
CSC380: Principles of Data Science

Introduction to Machine Learning /
Basics of Predictive Modeling and

Classification
Kyoungseok Jang

1

Announcement
• Delay: Due to the urgent circumstances of the TA in charge, we haven’t

finished the grading of the Midterm and HW4. We will have it done by
next Tuesday. HW5 is out now (due : 3/24)

• Midterm Curving
• I am thinking about 100× 𝑌𝑜𝑢𝑟 𝑆𝑐𝑜𝑟𝑒 as the curved score.

• E.g.) If your score is 50, your curved score is slightly over 70.

• Self-Withdrawal deadline: 3/28

2

Because of the TA’s circumstances,
One problem is not graded yet.

I expect around 50% after full grading...

What is machine learning?
• Tom Mitchell established Machine Learning Department at CMU (2006).

• A bit outdated with recent trends, but still has interesting discussion (and easy to read).

• A subfield of Artificial Intelligence – you want to perform nontrivial, smart tasks. The difference
from the traditional AI is “how” you build a computer program to do it.

3

“through experience”

Textbooks

Murphy, K. "Machine Learning: A Probabilistic
Perspective." MIT press, 2012

(UA Library)

Takes a probabilistic approach to
machine learning

We will use a more recent textbook for readings

Consistent with the goals of data
science in this class

4

https://arizona-primo.hosted.exlibrisgroup.com/permalink/f/6ljalh/01UA_ALMA51543591360003843

AI Task 1: Image classification
• Predefined categories: 𝐶 = {cat, dog, lion, …}

• Given an image, classify it as one of the categories c ∈ 𝐶 with the highest accuracy.

• Use: sorting/searching images by category, medical imaging, object identification, traffic control,
categorizing types of stars/events in the Universe (images taken from large surveying telescopes)

5

AI Task 2: Recommender systems
• Predict how user would rate a movie

• Use: For each user, pick an unwatched movie with high predicted ratings. (Youtube, Netflix, Amazon,
etc.)

• Idea: compute user-user similarity or movie-movie similarity, then compute a weighted average.

6

1

5

“collaborative filtering”

AI Task 3: Machine translation 7

• No need to explain how useful it is.

• Task: 1) Transform a sentence to the interlingual language (analysis) and 2) create a sentence with
another language with the same meaning, with appropriate grammar structure (generation).

AI Task 4: Board game
• Predict win probability of a move in a given game state (e.g., AlphaGo)

• Traditionally considered as a “very smart” task to perform.

• Use: From the AI Go player, you can do practice play or even
learn from it.

• Now it’s a major trend in the field of Go

8

• Potential use: Board game (e.g., Catan) design, better AI

• Deeply related to robot AI and autonomous driving
• Predict the future of your move

Q: how will it be useful for us, though?

Traditional AI vs Machine Learning (ML)
• Traditional AI: you encode the knowledge (e.g., logic statements/rules), and the machine

executes it.
• e.g., if there is feather-like texture with two eyes and a beak, classify it as a bird.
• Advancements in automated ‘inference’ like “if a -> b and b-> c, then a-> c”. => ’expert system’

• ML: Given a set of input and output pairs (e.g., animal picture + label), and train a function (a set of
logical statements / a neural network) that maps the input to the output accurately.

• As the “big data” era comes, data is abundant => turns out, better than systems based on hand-
coded domain knowledge!

• “statistical” approach // data-driven approach

9

“Every time I fire a linguist, the performance of the speech recognizer goes up.”
– 1988, Frederick Jelinek, a Czech-American researcher in information theory & speech recognition.

Traditional AI vs Machine Learning (ML)
• Traditional AI – watchmaker

• You encode your knowledge (springs and parts) directly
• You understand why those parts are necessary.

• Machine Learning (ML) – one example (from https://www.youtube.com/watch?v=R9OHn5ZF4Uo)

10

It is possible that
you might not know
why your function is
designed in that way

Auto-
updater

Auto-
tester

Automatically improve through
Interaction and experience

Overview of ML Methods
Supervised Learning

• Provide training data consisting of input-output pairs and learn mapping
• E.g., Spam prediction, object detection or image classification, machine translation, etc.

Unsupervised learning
• No predefined categories. Finds patterns in the data without the help of labels (outputs)
• E.g., clustering, dimensionality reduction, target tracking, image segmentation, etc.

