
CSC380: Principles of Data Science

Nonlinear Models

Kyoungseok Jang

1



Announcement

• Synchronized D2L and Gradescope
• Don’t be freaked out – we have more than 50% left. 

• Final 20% Final Project 14% HW 5, 6, 7 each 6%, attendance 10%
• In ‘Final Calculated Score’ I applied your curved score

• ‘Midterm’ tab will look the same

• Final project & HW7: April 13th

• We delayed HW5 one week
• I recommend you finish HW7 first and try to solve the final project
• Group submission is not allowed for the final project
• Deadline: April 21st for HW7 and May 5th for the final project

• No extension, so I recommend you finish it before the deadline.
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Announcement

• New TA: Tugay Bilgis
• Office hour: Thursday 10 – 11 am, Gould-Simpson 934
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Question: Lasso vs Ridge

• Lasso
• Good at eliminating features

• Strong in a sparse environment: only a few features actually affect the result
• It can be a drawback when 1) high-dim data with few samples or 2) when a 

group of variables is correlated but each variable has its own meaning.
• No closed-form solution

• Needs an iterative method, which is more expensive than a closed-form
• For theoreticians like me: hard to find the theoretical properties of 𝑤!"

• Ridge
• Closed-form solution

• Easy to find out, computationally cheap, easy to interpret theoretically
• Almost never eliminates any feature

• Strong when all your features are meaningful. 
• Check ‘Elastic net’ if you are interested
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Review: Basis Functions

• Example: suppose you have three data points 
• (x,y) = (0,1), (1,4), (2,9)

• True relationship: 𝑦 = (𝑥 + 1)"= 𝑥" + 2𝑥 + 1
• Linear regression cannot catch this relationship perfectly.
• Instead, create additional ‘features’ 𝑥# = 1, 𝑥" = 𝑥"

• Now your dataset changes to 
• (x0, x, x2,y)=(1,0,0,1), (1,1,1,4), (1,2,4,9)

• Linear regression 𝑦 = 𝑤$ +𝑥 = 𝑤#𝑥# +𝑤%𝑥 + 𝑤"𝑥"
• Your conclusion 𝑦 = 𝑤# +𝑤%𝑥 + 𝑤"𝑥"
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Review: Basis Functions

• A basis function can be any function of the input features X
• Define a set of 𝐵 basis functions
• Fit a linear regression model in terms of basis functions,

• The model is linear in the transformed basis/induced features 𝜙(𝑥).
• You can use any linear method on this transformed features

• The model is nonlinear in the data X
• The resulting model will be nonlinear eventually. 

notation: 
𝜙 𝑥 ≔ [𝜙! 𝑥 , … , 𝜙"(𝑥)]
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Review question: final exam from the last year 7

Answer: F, F, T



Review question: final exam from the last year

• If we have time left, we can check these:

8

1) 1, 0.7n. 2) K, #$!
#
𝑛, 3) n, n-1



Linear Regression
Recall the ordinary least squares solution is given by,

Design Matrix
( each training input on a column )

Vector of
Training labels

Can similarly solve in terms of basis functions,
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Example: Piecewise Linear Regression

Decompose the input space into 3 
regions with indicator basis functions,

Fit linear regression model,

Effectively fits 3 linear regressions 
independently to data in each region

Regression lines are discontinuous
at boundary points

[Source: Hastie et al. (2001)]

𝜙" 𝑥 = 𝑥 ⋅ 𝐼{𝑥 < 𝜉"}
𝜙- 𝑥 = 𝑥 ⋅ 𝐼{𝜉" ≤ 𝑥 < 𝜉-}
𝜙. 𝑥 = 𝑥 ⋅ 𝐼{𝜉- ≤ 𝑥}

𝜙/ 𝑥 = 𝐼{𝑥 < 𝜉"}
𝜙0 𝑥 = 𝐼{𝜉" ≤ 𝑥 < 𝜉-}
𝜙1 𝑥 = 𝐼{𝜉- ≤ 𝑥}

𝑦 = 𝑤2𝜙(𝑥) =3
34"

1

𝑤3𝜙3(𝑥) = 𝑤"𝑥 + 𝑤- 𝐼{𝑥 < 𝜉"} +⋯
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Example: Piecewise Linear Regression

Enforce constraint that lines agree at 
boundary points,

Where 𝑧 ! ≔max 𝑧, 0 . 
I.e., the positive part of 𝑧

An improvement, but generally prefer smoother functions…

[Source: Hastie et al. (2001)]

<: activated only after 𝑥 ≥ 𝜉!

