Efficient Contextual Bandits with Continuous Actions

Motivation

Contextual Bandits (CB):
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Learner

* Receivesloss ?;(a;) € [0,1]

Learner’s goal: minimize cumulative loss Y.I_, ¢,(a;)

In many practical settings the action chosen is continuous-valued.
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Challenges with continuous actions:

Discrete action spaces:
« Can afford trying all possible actions through “exploration”

loss
Continuous action spaces:

* Need additional geometrical assumptions to
guarantee competitiveness with “usual” baselines
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Smoothed regret for continuous-action CB
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Smoothed regret [KLSZ19]. \\
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 Recovers many existing results in contextual bandits with smooth loss
assumptions, e.g. Lipschitz losses

» Goal: develop efficient algorithms with sublinear smoothed regret
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CATS: Continuous Action Trees with Smoothing

Key idea 1: reduce CB learning to importance-weighted (IW) multiclass learning

Input: interaction log S = {(x,a, #(a),p(a))}
1. Consider policy class II taking actions in A = {O% %}

2. For every input, generate cost-sensitive label using IPW loss estimate:
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where cost vector ¢ is:

action in Ag

Key idea 2: Using tree policies to reduce IW multiclass learning to binary
classification

Tree policy: special form of decision
tree with leaves associated with fixed
action labels in Ay

« Internal nodes are binary classifiers

« Execution time: O(log K)
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Training tree policies: we use the filter tree algorithm [BLRO9], and show:

1. it can be implemented with 0(log K) time per example (with ¢ constructed above)

2. It achieves statistical consistency under realizability

Online contextual bandit learning guarantees

Theorem: CATS with input tree policy class Il ¢
* (computationally) has time cost O(log K) per example,

- (statistically) has a smoothed regret guarantee of
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under certain realizability assumptions
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Experiments

We evaluate our learning algorithm on regression-based contextual bandit
simulation environments, and compare with two baselines dTree and :
that perform naive discretization with epsilon-greedy exploration strategy.

Online contextual bandit learning:

Time cost comparison:
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Online loss comparison:
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Off-policy optimization:

Key advantage over naive discretization: it can use interaction log
collected by one policy to do off-policy optimization over smoothing
parameter h and discretization level K.

0.30{  EEW Initial model ]
=21 CATS Off optimized model
It produces tree policies D2
that have significantly 8 0.20
smaller test losses than 2..s) BB f
the original policies. 2 a
S 0.10{ N al i
= /
E %
0.05- g /
/
‘n
0.00 | | |

Wis Friday Price Cpu Ds  Zurich

Datasets
References

[KLSZ19] Akshay Krishnamurthy, John Langford, Aleksandrs Slivkins, and Chicheng Zhang. Contextual
bandits with continuous actions: smoothing, zooming, and adapting. COLT 2019.

[BLRO9] Alina Beygelzimer, John Langford, and Pradeep Ravikumar. Error-correcting tournaments. ALT
2009.