Reinforcement learning
• The environment interacts with your action, transferring you to different states.
• E.g., autonomous driving, robot AI, recommendation system

11

We won’t cover this

12

Supervised Learning

• Train data: dataset comprised of labeled examples: a pair of (input, label)

Basic setting: Supervised learning 13

supervised
learning

algorithm

function
(”classifier”)

cat!

training testing

example = data point
labeled = categorized

Example function 1: Decision tree
Task: predict the 5-star rating of a movie by a user

If age >= 60 then

if genre = western then
return 4.3

else if release date > 1998 then
return 2.5

else ...
...
end if

else if age < 60 then
...

end if

14

training:
• determine the shape of the tree
• which condition to have at each node
• what to output from each leaf node

Example function 2: Linear
Task: Image classification

Let 𝑥 be a set of pixel values of a picture (30x30) =>
900-dimensional vector 𝑥.

If 0.124 ⋅ 𝑥! − 2.5 ⋅ 𝑥" +⋯+ 2.31 ⋅ 𝑥#$$ − 2.12 ≥ 0 then
return cat

else

return dog

end

15

“linear combination”/”inner product”

called feature vector

training:
• determine the coefficients & threshold

E.g., in 2d space, it induces a linear decision boundary:
0.5 ⋅ 𝑥! − 2.5 ⋅ 𝑥" > 4.3

Example function 3: Nonlinear 16

Support Vector MachineNeural network

(stacked linear models with nonlinear activation functions) (linear in the induced feature space)

Example: Naïve Bayes Classifier
Training Data:

17

Features

Task: Observe feature vector 𝑥 = 𝑥!, … , 𝑥#
and predict class label 𝑦 ∈ {1,… , 𝐶}

Model: Treat features as conditionally independent,
given class label:

Doesn’t capture correlation among features, but is
easier to learn.

Classification: Bayesian model so classify by
posterior,

𝑝 𝑦 = 𝑐 𝑥) =
𝑝 𝐶 = 𝑘 𝑝(𝑥|𝑦 = 𝑐)

𝑝(𝑥)

𝑝(𝑥, 𝑦) = 𝑝 𝑦 A
$%!

#

𝑝 𝑥$ 𝑦

Supervised learning: Types of prediction problems
Binary classification: Choose between 2 classes

• Given an email, is it spam or not? (or the probability of it being a spam)

Multi-class classification: more than 2 categories.
• Image classification with 1000 categories. (cat, dog, airplane, car, computer, …)

Regression: the label is real-valued (e.g., price)
• Say I am going to visit Italy next month. Given the price trends in the past, what would be the

price given (the # of days before the departure, day of week)?
• Predict the stocks/bitcoin price in the future

Structured output prediction: more than just a number
• Given a sentence, what is its grammatical parse tree?

18

19

Unsupervised Learning

Example: Clustering
Identify groups (clusters) of similar data

20

Input Data Cluster Output Useful for interpreting large
datasets

Clusters are assigned arbitrary
labels (e.g. 1, 2, …, K).

=> afterwards, you may look at the
data and name each group.

Common clustering algorithms: K-means, Expectation Maximization (EM)

Example: Principal Component Analysis (PCA) 21
Reduce dimension of high-dimensional data using linear projection

Identify directions of maximum variation in the
data by computing eigenvectors

Easier explanation: Identify important directions

Linear projection onto K-dimensional subspace
spanned by top K eigenvalues

Can be used for visualization (project to 2D) or
for compressing images.

Source: Bishop, C. PRML

Example: Principal Component Analysis (PCA) 22
Reduce dimension of high-dimensional data using linear projection

Source: Lawrence, N. (2005)

Example for modeling / visualizing
handwritten digits

Each digit is a black/white image with
28x28 pixels (784 dimensions)

projected down to 2D

Example: Nonlinear Dimensionality Reduction 23
t-SNE

Nonlinear reduction can (potentially) amplify
clustering properties

t-Distributed Stochastic Neighbor
Embedding (t-SNE) Models similarity

between data as a t distribution and strives
to find projection that preserves similarity.

Example: Generative models
• AI image generators

• It is hard to define how ‘good’ the generated image is.
• How can we explain the ‘painting style’ to computers? Mostly impossible… à Unsupervised!

24
We won’t cover this

Summary

• Supervised Learning - Training data consist of inputs and outputs
• Classification, regression, translation, …

• Unsupervised Learning – Training data only contain inputs
• Clustering, dimensionality reduction, segmentation, …

• Linear models generate output as a linear combination of inputs,
• E.g.
• PCA, linear regression, etc.