<: activated only after 𝑥 ≥ 𝜉%
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[Source: Hastie et al. (2001)]

Replace linear basis 
functions with 
polynomial,

Additional constraints 
ensure smooth 1st and 

2nd derivatives at 
boundaries
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Polynomial Splines

These piecewise regression 
functions are called splines

Supported in Scikit-Learn
preprocessing.SplineTransformer

Caution Polynomial basis 
functions often yield poor out-of-
sample predictions with higher 
order producing more extreme 
predictions
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Data Preprocessing

• Generally the first step in data science involves preprocessing
or transforming data in some way

• Filling in missing values (imputation)
• Centering / normalizing / standardizing
• Etc.

• We then fit our models to this preprocessed data

• One way to view preprocessing is simply as computing some 
basis function        , nothing more 
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Basis Functions

PROs
• More flexible modeling that is nonlinear in the original data
• Increases model expressivity

CONs
• Typically requires more parameters to be learned
• More sensitive to overfitting training data (due to expressivity)
• Requires more regularization to avoid overfitting
• Need to find good basis functions (feature engineering)
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Outline

Ø Basis Functions

Ø Support Vector Machine Classifier

Ø Kernels

Ø Neural Networks
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Linear Decision Boundary
Forget about the ‘regression’ point of view for now.. 

At the end of the day, we just want a line that separates the two classes well.

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]
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http://www-bcf.usc.edu/~gareth/ISL/


Linear Decision Boundary
Note: Any boundary that separates classes is equivalently good on 

training data

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]

Q: but if you have to choose one, 
which one will you choose?
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1) Believing that these points are ‘lucky’ 
points that is barely out of the boundary.

2) Think most of your data are general 
and try to give enough space.

http://www-bcf.usc.edu/~gareth/ISL/


Classifier Margin

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]

The margin measures minimum 
distance between each class and the 

decision boundary

Observation Decision boundaries with 
larger margins are more likely to 
generalize to unseen data

Idea Learn the classifier with the largest 
margin that still separates the data…

…we call this a max-margin classifier
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Max-Margin Classifier (Linear Seperable Case)

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]

For now, let’s focus on the case where the 
data is linearly separable

(Otherwise, there is no margin to talk 
about!)
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http://www-bcf.usc.edu/~gareth/ISL/


Max-Margin Classifier (Linear Separable Case)
Recall that the linear model is given by

Let classes be              so classification rule is 

where

Decision boundary is now at f(x) = 0 and distance of 
𝑥′ to the decision boundary (margin) is

Distance from a 
point to a plane equation:

wiki/Distance_from_a_point_to_a_plane
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𝑓(𝑥) > 0
𝑓(𝑥) = 0

𝑓(𝑥) > 0

|𝑓 𝑥′ |
‖𝑤‖

𝑥′

https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_plane


Max-Margin Classifier (Linear Separable Case)
For training data 𝑥 3 , 𝑦 3

34"
< , a classifier 𝑓 𝑥 = 𝑤2𝑥 + 𝑏 with 0 train error will 

satisfy

The margin for 𝑥 3 , 𝑦 3 is given by,

Find f that maximize margin 

The margin of a classifier 𝑓(𝑥) is min
3

𝑦 3 (𝑤2𝑥 3 + 𝑏)
‖𝑤‖

argmax
=,>

min
3

𝑦 3 (𝑤2𝑥 3 + 𝑏)
‖𝑤‖

𝑦 3 (𝑤2𝑥 3 + 𝑏)
‖𝑤‖

𝑦 3 𝑓 𝑥 3 = 𝑦 3 𝑤2𝑥 3 + 𝑏 > 0
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↓ negative margin 
when misclassifying it!



Max-Margin Classifier (Linear Separable Case)

Minimum margin over
all training data

Maximize the
minimum margin

[ Source: http://www-bcf.usc.edu/~gareth/ISL/ ]

Find the parameters (w,b) that maximize the smallest 
margin over all the training data

argmax
",$

min
%

𝑦 % (𝑤&𝑥 % + 𝑏)
‖𝑤‖
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Max-Margin Classifier (Linear Separable Case)
Learning objective is hard to solve in this form…

But we can scale parameters 𝑤 → 𝛼𝑤 and  𝑏 → 𝛼𝑏 without changing the margin 
Þ But then, there exists an infinitely many solution 
Þ Optimization packages will do a bad job.

…we can pick the nearest point 𝑗 to the margin and restrict

This means  1) 𝑦 3 𝑤2𝑥 3 + 𝑏 ≥ 1, ∀𝑖

2) ∗ = argmax
=,>

"
‖=‖

= argmin
=,>

||𝑤|| with above constraint!

