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Imitation learning (IL)

• Applications:
• Autonomous driving 

• Robot control

• Game playing  

• Sidesteps exploration challenges in reinforcement learning

Expert feedback

Policy ො𝜋Imitation learner



Example: learning to drive from demonstrations

Learning algorithm Policy ො𝜋

Training stage:

Test stage:

Policy ො𝜋
Deployment in environment
(an episodic MDP)

(Images from Stephane Ross’s slides)



Offline vs. Interactive imitation learning

• Offline IL (behavior cloning): learner receives demonstrations 
   ahead of time

• Interactive IL: learner adaptively queries expert for 
demonstrations

• Goal: learn a policy competitive with expert, with low:
• Sample complexity (#expert demonstrations)
• Interaction round complexity

Round 1 Round 2

…..

Policy ො𝜋



Loss choice in imitation learning

• Assume discrete action space 

• Offline IL objective: 𝐿0 𝜋 = E𝑠∼𝑑
𝜋𝐸

[𝐼(𝜋 𝑠 ≠ 𝜋𝐸(𝑠))] 

• 𝑑𝜋𝐸: average state distribution experienced by 𝜋𝐸

• Issue: compounding error (covariate shift)

• A better objective (e.g. Ke et al, 2020):

  𝐿 𝜋 = E𝑠∼𝑑𝜋
[𝐼(𝜋 𝑠 ≠ 𝜋𝐸(𝑠))]

• Can be optimized in interactive IL



The DAgger reduction framework for 
interactive IL (Ross-Gordon-Bagnell’11)

• Goal: optimize imitation loss 𝐿 𝜋 = E𝑠∼𝑑𝜋
[𝐼(𝜋 𝑠 ≠ 𝜋𝐸(𝑠))]

• DAgger (Data Aggregation) simulates a 𝑁-round online learning game:

• Minimizing σ𝑛=1
𝑁 𝐹𝑛 𝜋𝑛 ⇔ Minimizing σ𝑛=1

𝑁 𝐿 𝜋𝑛

Learned policy 𝜋𝑛

Approximation of 𝐹𝑛 𝜋 : = E𝑠∼𝑑𝜋𝑛
[𝐼(𝜋 𝑠 ≠ 𝜋𝐸(𝑠))] 

Learned policy 𝜋𝑛+1

Approximation of 𝐹𝑛+1 𝜋 : = E𝑠∼𝑑𝜋𝑛+1
[𝐼(𝜋 𝑠 ≠ 𝜋𝐸(𝑠))] 



DAgger: guarantees & limitations

• Theorem (simplified): if the sequence of policies 𝜋𝑛 𝑛=1
𝑁  satisfies that          

  SReg 𝑁 = σ𝑛=1
𝑁 𝐹𝑛 𝜋𝑛 − min

𝜋∈𝐵
σ𝑛=1

𝑁 𝐹𝑛 𝜋 ≤ 𝑅 𝑁 ,  (∗) 

   then outputting ො𝜋~Uniform( 𝜋𝑛 𝑛=1
𝑁 ) has 𝐿 ො𝜋 ≤ bias 𝐵, 𝜋𝐸 +

𝑅 𝑁

𝑁
.

• How to achieve (*) with small 𝑅 𝑁 ?
• (Ross-Gordon-Bagnell’11) and subsequent works: Assume some parametrization of 𝜋, and 

optimize for a convex surrogate of 𝐹𝑛 𝜋  

• Issues: 
• convex surrogate may result in poor approximation of 0-1 error minimizer [Ben-David et al ‘12]
• 𝜋 may not have a parametrization amenable for optimization (e.g. decision trees)

E𝑠∼𝑑𝜋𝑛
[𝐼(𝜋 𝑠 ≠ 𝜋𝐸(𝑠))] 

Approximability of 𝜋𝐸 using 𝐵



This work: provable regret minimization in 
classification-based IL
Question: how can we provably achieve

SReg 𝑁 = 

𝑛=1

𝑁

𝐹𝑛 𝜋𝑛 − min
𝜋∈𝐵



𝑛=1

𝑁

𝐹𝑛 𝜋 ≤ 𝑅 𝑁 , (∗)

?
A classical online classification problem?
We show:

• any (possibly randomized) proper learning algorithm must have 𝑅(𝑁) = Ω(𝑁) in the 
worst case

• an improper learning framework, Logger, that allows the design of IL algorithms with 
𝑅 𝑁 = 𝑜(𝑁) 

• efficient improper learning algorithms with sample complexity / interaction round 
complexity guarantees, using Logger, using offline classification oracle

E𝑠∼𝑑𝜋𝑛
[𝐼(𝜋 𝑠 ≠ 𝜋𝐸(𝑠))] 



Result 1: failure of proper learning

• Theorem: there exists an episodic MDP and benchmark policy class 
𝐵, such that for any 𝜋𝑛 𝑛=1