• Nonlinear models fit an arbitrary nonlinear function to map inputs-
outputs

• Neural networks, support vector machine, nonlinear dimensionality reduction

25

Training Machine Learning Models

ModelData /
Features

Labels / Outputs

Prediction

Supervised Learning

ModelData /
Features Output

Unsupervised Learning

ML models distinguished by a number of factors
• Number of parameters needed (parametric / nonparametric)
• Whether they model uncertainty (probabilistic / nonprababilistic)
• Do they model the data generation process? (generative / discriminative)

26

works with labeled data works with unlabeled data

CSC380: Principles of Data Science

Basics of Predictive Modeling and
Classification 1:

Decision Tree

Kyoungseok Jang

27

Decision Trees

figures/examples from “A Course in Machine Learning” by Hal Daume III http://ciml.info/

28

Majority Vote Classifier

How to train:
• Given: A (train) dataset with m data points 𝑥 $, 𝑦 $

$%!
& with C classes.

• Compute the most common class 𝑐∗ in the dataset.

𝑐∗ = arg max
(∈{!,…,-}

G
$%!

&

𝐈{𝑦 $ = 𝑐}

• Output a classifier 𝑓 𝑥 = 𝑐∗.

Stupid enough classifier! Always try to beat this classifier.

Often, state-of-the-art ML algorithms perform barely better than the majority
vote classifier..
Þ happens when there is no association between features and labels in the

dataset

The most basic classifier you can think of.

29

Example:
Data: m=10
𝑥("): images of cats and dogs
𝑦("): label (cat/dog)
Suppose that there are 6 dogs and 4
cats.
After ‘training’, your classifier always
outputs ‘dog’, even without looking at
the input.

Train set accuracy
• Suppose the ML algorithm has trained a function 𝑓 using the dataset
𝐷 = 𝑥 ! , 𝑦 !

!"#
$

where 𝑥 ! is input and 𝑦 ! is label.
• Train set accuracy:

'𝑎𝑐𝑐 𝑓 ≔
1
𝑚-

!"#

$

𝐈{𝑓 𝑥 ! = 𝑦 ! }

• Q: We have 100 data points (images) with 5 cats, 80 dogs, and 15
lions. What is the train set accuracy of the majority vote classifier?

.80

30

It is the number of times
the function got the
answer right divided by m.

Decision tree (example: course recommendation)

• Build software: recommend a set of courses for you
• More precisely, given a course, predict its rating

32

course description
student info. (yours) function rating ∈ {+,−}

is it a systems course?
is it an application course?
who is the instructor?

what courses have you taken?
do you like morning class?

Wouldn’t it be nice to construct such a tree
automatically by a computer algorithm?

Wouldn’t it be nice if it accurately predicts?

You can, if you have data!

33

34HasTakenPrereqs (=: Prereq)
HasTakenACourseFromTheSameLecturer (=: Lecturer)

HasLabs

consider
it to be
‘like’

consider
it to be
‘dislike’

Define the data 𝐷 = 𝑥 $, 𝑦 $
$%!
&

∈ 𝑦, 𝑛 !
∈ {+,−}

Each dimension of 𝑥 " is called a feature.
𝑥 " is called a feature vector.

For example, this table is data D.
Each row is a course you’ve rated.
𝑥(") is a sequence of 5 yes/no (d=5) for i-th course.
𝑦(") is the sign of the rating for i-th course.

How to Train a Tree

• Main principle: Find a tree that has a high train set accuracy
'𝑎𝑐𝑐 𝑓 = #

$
∑!"#$ 𝐈 𝑓 𝑥 ! = 𝑦 !

• This is essentially the main principle governing pretty much all
the machine learning algorithms!

• “Empirical risk minimization” principle
(empirical risk := 1 – train_accuracy)

35

36

HasTakenPrereqs

SameLecturer

HasLabs

How to construct a tree
Prereqs Lecturer

HasLabs

10

10

11

9

10

10

10

10

36

37

HasTakenPrereqs

SameLecturer

HasLabs

How to construct a tree
Baseline: majority vote classifer

Q: What is the train set accuracy?

Suppose we place the node HasTakenPrereqs at the root.
Set the prediction at each leaf node as the majority vote.

What is the train set accuracy now?

9
20

⋅
6
9
+
11
20

⋅
9
11

=
15
20

= 0.75

+-

HasTakenPrereqs

N Y

10

10

11

9

10

10

10

10

0.60

improved!