We now just need to choose (w,b) that minimizes ‖𝑤‖ under this constraint!

argmax
=,>

min
3

𝑦 3 (𝑤2𝑥 3 + 𝑏)
‖𝑤‖

𝑦 ? 𝑤2𝑥 ? + 𝑏 = 1

24

⇒ min
3
𝑦 3 𝑤2𝑥 3 + 𝑏 = 1 !!!

ç (∗)



Support Vector Machine (Hard Margin)
… it leads to

This is a convex (quadratic) optimization problem 
that can be solved efficiently

• Data are D-dimensional vectors
• Margins determined by nearest data points called support vectors
• We call this a support vector machine (SVM) 
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Support Vector Machine (Soft Margin)
If the data is linearly not separable,

auxiliary 'slack’ variable

C: tradeoff between margin and the slack!
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min
",$,' (:*

1
2
||𝑤||( + 𝐶 *

%)*

+

𝜉%



Support Vector Machine (Loss function perspective)

Equivalent formulation

min
A,B

1
2 𝑤 - + 𝐶3

34"

<

1 − 𝑦 3 (𝑤2𝑥 3 + 𝑏) C

ℓ 𝑓; 𝑥 3 , 𝑦 3 = 1 − 𝑦 3 𝑓 𝑥 3
C

27

𝑋 & ≔ max(𝑋, 0)



Loss function perspective

• Eventually, we only care about classification result, not the 
likeliness level in classification problems.

• 𝑒𝑟𝑟 = %
S
∑TU%S 𝐼(𝑓 𝑥 T ≠ 𝑦 T ) (Train set error, black line)

• Therefore, it’s better to minimize this zero-one loss. In our real 
life, algorithms will be scored based on this zero-one loss. 

• However, it is hard to use optimizations with this error, we use 
alternatives.

• Known to be NP-hard
• Therefore, it is better to be closer to the zero-one loss. 
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General Principle

argmin
A,B

1
2 𝑤 - + 𝐶3

34"

<

1 − 𝑦 3 (𝑤2𝑥 3 + 𝑏) C

=> by setting 𝐶 = 1/𝜆, it’s 
equivalent to solve

argmin
A,B

𝜆
2 𝑤 - +3

34"

<

1 − 𝑦 3 (𝑤2𝑥 3 + 𝑏) C

SVM belongs to the general loss-oriented formulation!
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Support Vectors

Those data points achieving equality 𝑦 3 𝑤2𝑥 3 + 𝑏 = 1 − 𝜉3 are called support 
vectors. 

Turns out, if you knew support vectors already, solving the optimization problem 
above with just the support vectors as train set leads to the same solution. 

⇒ Leave-one-out cross validation can be done fast!
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Trick for Multi-Class
• Recall: logistic regression had a very natural extension to multi-class.
• What about SVM? 

[One-vs-the-rest trick]
• Given: dataset 𝐷 = 𝑥 3 , 𝑦 3

34"
<

• For each class 𝑐 ∈ 1,… , 𝐶
• Define label 𝑧 ! ∈ {−1,1} where 1 for class 𝑐 and -1 for other classes, for all i=1,…,m.
• Train a classifier 𝑓" with 𝑥 ! , 𝑧 !

!#$
%

• To classify 𝑥∗, compute \𝑦 = arg max
I∈{",…,L}

decision_value(𝑓I 𝑥∗ )

31

… Researchers have found a few, but it was 
not any better than a simple trick below.

decision value in our case: proportional to the signed distance from the boundary

multi-class:  𝑝 𝑦 = 𝑗 𝑥) =
'() * ! "+

∑#$%
& '() * # "

+

binary: 𝑝(𝑦 = 1 | 𝑥) = !

!&-'(")



SVM in Scikit-Learn

SVM with linear decision boundaries,

sklearn.svm.LinearSVC

Call options include…

Other options for controlling optimizer (e.g. convergence tolerance ‘tol’)

Only showing linear
for a reason that will

be clear soon…
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https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html


Simple review example

• Suppose that 𝑤 = 1,1 , 𝑏 = 2 in our SVM classifier, and your 
dataset was linearly separable. 

• Q1) What is the prediction of your classifier when your input is
• 𝑥∗ = 0,0 ?
• 𝑥∗ = 3,−6 ?

• Q2) Find out a support vector from these candidates (hint: 
𝑦 T = ±1)

(1) 𝑥 * = (1,1) (2) 𝑥 ( = (1,−3) (3) 𝑥 6 = (4,−4)
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Outline

Ø Basis Functions

Ø Support Vector Machine Classifier

Ø Kernels

Ø Neural Networks
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Support Vector Machine (Dual)

max
+,-,.