𝑁 ⊂ 𝐵,

SReg 𝑁 = 

𝑛=1

𝑁

𝐹𝑛 𝜋𝑛 − min
𝜋∈𝐵



𝑛=1

𝑁

𝐹𝑛 𝜋 = Ω(𝑁)

• Key observation: different from standard online classification, in 
online IL, 𝐹𝑛 may (adversarially) adapt to the choice of 𝜋𝑛 

• Similar to (Cover’66)’s impossibility result



Result 1: failure of proper learning

• Episodic MDP 𝑀 with episode length 𝐻 ≥ 2 

• Expert 𝜋𝐸

• Benchmark policy class 𝐵 = {ℎ𝐿 ≡ 𝐿, ℎ𝑅 ≡ 𝑅}

• For 𝜋𝑛 𝑛=1
𝑁 ⊂ 𝐵:

• For every 𝑛, 𝐹𝑛 𝜋𝑛 = 1 (e.g. 𝜋𝑛 = ℎ𝐿, trajectory = (𝑆0, 𝑆𝐿 , …, 𝑆𝐿))

• Meanwhile, min 𝐹𝑛 ℎ𝐿 , 𝐹𝑛 ℎ𝑅 ≤
1

𝐻

• These imply that SReg 𝑁 ≥ 1 −
1

𝐻

𝑁

2

𝑆0

𝑆𝐿 𝑆𝑀 𝑆𝑅

L M R

L/M/R L/M/R L/M/R



Result 2: improper learning framework Logger 

• Define mixed policy classes:

                          Π𝐵 = 𝜋𝑤: = σℎ∈𝐵 𝑤 ℎ ℎ ⋅ 𝑠 : 𝑤 ∈ Δ𝐵 
• Executing 𝜋𝑤: randomly following a policy ∼ 𝑤 at every step
• Implicitly used in (Syed-Schapire’10)

• Theorem: algorithmic framework Logger (Linear lOss aGGrEgation), 
when taking online linear optimization (OLO) algorithm 𝐴 with 
deterministic regret 𝑅 𝑁  as input, outputs 𝜋𝑛 𝑛=1

𝑁 ⊂ Π𝐵 s.t.

     SReg 𝑁 ≤ 𝑅 𝑁  

• e.g. 𝐴 = Hedge (Freund-Schapire’97), Follow-the-Regularized-Leader 
(FTRL), …



Result 2: improper learning framework Logger 

• Key observation: 
𝐹𝑛 𝜋𝑤 = E𝑠∼𝑑𝜋𝑛

E𝑎∼𝜋𝑤(⋅∣𝑠) 𝐼 𝑎 ≠ 𝜋𝐸 𝑠

            = σℎ∈𝐵 𝑤[ℎ] E𝑠∼𝑑𝜋𝑛
𝐼 ℎ(𝑠) ≠ 𝜋𝐸 𝑠

            =: ℓ𝑛(𝑤)

           ⇒ 𝑅 𝑁

            ≥ σ𝑛=1
𝑁 ℓ𝑛 𝑤𝑛 − min

𝑤∈Δ𝐵
σ𝑛=1

𝑁 ℓ𝑛 𝑤

            = σ𝑛=1
𝑁 𝐹𝑛 𝜋𝑛 − min

𝜋∈𝐵
σ𝑛=1

𝑁 𝐹𝑛 𝜋

                                                                    = SReg 𝑁     

Algorithm Logger(𝐴):
  
For 𝑛 = 1,2, … , 𝑁:

𝜋𝑛 = 𝜋𝑤𝑛
, with 𝑤𝑛 being the output of 𝐴

Update 𝐴 with (unbiased estimates) of ℓ𝑛



Result 3: oracle-efficient regret minimization for IL

• Assume offline classification oracle 𝑂 for policy class 𝐵: 

    𝐷 = ⟨ 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 ⟩           argminℎ∈𝐵E𝐷[𝐼(ℎ 𝑥 ≠ 𝑦)] 

• Useful computational abstraction for designing efficient online learning 
algorithms (e.g. Langford-Zhang’07, Syrgkanis et al’16, Rakhlin-Sridharan’16)

• Can we use it to design efficient regret minimization algorithms for IL?

𝑂



Result 3: oracle-efficient regret minimization for IL

• Challenge: existing adversarial oracle-efficient online learning 
algorithms use proper learning (e.g. Syrgkanis et al ’16) 
• unavoidably suffers linear regret in IL (Result 1)

• Workaround: utilize an equivalence between an in-expectation 
version of Follow-the-Perturbed-Leader (FTPL) and Follow-the-
Regularized-Leader (Abernethy et al ’14) ⇒ our Mixed-FTPL algorithm

Accumulated dataset 
up to round n-1
 

Perturbation datasets 

𝑂 ො𝜋1

𝑂 ො𝜋𝑇

…… ത𝜋𝑇



Result 3: oracle-efficient regret minimization for IL

• Theorem: Assuming 𝐵 satisfies a small-separator condition (Syrgkanis 
et al ’16). Logger, when taking 𝐴 = Mixed-FTPL,

• outputs 𝜋𝑛 𝑛=1
𝑁 ⊂ Π𝐵 such that SReg 𝑁 ≤ 𝑂 𝑁 ;

• calls the offline classification oracle for 𝑂(𝑁2) times

• See full paper for detailed sample complexity & interaction round 
complexity analysis, and comparison with behavior cloning



Conclusions

• We established fundamental results of (efficient) regret minimization 
in classification-based online imitation learning, which puts imitation 
learning into firmer theoretical foundations



Future work

• Investigate sample complexity and interaction round complexity 
lower bounds for online imitation learning

• Relax the (small separator) assumption for designing efficient 
algorithms

• Empirical evaluation of the algorithms



Thank you!