37

Major

(+)

38

HasTakenPrereqs

SameLecturer

HasLabs

How to construct a tree
Suppose placing the node SameLecturer at the root.

What is the train set accuracy now?
10
20 ⋅

10
10 +

10
20 ⋅

8
10 =

18
20 = 0.9

SameLecturer

N Y10

10

11

9

10

10

10

10

even better!

What would you do to build a depth-1 tree?

try out each feature and choose the one that leads to
the largest accuracy!

38

Major

(+)
Major

(-)

39

HasTakenPrereqs

SameLecturer

HasLabs

How to construct a tree
What about depth 2?

Major

(-)
Major

(+)

SameLecturer

N Y10

10

11

9

10

10

10

10

Which nodes to put at each leaf node?
Focus on (2). Try placing HasTakenPrereqs

(1) (2)

39

40

HasTakenPrereqs

SameLecturer

HasLabs

How to construct a tree

10

10

11

9

10

10

10

10

Lecturer

N Y

Prereqs
N Y

Q: How many training data
points fall here? 10

Q: How many training data points
arrive at these two leaves? How
many for each label?

6 (0+, 6-) 4 (2+, 2-)

Q: What is the train set accuracy, conditioning on
SameLecturer=Y? 6

10 ⋅
6
6 +

4
10 ⋅

2
4 =

8
10

Try all the other nodes and pick the one with the largest acc.!
Then, repeat the same for SameLecturer=N branch!

‘local’ train set accuracy

Q: what prediction should we use for each leaf?

=> but this has 1 local train set acc. So leave it be!
Move onto expanding nodes at depth 2!

40

Major

(+)
Major

(+)
Major

(-)

41

HasTakenPrereqs

SameLecturer

HasLabs

How to construct a tree
Prereqs Lecturer

HasLabs

10

10

11

9

10

10

10

10

41

42

HasTakenPrereqs

SameLecturer

HasLabs

How to construct a tree

10

10

11

9

10

10

10

10

Overall idea:
1. Set the root node as a leaf node.
2. Grab a leaf node for which its ‘local’ train

accuracy is not 1.
3. Find a feature that maximizes the ’local’ train

accuracy and replace the leaf node with a
node with that feature; add leaf nodes and
set their predictions by majority vote.

4. Repeat 2-3.

42

43
<= i.e., all data points have the same label

<= there is no point in adding a feature
that appeared in its parent!

<= answer = label(# of majority vote answers in NO
+ # of majority vote answers in YES) / size(data)

44

45

Background: Train Error vs Test Error
Error ∶= 1 – accuracy.
Suppose we have trained a function L𝑓 on 𝐷 = 𝑥 $, 𝑦 $

$%!
& using a supervised

learning algorithm.
• Train error: Evaluate on D.

9𝑒𝑟𝑟" 𝑓 ≔
1
𝐷

?
#,% ∈"

𝐈 𝑓 𝑥 ≠ 𝑦

• Test error: Evaluate on 𝐷1 = 𝑥 $, 𝑦 $
$%!
&'

not used for training.
• It can be possible that our function just 'memorized' the training data and doesn't do well in real life. (overfitting)

Q: Choose one:
(1) train error ≥ test error (2) train error ≈ test error (3) train error ≤ test error

47

Background: Workflow of Training a Classifier
Standard practice:
• Given a data set D, split it into train set 𝐷234$# and 𝐷2562

• large data: 90-10 ratio
• medium data: 80-20 ratio
• small data: 70-30 ratio

• Train on 𝐷234$# and evaluate error rate on 𝐷2562. You trust that 𝐷2562 will be the
performance when you deploy the trained classifier.

(these are guidelines only)

Discussion: What would be reasonable logics behind such a trust?

48

CSC380: Principles of Data Science

Basics of Predictive Modeling and
Classification 2

Decision Trees / k-Nearest Neighborhood
Kyoungseok Jang

49

Announcements: Midterm

• Final curving: you will recover 66% of the score you lost.
• E.g.) If your original score was 40, your curved score will be 40 +
100 − 40 × F

G
= 80

• A bit more beneficial for the students who didn’t have basic
knowledge in probability and statistics.

• New average: 83.3

• Final exam: I will spend a lecture for the final review, and I will
try to ‘describe’ the problems more explicitly.

• I will reuse several midterm problems with a bit of variation.

50

Announcement: Midterm

• Regrade request
• Problem 7(4): We decided to give everyone the score. Please check

your answer, and if your answer was ‘False’, please send us the
regrade request.