$
/

𝛼/ −
1
2
$
/

$
0

𝛼/𝛼0𝑦 / 𝑦 0 𝑥 / 1
𝑥 0

s.t. ∑/ 𝛼/𝑦 / = 0

min
2,4

𝑤 5 + 𝐶$
/67

8

𝜉/

𝑠. 𝑡. 𝑦 / 𝑤1𝑥 / + 𝑏 ≥ 1 − 𝜉/ , ∀𝑖

Primal Dual

(Theorem) SVM can be trained in two equivalent ways. (not important for your score)

Then, the learned function is 𝑓 𝑥 = ∑34"< 𝛼3𝑦 3 𝑥 3 2
𝑥

Suppose we use the basis expansion: 𝑥 3 → 𝜙 𝑥 3

Key observation: all the operations can be done as long as we have a magic 
function 𝜅(𝑥, 𝑥S) that evaluates 𝜙 𝑥 ,𝜙 𝑥S .

called ‘kernel’ function

35

𝛼 ∈ ℝ.D+1 variables

important



Kernel SVM in Scikit Learn

Note: basis function is infinite dim.

(Theorem) If the kernel function 𝜅(𝑥, 𝑥S) satisfies certain condition, there exists a 
basis function 𝜙 𝑥 for which 𝜅 𝑥, 𝑥S = ⟨𝜙 𝑥 ,𝜙 𝑥S ⟩!
• In fact, 𝜙 𝑥 could even be infinite dimensional: 𝜙:ℝV → ℝW
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Kernel SVM in Scikit Learn

• General kernel-based SVM lives in:
sklearn.svm.SVC(kernel=‘kernel_name’)

• Supports most major kernel types

37

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html


Support Vector Machine (Dual)

The learned function is 𝑓 𝑥 = ∑34"< 𝛼3𝑦 3 𝜙 𝑥 3
2
𝜙 𝑥 = ∑34"< 𝛼3𝑦 3 𝜅(𝑥 3 , 𝑥)

Note:
• We need to store training data for making prediction.

• Fortunately, 𝛼3 = 0 for non-support vectors.

• So, we only need to store support vectors!

38

Q: Which ML algorithms did we have 
to do the same?

turns out, you can use kernels for logistic 
regression, but there is no such thing as support 
vectors in there! 
=> SVM trains classifiers that require less storage!
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for RBF,  
small 𝛾: complex decision boundary
large 𝛾: more like linear decision boundary



Example: Fisher’s Iris Dataset

Iris setosa Iris versicolor Iris virginica

Classify among 3 species of Iris flowers…

Four features (in centimeters)
• Petal length / width
• Sepal length / width
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Example: Fisher’s Iris Dataset

Fairly easy to separate 
setosa from others using a 

linear classifier

Need to use nonlinear basis / 
kernel representation to 

better separate other classes
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Example: Fisher’s Iris Dataset

Train 8-degree polynomial kernel SVM classifier,

[ Source: https://stackabuse.com/implementing-svm-and-kernel-svm-with-pythons-scikit-learn/ ]

Generate predictions on held-out test data,

Show confusion matrix and classification accuracy,
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https://stackabuse.com/implementing-svm-and-kernel-svm-with-pythons-scikit-learn/


Kernel Ridge Regression
Recall the solution of L2-regularized linear regression (ridge regression),

43

= with some algebra..

=Φ$ ΦΦ$ + 𝜆I l%𝑦

B by B

m by m

m by B

B by m



Kernel Ridge Regression
Once we learn 𝑤, then the prediction for 𝑥 is

Solution to ridge regression

previous slide

Can now express regression without explicitly specifying basis functions

44

= 𝑦, ΦΦ, + 𝜆I -.Φ ⋅ 𝜙(𝑥)
m by m matrix computable by 𝜅(𝑥, 𝑥&) m by 1 vector computable by

𝜅(𝑥 $ , 𝑥)
…

𝜅(𝑥 % , 𝑥)



Kernel Ridge Regression
Primal Dual

B by B Matrix Inversion: O(B3) m by m Matrix Inversion O(m3)
• If B << m, use primal. If B >> m, use dual. 
• If 𝐵 = ∞, then 𝑤 cannot be computed anyways (why?)

• But we can still make predictions with 𝑓 𝑥 = 𝑦2 ΦΦ2 + 𝜆I Y"Φ ⋅ 𝜙(𝑥) !! 