Results not in this talk

• We also design an algorithm with improved interaction round 
complexity by utilizing the predictability of the losses (e.g. Cheng et 
al, 2018, 2020)

• We also show computational hardness of dynamic regret 
minimization in the Logger framework

       DReg 𝑁 = σ𝑛=1
𝑁 𝐹𝑛 𝜋𝑛 − min

𝜋∈𝐵
𝐹𝑛 𝜋  



Backup



Notations

• Markov decision process M

• State space S

• Action space A

• Expert policy 𝜋𝐸

• Occupancy distribution 𝑑𝜋



Offline vs. Interactive imitation learning

• Offline IL (behavior cloning): learner receive expert demonstrations 
   ahead of time

• Interactive IL: learner interactively queries experts for demonstrations

• Goal: learn a policy competitive with expert, with small:
• Sample complexity: # expert demonstrations
• Interaction round complexity : # interaction rounds

Round 1 Round 2

…..

Policy 𝜋



The DAgger reduction framework for 
interactive IL [Ross et al, 2011]

• Goal: find policy 𝜋 that optimizes imitation loss 𝐿 𝜋 = E𝑠∼𝑑𝜋
[𝐼(𝜋 𝑠 ≠ 𝜋𝐸(𝑠))]

• DAgger (Data Aggregation) simulates a 𝑁-round online learning game:

• For n=1,..,N:
• Learned policy 𝜋𝑛

• 𝐹𝑛 𝜋 : = E𝑠∼𝑑𝜋𝑛
[𝐼(𝜋 𝑠 ≠ 𝜋𝐸(𝑠))] = loss at round 𝑛 

• Observe approximation of 𝐹𝑛(𝜋) by executing 𝜋𝑛 and query expert 𝜋𝐸

• Minimizing σ𝑛=1
𝑁 𝐹𝑛 𝜋𝑛 ⇔ Minimizing σ𝑛=1

𝑁 𝐿 𝜋𝑛



Oracle-efficient regret minimization algorithms for IL

• Challenge: existing adversarial oracle-efficient online learning 
algorithms use proper learning (e.g. Syrgkanis et al ’16) 
• unavoidably suffers linear regret in IL setting

• Workaround: utilize an equivalence between an in-expectation 
version of Follow-the-Perturbed-Leader and Follow-the-Regularized-
Leader (Abernethy et al ’14)

 

Accumulated dataset 

+

Perturbation datasets 

𝑂

𝑂

𝑂

ො𝜋1

ො𝜋𝑇



Result 3: oracle-efficient regret minimization for IL

• Assume cost-sensitive classification (CSC) oracle 𝑂 for policy class 𝐵: 

    𝐷 = ⟨ 𝑥1, 𝑐1 , … , 𝑥𝑛, 𝑐𝑛 ⟩           argminℎ∈𝐵E𝐷[𝑐(ℎ(𝑥))] 

• Useful computational abstraction for designing efficient online learning 
algorithms (e.g. Langford-Zhang’07, Syrgkanis et al’16, Rakhlin-
Sridharan’16)

• Can we use it to design efficient regret minimization algorithms for IL?

𝑂



Result 3: oracle-efficient regret minimization for IL

• Theorem: Assuming 𝐵 satisfies a small-separator condition (Syrgkanis 
et al ’16). Logger, when taking 𝐴 = Mixed-FTPL,

• outputs 𝜋𝑛 𝑛=1
𝑁 ⊂ Π𝐵 such that SReg 𝑁 ≤ 𝑂 𝑁 ;

• calls the offline classification oracle for 𝑂(𝑁2) times

• See full paper for detailed sample complexity & interaction round 
complexity analysis, and comparison with behavior cloning

• We also design an algorithm with improved interaction round 
complexity by utilizing the predictability of the losses (e.g. Cheng et 
al, 2018, 2020)



Conclusions and future work

• We established fundamental statistical limits of regret minimization in 
classification-based online imitation learning, which puts imitation 
learning into firmer theoretical foundations

• (Not covered in this talk) We also show computational hardness of 
dynamic regret minimization in the Logger framework

       DReg 𝑁 = σ𝑛=1
𝑁 𝐹𝑛 𝜋𝑛 − min

𝜋∈𝐵
𝐹𝑛 𝜋  
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