• For the student who used the back side of the paper for your answer,
please let us know.

51

Announcement: Prerequisite

• Some students asked me about prerequisites.
• Especially about the dimensionality reduction part
• We will not evaluate you based on those prerequisites

• We will not ask you like, how to calculate the eigenvectors or eigenvalues on
your exam, or in your final project.

• We will teach you the basic knowledge to understand. (E.g. inner product)
• We will introduce you to some scipy functions for eigenvector computations.
• (I am not sure whether we can cover the dimensionality reduction part)

52

I guess I will spend this lecture
for the final review…

Announcement: Homeworks

• There was a gap between our scheduled progress and our
current progress

• For example, we should have finished the ‘sampling bias’ part
before the midterm.

• Therefore, now HW5 was posted too early.
• We will learn k-Nearest Neighborhood today and Naïve-Bayes Classifier on

Thursday. (both of them were included in HW5…)

• Therefore, we will extend the due date for HW5 to Mar. 31st.

53

Announcement: TA

• Due to his personal circumstances, TA Saiful will no longer be
in charge of this class.

• Temporarily, we will not be able to provide the following
services.

• His office hour: Wed
• His piazza hour: Wed/ Thu/ Fri

54

Outline

• Decision Tree
• Review
• Variations - Different criterions
• Different types of features / labels
• Regression
• Pruning

• K-Nearest Neighborhood
• Main concepts
• Feature scaling
• Variations / Issues

55

Review: Decision Tree method

• Main question: How
to calculate the
‘local’ train set
accuracy? (score[f])

56

<= i.e., all data points have the same label

<= there is no point in adding a feature
that appeared in its parent!

<= score[f]=‘local’ train set acc.(of majority vote answers in NO
of majority vote answers in YES) / size(data)

57Review: Decision tree - How to construct a tree

+

Lecturer

N Y

57

Prereqs Lecturer
HasLabs Suppose that we already have this structure

And need to construct more on the RHS.

According to the algorithm, we need to calculate score[f],
which means the ‘local’ train set accuracy for each feature f.

Suppose that now our f is ‘Prereqs’

Main trick for calculating score[f]:

7𝑎𝑐𝑐 𝑓 =
1
𝑚
>
"$%

&

𝐈 𝑓 𝑥 " = 𝑦 "

= %
&
(∑"∈()* 𝐈 𝑓 𝑥 " = 𝑦 " +∑"∈+, 𝐈 𝑓 𝑥 " = 𝑦 ")

58Review: Decision tree - How to construct a tree

+

Lecturer

N Y

+-

Prereqs
N Y

Q: How many training data
points fall here? 10

Q: How many training data points
arrive at these two leaves? How
many for each label?6 (0+, 6-) 4 (2+, 2-)

Q: How many samples will your current function outputs
the ‘correct’ rating (sign) for each leaf?

6 for left
2 for rightHint: Majority, since it is based on the majority vote

Q: what prediction should we use for each leaf?
A: Majority vote for each leaf

58

Prereqs Lecturer
HasLabs

Q: What is the train set accuracy, conditioning on
SameLecturer=Y?

1
10
(6 + 2) =

8
10‘local’ train set accuracy (

6
10
6
6 +

4
10
2
4) =

8
10or

Sum of (fraction of sub group * fraction of correct answer in sub group)

Variations

• Recall the previous ‘score[f]’
• M
NO

M
M+

P
NO

Q
P

• Sum of (fraction of subgroup * fraction of correct answer in
subgroup)

• What if we change it to Sum of (fraction of a subgroup * some
function on that subgroup)

59

Variations 60

Set score[f] as −𝑢 where 𝑢 is
one of these tree measure.

Using classification error is
equivalent to using the
accuracy.

(black)

(blue)

(red)

Let 𝑞 is the fraction of data points
with feature=Y.
Modification:
Set score[f] as
𝑞 ⋅ −𝑢 𝑌𝐸𝑆 + 1 − 𝑞 ⋅ (−𝑢 𝑁𝑂)

What we did: Majority fraction = 1 – minority fraction

Check: When u is the classification error, 𝑞 ⋅ −𝑢 𝑌𝐸𝑆 + 1 − 𝑞 ⋅ −𝑢 𝑁𝑂 = (𝑠𝑐𝑜𝑟𝑒 𝑤𝑒 𝑘𝑛𝑒𝑤) − 1

For example,
in the previous example,
Lecturer=Y Prereqs=Y has
p=2/4

Decision tree – different types of features
• Binary
• Categorical: values in {1,… , 𝐶}

• Option 1: Instead of 2 children, have C children.
• Option 2: Derive C features of the form “feature=c?” for every 𝑐 ∈ 𝐶.