45

𝑤 = Φ& ΦΦ& + 𝜆I ;*𝑦
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Example: Kernel Ridge Regression
Generate some sinusoidal (periodic) data,

Define an exponentiated sinusoidal kernel,

Fit kernel ridge regression,

Plot results,
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Review question

• Final exam question in last year

48



CSC380: Principles of Data Science

Nonlinear Models 2

Kyoungseok Jang
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Announcement

• HW6 deadline: April 12th

• Office hours on Thursday: 10 – 11 am, GS942
• Previously made a wrong aanouncement (GS934)
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HW6

• Some students asked me whether 𝑟" score can be negative
• Yes, when your model is so poor (worse than constant model)
• You will get negative r2 score if you naively use cv=5 on your cross-

val-score. 
• It happens because our prostate cancer dataset has some structure.

• For HW6, if you got a negative r2 score, it’s fine, keep going.

• If you don’t like it, you can use cv=KFold(n_splits=5, 
shuffle=True) instead. 
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Advice for your homeworks

• Fit_transform: fit + transform
• Therefore, using the fit_transform function on your TEST SET will 

change your transformation criterion based on your test set.
• It also includes label_encoder: they automatically create a 

mapping between feature and number. If you use fit_transform on 
your test set, it may be possible that the mapping might be different.

• e.g.) train: male à 0, female à 1, test: male à 1, female à 0

• Transform only outputs ‘transformed input’, not actually 
transform your input.

• E.g.) ss.transform(X_train) will not change X_train
• To transform your train set, do X_train = ss.transform(X_train)
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Advice for your homeworks

• F1_macro is different from F1.
• F1, precision, accuracy are the scores for the ‘positive class’

• Precision: TP/(TP+FP), Accuracy: TP/(TP+FN) – all focus on positive set
• Because we are usually interested in the positive set (e.g. COVID test 

positive)
• F1_macro: F1 score for multi-class 

• For multiclass, there’s no major difference between classes (e.g. cat vs dog)
• measures F1 for each class, and average
• So, if you use F1_macro instead of F1 in HW5, it means Z' [\] CZ' ^_`

-
• What we want is F1, or F1(pos).
• Same for accuracy, precision.
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Advice for your homework

• Please use File – print to print your homework as one PDF
• On your upper left corner, you can find the ‘File’ tab. 

• Try to merge your PDFs into one file. 
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Outline

Ø Basis Functions

Ø Support Vector Machine Classifier

Ø Kernels

Ø Neural Networks
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Basis Functions

Basis functions transform linear models into nonlinear ones…

…but it is often difficult to find a good basis transformation

Linear Regression
Classification

( Logistic Regression )
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Learning Basis Functions
What if we could learn a basis function so that a simple linear 

model performs well…

…this is essentially what standard neural networks do…

Neural Net

Warped SpaceData Space

Ignore the circled points…I
reused these from the SVM slides
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Neural Networks
• Flexible nonlinear transformations of data

• Efficient learning procedure scales to massive data (compared to other nonlinear 
models)

• Q: k-NN’s space complexity with m data points and D features

• Apply to many Machine Learning / Data Science problems
• Regression
• Classification
• Dimensionality reduction
• Function approximation
• Many application-specific problems
• And exceptional performance on image/voice/natural language

58

𝑂(𝑚𝑑)



Neural Networks
Forms of NNs are used all over the place nowadays…

FB Auto Tagging Self-Driving Cars

Machine Translation

Creepy Robots
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Rosenblatt’s Perceptron
In 1957 Frank Rosenblatt constructed 
the first (single layer) neural network 

known as a “perceptron”

He demonstrated that it is capable of 
recognizing characters projected onto a 

20x20 “pixel” array of photosensors

Despite recent attention, 
neural networks are fairly old
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Rosenblatt’s Perceptron
Perceptron

• “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanics” (1962)
• Criticized by Marvin Minsky in book “Perceptrons” since can only learn linearly-separable functions
• The perceptron is just logistic regression in disguise

61

𝜎 𝑧 =
1

1 + 𝑒$/



Rosenblatt’s Perceptron

• It mimics a ‘neuron’, a unit in our neural system. 
• Takes electric signals from dendrites
• Doing some processes in the cell body
• Deliver the electric signal through the axon

• However, one neuron is not enough!
• Brain is strong since it is a huge network.
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Multilayer Perceptron

[ Source: http://neuralnetworksanddeeplearning.com ]

input layer

Hidden layer
perceptrons

This is the quintessential (Artificial) Neural Network…
… the image above is a special case called Feed Forward Neural Net

Adding hidden layers 
allows NN to learn 
nonlinear/complex 

functions

63

feed forward: no backward connection

each circle is called ‘unit’

output layer
perceptron

can be seen as the basis function 𝜙(𝑥)

Terminologies:
width vs depth

http://neuralnetworksanddeeplearning.com/


Side note on the history of AI 64
Ongoing battle between: bottom-up vs top-down
• Bottom-up: Connectionist. Mimic the biology of humans/animals.
• Top-down: Symbolic/Logical approach. Mimic how humans reason.

