), F_n(h_R)) \le \frac{1}{H}$
- These imply that $\operatorname{SReg}(N) \ge \left(1 \frac{1}{H}\right)\frac{N}{2}$



Result 2: improper learning framework Logger

• Define mixed policy classes:

 $\Pi_B = \{\pi_w := \sum_{h \in B} w[h]h(\cdot | s) : w \in \Delta^B \}$

- Executing π_w : randomly following a policy $\sim w$ at every step
- Implicitly used in (Syed-Schapire'10)
- **Theorem:** algorithmic framework *Logger* (Linear lOss aGGrEgation), when taking online linear optimization (OLO) algorithm A with *deterministic* regret R(N) as input, outputs $\{\pi_n\}_{n=1}^N \subset \Pi_B$ s.t. SReg $(N) \leq R(N)$
- e.g. *A* = Hedge (Freund-Schapire'97), Follow-the-Regularized-Leader (FTRL), ...

Result 2: improper learning framework Logger

• Key observation:

$$\begin{split} F_n(\pi_w) &= \mathrm{E}_{s \sim d_{\pi_n}} \mathrm{E}_{a \sim \pi_w(\cdot \mid s)} \big[I\big(a \neq \pi^E(s) \big) \big] \\ &= \sum_{h \in B} w[h] \, \mathrm{E}_{s \sim d_{\pi_n}} \big[I\big(h(s) \neq \pi^E(s) \big) \big] \\ &=: \ell_n(w) \end{split}$$

Algorithm *Logger*(*A*):

For n = 1, 2, ..., N: $\pi_n = \pi_{w_n}$, with w_n being the output of AUpdate A with (unbiased estimates) of ℓ_n

$$\Rightarrow R(N)$$

$$\geq \sum_{n=1}^{N} \ell_n(w_n) - \min_{w \in \Delta^B} \sum_{n=1}^{N} \ell_n(w)$$

$$= \sum_{n=1}^{N} F_n(\pi_n) - \min_{\pi \in B} \sum_{n=1}^{N} F_n(\pi)$$

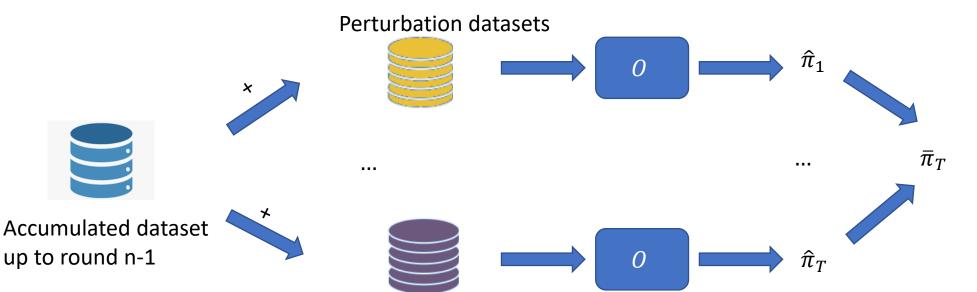
$$= \operatorname{SReg}(N)$$

• Assume offline classification oracle *O* for policy class *B*:

$$D = \langle (x_1, y_1), \dots, (x_n, y_n) \rangle \longrightarrow o \longrightarrow \operatorname{argmin}_{h \in B} \mathbb{E}_D[I(h(x) \neq y)]$$

- Useful computational abstraction for designing efficient online learning algorithms (e.g. Langford-Zhang'07, Syrgkanis et al'16, Rakhlin-Sridharan'16)
- Can we use it to design efficient regret minimization algorithms for IL?

- Challenge: existing adversarial oracle-efficient online learning algorithms use *proper learning* (e.g. Syrgkanis et al '16)
 - unavoidably suffers linear regret in IL (Result 1)
- Workaround: utilize an equivalence between an in-expectation version of Follow-the-Perturbed-Leader (FTPL) and Follow-the-Regularized-Leader (Abernethy et al '14) ⇒ our *Mixed-FTPL* algorithm



- **Theorem:** Assuming *B* satisfies a small-separator condition (Syrgkanis et al '16). *Logger,* when taking A = Mixed-FTPL,
 - outputs $\{\pi_n\}_{n=1}^N \subset \Pi_B$ such that $\operatorname{SReg}(N) \leq O(\sqrt{N});$
 - calls the offline classification oracle for $O(N^2)$ times
- See full paper for detailed sample complexity & interaction round complexity analysis, and comparison with behavior cloning

Conclusions

• We established fundamental results of (efficient) regret minimization in classification-based online imitation learning, which puts imitation learning into firmer theoretical foundations

Future work

- Investigate sample complexity and interaction round complexity lower bounds for online imitation learning
- Relax the (small separator) assumption for designing efficient algorithms
- Empirical evaluation of the algorithms

Thank you!