• Real value
• Sort the values.
• Find the breakpoints: For every two adjacent points with opposite labels, compute the

midpoint.
• Derive features like “weight ≤ breakpoint”

e.g., occupation, blood type

Q: How about features of the form “feature∈ 𝐶′” for every 𝐶(⊂ 𝐶?

e.g., weight, age

↑ binary features!

61

computational complexity ↑
Because there are 2- subsets!

Types of labels

• Binary

• Multiclass: What changes do we need to make?
• Almost none! Just extend the computation of accuracy to multiclass.

62

63If the number of classes is >2

Regression: when the labels are real numbers
• Classification vs Regression

• Both supervised learning
• Regression has real-valued labels.

• Examples: Price prediction. Property value prediction.

• Standard measure of performance: mean squared error: !
&
∑$%!& 𝑓 𝑥 $ − 𝑦 $ "

• What changes needed for decision tree?
• How to make predictions at the leaf node?

• How to adjust score[f]?

65

Average labels of the data at the leaf;
denote by N𝑦)*+ and N𝑦,-.

Use negative squared error
1

𝑑𝑎𝑡𝑎
⋅ − ?

.∈)*+

𝑦. − N𝑦)*+ / − ?
.∈,-

𝑦. − N𝑦,- /

Q: why are we using squared error rather than absolute error? my opinion: convenience & tradition

(notations from the decision tree pseudocode)

“Spurious” patterns can be learned 67

by the way, note axis-
parallel decision boundaries

Unlearn spurious patterns by pruning 68
Split the data into train set and validation set
• Build a decision tree based on the train set; compute the validation set error
• While true

• For each non-leaf node, pretend that it is a leaf node and then compute the validation set error
(but do not make it a leaf node yet)

• If none reduces the validation set error
• Break

• Else
• Prune the one that reduces the validation set error the most

original validation set error: 35%

k-Nearest Neighbors (k-NN)

69

𝑘-nearest neighbor: main concept
• Train set: 𝑆 = { 𝑥 ! , 𝑦 ! , … , 𝑥 & , 𝑦 & }

• Idea: given a new, unseen data point 𝑥, its label should resemble the labels of
nearby points

• What function?
• Input: 𝑥 ∈ ℝV

• From S, find the 𝑘 nearest points to 𝑥 from 𝑆; call it 𝑁(𝑥)

• Output: the majority vote of {𝑦$: 𝑖 ∈ 𝑁(𝑥)}
• For regression, take the average label.

70

E.g., Euclidean distance

k-NN example 71

decision boundary

Input 1

Input 2

Input 3

Basics
How to extract features as real values?
• Binary features: Take 0/1
• Categorical {1,…,C} (e.g., movie genres)

• Binary vector of length C. Set c-th coordinate 1 and 0 otherwise.

Distance:

• (popular) Euclidean distance: 𝑑 𝑥, 𝑥′ = ∑$%!V 𝑥$ − 𝑥$1
"

• Manhattan distance : 𝑑 𝑥, 𝑥′ = ∑$%!V |𝑥$ − 𝑥$1|

72

one-hot encoding
Q: Why don’t we just take 1,…,C as a real-valued feature?

Q: If we shift a feature, would the distance change?

Q: What about scaling a feature?

no

yes

Make sure features are scaled fairly
• Features having different scale can be problematic. (e.g., weights in lbs vs shoe

size)
• [Definition] Standardization

• For each feature f, compute 𝜇W =
!
&
∑$%!& 𝑥W

$, 𝜎W =
!
&
∑$%!& 𝑥W

$ − 𝜇W
"

• Then, transform the data by ∀𝑓 ∈ 1,… , 𝑑 , ∀𝑖 ∈ {1,… ,𝑚}, 𝑥W
$ ←

X0
1 YZ0
[0

• Be sure to keep the “standardize” function and apply it to the test points.
• Save { 𝜇W, 𝜎W }W%!V

• For test point 𝑥∗, apply 𝑥W∗ ←
X0
∗YZ0
[0

, ∀𝑓

73

after transformation, each feature has mean 0 and variance 1

k-NN Summary

• Given: labeled data D
• Training

• Compute and save { 𝜇R , 𝜎R }R"#S

• Compute and save standardization of D
• Test

• Given 𝑥∗, apply standardization 𝑥R∗ ←
U\
∗VW\
X\

, ∀𝑓

• Compute k nearest neighbors 𝑁 𝑥∗
• Predict by majority vote label in 𝑁 𝑥∗ (average label for regression

tasks)

74

Variations
Recall the majority vote rule: �̂� = arg max

]∈{!,…,-}
∑$∈𝒩 X 1{𝑦$ = 𝑦}

Q: Blue dot is the test point. If k=3, which label would it predict?
Q: Which label do you think we should predict?