Bottom-up is the winner nowadays; I personally believe that the reasons include computational 
complexity and availability of data in modern era.



Some battles are still going on, occasionally 65
Yann Lecun: famous neural network researcher
Gary Marcus: Likes symbolic systems. AI scientist, author, and entrepreneur (unclear about his standing as a 
researcher)



Neural nets history
• 60’s: early interest in perceptron, but the XOR problem..!

(time for the symbolic camp to laugh at connectionists)

• MLP was a way to get around, but people did not know how to 
train it 

• Werbos’74 breakthrough: backpropagation (but still hard to get 
people back) for training MLP.

• NN became popular again in ‘86 with McClelland, Rumelhart, 
and Hinton on training large-scale neural nets.

• Around ‘97 or so to ‘12 is a dark time for neural nets; 
probabilistic models and SVM dominated.

• Circa 2012, neural nets came back as ‘deep neural networks’.
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Modern Neural Networks

[ Source: Krizhevsky et al. (NIPS 2012) ]

Modern Deep Neural networks add many hidden layers

…and have many millions of parameters (=weights/biases) to learn

67

each unit cube 1 by 1 by 1 is the real values it is computing 
given an input (e.g., image)



Handwritten Digit Classification

Classifying handwritten digits is the “Hello World” of NNs

Modified National Institute of 
Standards and Technology 

(MNIST) database contains 60k 
training and 10k test images

Each character is centered 
in a 28x28=784 pixel 

grayscale image

68

Fun fact: Kernel 
Ridge Regression 
with RBF kernel with 
no regularization 
gives 1.2% test error 
rate. 



Multilayer Perceptron for MNIST Classification[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Each image pixel is a
number in [0,1] indicated

by highlighted color
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https://www.youtube.com/watch?v=aircAruvnKk


Feedforward Procedure

Each node computes a 
weighted combination of nodes 

at the previous layer…

Then applies a nonlinear 
function to the result

Usually, we also introduce
a constant bias parameter

(usually hidden when we visualize the network)
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Activation functions

We call this an activation function and typically write it in vector form,

An early choice was the logistic function,

Later, people found that a scaled 
version called tanh trains faster 
(=converges faster)
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tanh(z) = 2𝜎 2𝑧 − 1

𝜎 𝑧 =
1

1 + 𝑒;?

= 𝜎 𝑧

= tanh(z)



Nonlinear Activation functions
Another choice that is found to work even better is
the rectified linear unit (ReLU),

Or the smooth Gaussian error linear unit (GeLU),
Gaussian CDF
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Generic recommendation: Go with ReLU

𝑤0𝑥 + 𝑏



Multilayer Perceptron
Final layer is a linear model…

for classification this is a logistic regression

Vector of activations from
previous layer

73

Note: we don’t use ReLU for the last layer



[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Each parameter has some impact 
on the output…need to train all 

these parameters simultaneously 
to have a good prediction 

accuracy
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https://www.youtube.com/watch?v=aircAruvnKk


Possible exam candidate 75



Training Multilayer Perceptron

For each training example, 
predict label and adjust 

weights…

• How to score final layer output?
• How to adjust weights?
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Training Multilayer Perceptron
Score based on difference between final layer and one-

hot vector of true class…

Input

[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

77
for each of exposition, 
3blue1brown uses squared 
loss, but it should really be 
logistic loss here. 

https://www.youtube.com/watch?v=aircAruvnKk


Training Multilayer Perceptron
Our cost function for ith input is error in terms of weights / biases…

13,002 Parameters
in this network

…minimize cost over all training data…

This is a super high-dimensional optimization (13,002 
dimensions in this example)…how do we solve it?

Gradient descent!

78



Training Multilayer Perceptron
Need to find zero derivative (gradient) solution…

Convex Cost Function

YAY!

Non-convex Cost Function

Boo!

High-Dimensional Non-convex

Super Boo!

Actually, the situation is much worse, since the cost is super 
(13,002) high dimensional…
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Training the Multilayer Perceptron

Training the MLP is 
challenging…but it’s much easier 

than how Rosenblatt did it

80



Disclaimer

• In this part we will talk a lot about calculus, and maybe linear 
algebra.