Results not in this talk

- We also design an algorithm with improved interaction round complexity by utilizing the predictability of the losses (e.g. Cheng et al, 2018, 2020)
- We also show computational hardness of *dynamic regret* minimization in the *Logger* framework

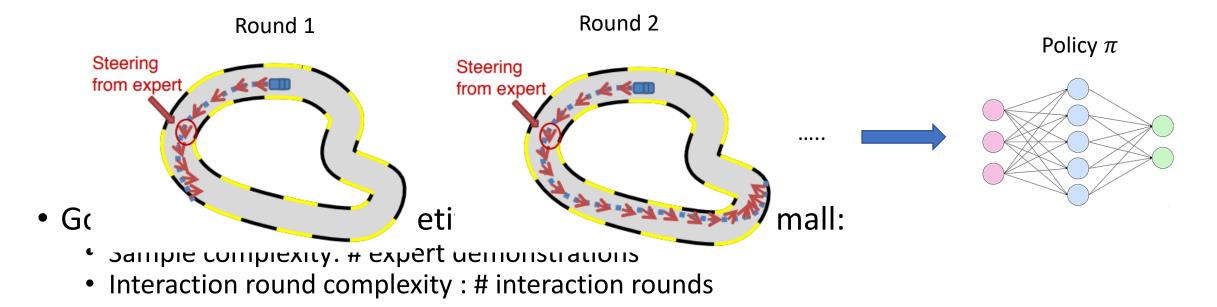
$$DReg(N) = \sum_{n=1}^{N} \left(F_n(\pi_n) - \min_{\pi \in B} F_n(\pi) \right)$$

Notations

- Markov decision process M
- State space S
- Action space A
- Expert policy π^E
- Occupancy distribution d_{π}

Offline vs. Interactive imitation learning

- Offline IL (behavior cloning): learner receive expert demons ahead of time
- Interactive IL: learner interactively queries experts for demc......

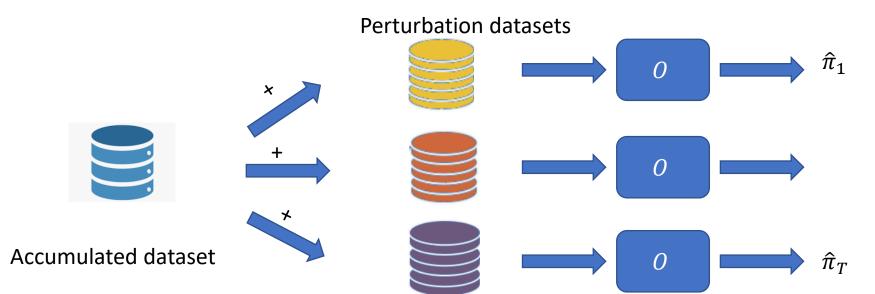


The DAgger reduction framework for interactive IL [Ross et al, 2011]

- Goal: find policy π that optimizes imitation loss $L(\pi) = E_{s \sim d_{\pi}}[I(\pi(s) \neq \pi^{E}(s))]$
- DAgger (Data Aggregation) simulates a *N*-round online learning game:
- For n=1,...,N:
 - Learned policy π_n
 - $F_n(\pi) := \mathbb{E}_{s \sim d_{\pi_n}}[I(\pi(s) \neq \pi^E(s))] = \text{loss at round } n$
 - Observe approximation of $F_n(\pi)$ by executing π_n and query expert π^E
- Minimizing $\sum_{n=1}^{N} F_n(\pi_n) \Leftrightarrow \text{Minimizing } \sum_{n=1}^{N} L(\pi_n)$

Oracle-efficient regret minimization algorithms for IL

- Challenge: existing adversarial oracle-efficient online learning algorithms use *proper learning* (e.g. Syrgkanis et al '16)
 - unavoidably suffers linear regret in IL setting
- Workaround: utilize an equivalence between an in-expectation version of Follow-the-Perturbed-Leader and Follow-the-Regularized-Leader (Abernethy et al '14)



• Assume cost-sensitive classification (CSC) oracle *O* for policy class *B*:

$$D = \langle (x_1, c_1), \dots, (x_n, c_n) \rangle \longrightarrow 0 \longrightarrow \operatorname{argmin}_{h \in B} \mathbb{E}_D[c(h(x))]$$

- Useful computational abstraction for designing efficient online learning algorithms (e.g. Langford-Zhang'07, Syrgkanis et al'16, Rakhlin-Sridharan'16)
- Can we use it to design efficient regret minimization algorithms for IL?

- **Theorem:** Assuming *B* satisfies a small-separator condition (Syrgkanis et al '16). *Logger,* when taking A = Mixed-FTPL,
 - outputs $\{\pi_n\}_{n=1}^N \subset \Pi_B$ such that $\operatorname{SReg}(N) \leq O(\sqrt{N});$
 - calls the offline classification oracle for $O(N^2)$ times
- See full paper for detailed sample complexity & interaction round complexity analysis, and comparison with behavior cloning
- We also design an algorithm with improved interaction round complexity by utilizing the predictability of the losses (e.g. Cheng et al, 2018, 2020)

Conclusions and future work

- We established fundamental statistical limits of regret minimization in classification-based online imitation learning, which puts imitation learning into firmer theoretical foundations
- (Not covered in this talk) We also show computational hardness of dynamic regret minimization in the Logger framework

$$DReg(N) = \sum_{n=1}^{N} \left(F_n(\pi_n) - \min_{\pi \in B} F_n(\pi) \right)$$