Weighted version
• �̂� = arg max

]∈{!,…,-}
∑$∈𝒩 X 𝑤$1{𝑦 $ = 𝑦}

Q: What would be the downside of using weighted version?

75

+
+

-

𝑤" ∝ exp −𝛽 ⋅ 𝑑 𝑥, 𝑥 " , 𝛽 > 0

𝑤" ∝
1

𝑑 𝑥, 𝑥 " .

𝑤" ∝
1

1 + 𝑑 𝑥, 𝑥 " .
weights that sum to 1

tuning 𝛽 is cumbersome!

Confidence

Confidence
• 𝑃 𝑌 = 𝑦 𝑋 = 𝑥 ∝ ∑`∈𝒩 b 1{𝑦 ` = 𝑦}
• 𝑃 𝑌 = 𝑦 𝑋 = 𝑥 ∝ ∑`∈𝒩 b 𝑤`1{𝑦 ` = 𝑦} // weighted version

Same thing applies to decision tree – (number of majority
points in that leaf node / number of points in that leaf node)

76

Confidence 77

Low confidence

High confidence

Issues 1: irrelevant features 78

Q: how did we deal with irrelevant features in decision trees?
not all features are used because
(i) we stop adding features when they are unnecessary (e.g. having zero local accuracies, subset is already pure)
(ii) pruning

Issues 2: test time complexity

• How a k-NN function work:
• Compute distance to 𝑚 points
• Sort distances
• Pick 𝑘 smallest.
• Overall 𝑂 𝑚 𝑑 + log𝑚

• Issue: test time complexity scales linearly with 𝑚!!
• Solutions

• k-d tree: Exact search
• Best case: 𝑂 log 𝑚 Worst case: 𝑂(𝑚)

• Locality-sensitive hashing: approximate search, 𝑂(𝑚g) with 𝜌 ∈ (0,1)

79

𝑂(𝑑𝑚)
𝑂(𝑚 log𝑚)
𝑂(𝑘)

for large 𝑑 very likely to hit the worst case

Issue 3: choosing k

• Q: If we set 𝑘 = 𝑚, then which classification rule does it look
like?

• Q: If we set 𝑘 = 1, what would be the train set error (assume
there is no repeated train data point)?

80

81

Comparison

• Interpretability

• Sensitivity to
irrelevant features

• train time

• test time

• test time space complexity

82
Decision Tree k-NN

good bad

low high

𝑂(𝑑𝑚" + 𝑑𝑚 log𝑚) 𝑂(𝑑𝑚)

depth of the tree
worst: O min 𝑑,𝑚
best: log 𝑚

𝑂(𝑚 𝑑 + log 𝑚)
bad

Θ(𝑑𝑚)worst: 𝑂(𝑚)
in general: much smaller

Next time

• Model selection
• How to choose k?
• Overfitting

• Naïve Bayes Classifier

83

Thank you!

84

CSC380: Principles of Data Science

Basics of Predictive Modeling and
Classification 3 :

Model Selection / Naïve Bayes Classifier
Kyoungseok Jang

85

Announcement: Midterm

• Regrade request
• Question 7(4): We decided to give everyone the score. Please

check your answer, and if your answer is ‘False’, please send us the
regrade request.

• For the student who used the back side of the paper for your answer,
please let us know.

86

Announcement: TA

• Due to his personal circumstances, TA Saiful will no longer be
in charge of this class.

• Temporarily, we will not be able to provide the following
services.

• His office hour: Wed
• His piazza hour: Wed/ Thu/ Fri

87

Announcement: Recording

• There was a problem with Lecture 17 (Mar. 21) recording.
• The slides were missing in the video.

• I will re-record that lecture this weekend.

88

89

Overfitting and Model Evaluation

Challenges in ML
Train set error is an important score to measure the performance of your function,

But it’s not enough.