• These will not be included in your final exam or any 
evaluations, so please listen casually. 
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Gradient Descent
How to minimize a function?

argmin
q
𝐿(𝑤)
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https://zitaoshen.rbind.io/project/optimization/1-min-of-machine-learning-gradient-decent/

𝑤!
𝑤%

𝐿(𝑤)

Randomly start from some 𝑤 " ∈ ℝV

For 𝑡 = 1,2,…
• Compute the gradient 𝑔g ∈ ℝV at the location 
𝑤 g

• Move to that direction:
𝑤 gC" = 𝑤 g − 𝜂g ⋅ 𝑔 g

where 𝜂g > 0 is a stepsize parameter.
• If 𝐿 𝑤 gC" ≈ 𝐿 𝑤 g , stop.

The choice of 𝜂g matters! (default: 𝜂g = 0.01)



The Importance of Stepsize

https://www.datasciencecentral.com/profiles/blogs/an-overview-of-gradient-descent-optimization-algorithms
https://twitter.com/gabrielpeyre/status/1233270607518683136/photo/1

each algorithm has a different way to set the
stepsize 𝜂(!

SGD: 𝜂( = some constant.

https://www.datasciencecentral.com/profiles/blogs/an-overview-of-gradient-descent-optimization-algorithms


Computing Gradients for Neural Nets

𝑓 𝑥, 𝑦, 𝑧 = 𝑥 + 𝑦 𝑧 =: 𝑞𝑧
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figure from Stanford cs231n

green: evaluation 
red: derivative

Consider a simpler function.

hi
hj
= 𝑧,    hi

hk
= 𝑞,    hj

hl
= 1,     hj

hm
= 1

𝜕𝑓
𝜕𝑦 =

𝜕𝑓
𝜕𝑞

𝜕𝑞
𝜕𝑦 = −4 ⋅ 1 = −4

Let’s evaluate the gradient at 𝑥 = −2, 𝑦 = 5, 𝑧 = −4

General strategy: 1. forward pass to compuate values at each node => we get the value of f(x,y,z), 
2. backward pass => we get the gradient at x,y,z

𝜕𝑓
𝜕𝑧 = 3

[computation graph]



Review: Chain rule 85

figure from Stanford cs231n

define 𝛿 𝑓9 = 1 and compute 𝛿 𝑓9:7 , and so on.

General strategy: 1. forward pass to evaluate values at each node => we get the value of f(x,y,z), 
2. backward pass => we get the gradient at x,y,z

• Every function can be written as 
a computation graph.

• Chain rule says gradient 
computation can be 
decomposed into intermediate 
ones.
• Essentially, ‘divide-and-

conquer’ strategy.

• You can implement it with 
recursion.

Generalize it:



Autodiff

Python has an implementation of autodiff. E.g., pytorch

Q: Why don’t you want to work out gradients by yourself and 
hard-code it in python?
• It’s just… annoying
• Time-consuming
• Error prone (so, risk of getting stuck for a long time!)

… but of course, hardcoded ones are faster.
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before autodiff was popular, 80% of the 
reason why gradient descent does not 
converge was: mistakes in math!



Autodiff example 87
# https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html

import torch

#- turn on the gradient tracking
x = torch.tensor([[1.0,2],[3,4]],requires_grad=True)

# requires_grad is False by default
print(x)

#-
y = x + 2
print(y) #- because we did `requires_grad`, 

#-it tracks who created it.

z = y * y * 3
out = z.mean()
print(z)
print(out)

z.retain_grad()
out.backward() # execute backward pass

print("#- grads")
print(y.grad)
print(z.grad)
print(x.grad)

tensor([[1., 2.],
[3., 4.]], requires_grad=True)

tensor([[3., 4.],
[5., 6.]], grad_fn=<AddBackward0>)

tensor([[ 27.,  48.],
[ 75., 108.]], grad_fn=<MulBackward0>)

tensor(64.5000, grad_fn=<MeanBackward0>)

#- grads
None
tensor([[0.2500, 0.2500],

[0.2500, 0.2500]])
tensor([[4.5000, 6.0000],

[7.5000, 9.0000]])
<ipython-input-40-a3156942a32d>:22: UserWarning: The .grad attribut
e of a Tensor that is not a leaf Tensor is being accessed. Its .gra
d attribute won't be populated during autograd.backward(). If you i
ndeed want the gradient for a non-leaf Tensor, use .retain_grad() o
n the non-leaf Tensor. If you access the non-leaf Tensor by mistake
, make sure you access the leaf Tensor instead. See github.com/pyto
rch/pytorch/pull/30531 for more informations.
print(y.grad)

pytorch is optimized for obtaining the gradient of f w.r.t.
the input only. If you want to obtain intermediate 
gradients, you need to use retain_grad().

np.array, with extra features



Backpropagation
[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]
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Randomly initialize 𝑤 n
n ∈ opqrs qp ptouvw ptr

For 𝑖 ∈ {1,… , n_epochs}
• For (x,y) in train set:

• Forward pass: 
• evaluate the neural net output
• measure the loss

• Backward pass: compute the gradients.
• Take the gradient step to update the 

weights 𝑤 n

Dependencies between layers.

No dependencies between units at the same layer.
Þ Many GPU supported libraries available.

https://www.youtube.com/watch?v=aircAruvnKk


Example

Play with a small multilayer perceptron on a 
binary classification task…

https://playground.tensorflow.org/
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https://playground.tensorflow.org/


Regularization

With four parameters I can fit an elephant.  With five I 
can make him wiggle his trunk. - John von Neumann

Our example model has 13,002 
parameters…that’s a lot of elephants!  

Regularization is critical to avoid overfitting…

…numerous regularization schemes 
are used in training neural networks.
but the standard is of course, ∑%𝑤%(

90
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Scikit-Learn : Multilayer Perceptron

Fetch MNIST data from www.openml.org :

Train test split (60k / 10k),

Create MLP classifier instance,
• Single hidden layer (50 nodes)
• Use stochastic gradient descent
• Maximum of 10 learning iterations
• Small L2 regularization alpha=1e-4
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http://www.openml.org/


Scikit-Learn : Multilayer Perceptron

Fit the MLP and print stuff…

Visualize the weights for each node…

…magnitude of weights indicates which 
input features are important in prediction
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coefs_[i]: n_input x n_output matrix of weights for layer i



More Advanced Topics
Many other NN architectures exist beyond MLP

• Convolutional NN (CNN) For image processing / computer viz.
• Recurrent NN (RNN) For sequence data (e.g. acoustic signals, video, etc.) , 

long short-term memory (LSTM) is popular
• Generative Adversarial Nets (GANs) For generating creepy deepfakes
• Restricted Boltzmann Machine (RBM) Another generative model

Many open areas being researched
• More reliable uncertainty estimates
• Robustness to exploits
• Interpretability
• Better scalability 

94



Resources

There are tons of excellent resources for learning about neural 
networks online…here are two quick ones:

3Blue1Brown Youtube channel has a nice four-part intro:
https://www.youtube.com/watch?v=aircAruvnKk

Free book by Michael Nielson uses MNIST example in Python:
http://neuralnetworksanddeeplearning.com/

Prof. Steven Bethard often teaches an excellent class:
ISTA 457 / INFO 557
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https://www.youtube.com/watch?v=aircAruvnKk
http://neuralnetworksanddeeplearning.com/


HW7

• Raise your hand if you prefer ‘the earlier upload of HW7’
• The deadline will be the same (April 21st)
• If you prefer, I will upload HW7 tonight.
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Next time: What is unsupervised learning?

• Learning with unlabeled data
• What can we expect to learn?

• Clustering: obtain partition of the data that are well-separated.
• can be viewed as a preliminary classification without predefined class labels.

• Components: extract common components that compose data points.
• e.g., topic modeling given a set of articles: each article talks about a few topics => 

extract the topics that appear frequently.
• Use

• As a summary of the data
• Exploratory data analysis: what are the patterns we can get even without labels?

• Often used as a ‘preprocessing techniques’
• e.g., extract useful features using soft clustering assignments (e.g., “gaussian 

mixture model”)
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Task 1 : Group These Set of Document into 3 
Groups based on meaning

Doc1 : Health , Medicine, Doctor
Doc 2 : Machine Learning, Computer
Doc 3 : Environment, Planet
Doc 4 : Pollution, Climate Crisis
Doc 5 : Covid, Health , Doctor
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Task 1 : Group These Set of Document into 
3 Groups based on meaning

Doc1 : Health , Medicine, Doctor
Doc 5 : Covid, Health , Doctor

Doc 3 : Environment, 
Planet
Doc 4 : Pollution, Climate 
Crisis

Doc 2 : Machine 
Learning, Computer



Task 2: Recommendation 10
2

From: https://www.simplilearn.com/tutorials/machine-learning-tutorial/supervised-and-unsupervised-learning
And https://developers.google.com/machine-learning/recommendation/collaborative/basics

• Discover the probability of the co-occurrence of 
items in a collection
• Market basket analysis
• Semantic clustering (Topic modeling)
• Movie recommendation

https://www.simplilearn.com/tutorials/machine-learning-tutorial/supervised-and-unsupervised-learning