Extreme example: Let’s memorize the data. To predict an
unseen data, just guess a random label.

green: almost memorization
black: true decision boundary

This function will not work well on real life – called
overfitting

Solution: Fit our model based on the train set but
shouldn’t ”over-do” it. This is called regularization.

90

Overfitting vs Underfitting

Source: ibm.com

91

Model Selection / Assessment
Partition your data into Train-Validation-Test sets

Fit Each Model Evaluate / Select
Model

Assess Model

• Ideally, Test set is kept in a “vault” and only peek at it once model is selected
• Small dataset: 50% Training, 25% Validation, 25% Test (very loose rule set by statisticians)
• For large data (say a few thousands), 80-10-10 is usually fine.

92

Tuning hyperparameters (e.g., 𝑘 in 𝑘-NN)
Validation set method:
• For each hyperparameter ℎ ∈ 𝐻

• Train \𝑓 on train set with ℎ
• Compute the error rate of \𝑓 on validation set

• Choose the best performing hyperparameter ℎ∗

• Use ℎ∗ to retrain the final model L𝑓∗ with both train and validation set.
• Finally, evaluate L𝑓∗ on test set to estimate its future performance.

Pro tip
• Do not use arithmetic grids; use geometric grids.

Downside: How much do we trust the validation set?

93

k = 1, 3, 5, 7, 9, …
k = 1, 2, 4, 8, 16, …

Don’t
Do

hyperparameter: parameters of the
model that are not trained automatically
by ML algorithms. (e.g., k in k-NN)
parameters: those that are trained
automatically (e.g., tree structures in
decision tree)

Tuning hyperparameters
K-fold cross validation

• Randomly partition train set 𝑆 into K disjoint sets; call them fold!, … , foldh
• For each hyperparameter ℎ ∈ {1,… ,𝐻}

• For each 𝑘 ∈ {1,… ,𝐾}
• train L𝑓ij with 𝑆 ∖ foldk
• measure error rate 𝑒j,i of L𝑓ij on foldi

• Compute the average error of the above: q𝑒𝑟𝑟j = !
h
∑i%!h 𝑒j,i

• Choose rℎ = argmin
j

q𝑒𝑟𝑟j

• Trains𝑓∗using 𝑆 (all the training points) with hyperparameter s𝒉
• Finally, evaluate L𝑓∗ on test set to estimate its future performance.

94

Leave one-out = 𝑚-fold cross validation (𝑚: train set size)
⟹ When (1) the dataset is small (2) ML algorithm’s retraining time complexity is low (e.g., kNN)

K=10 is standard, but K=5 is okay, too

Cross Validation using numpy.random.permutation 95
array([6, 1, 8, 7, 3, 4, 2, 5, 11, 10, 0, 9])permidx = np.random.permutation(12)

idx = np.array([(i % 5) for i in np.arange(12)])

folds = [permidx[idx == i] for i in np.arange(5)]

folds_except = [permidx[idx != i] for i in np.arange(5)]

[array([6, 4, 0]),
array([1, 2, 9]),
array([8, 5]),
array([7, 11]),
array([3, 10])]

[array([1, 8, 7, 3, 2, 5, 11, 10, 9]),
array([6, 8, 7, 3, 4, 5, 11, 10, 0]),
array([6, 1, 7, 3, 4, 2, 11, 10, 0, 9]),
array([6, 1, 8, 3, 4, 2, 5, 10, 0, 9]),
array([6, 1, 8, 7, 4, 2, 5, 11, 0, 9])]

array([0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1])

If the data is X (n by d array; n data points) and Y (length-n array)
• train set: X[folds_except[0],:], Y[folds_except[0]]
• validation set: X[folds[0],:], Y[folds[0]]

Stratification
• Issue: Say we have few positive labels (=imbalanced class)

The error rates in CV can be unstable.

• Goal: ensure each fold receives the same fraction of pos/neg labels.

• E.g., |S|=100. 20 positive/80 negative. K=10
• Pool positive data points, randomly shuffle them; place 2 data points for each

fold.
• Perform the same with negative data points.

96

Evaluating Classifiers

For binary classifiers we evaluate a couple
standard metrics,

True Positives

True Positives + False Positives

True Positives

True Positives + False Negatives

97

How many selected items are relevant?

How many relevant items are selected?

Evaluating Classifiers

Tuning with precision vs. recall can be tricky, so we use F1 score,

• This is the harmonic mean of precision and recall
• min(x,y) <= harmonic_mean(x,y) <= geometric_mean(x,y) <= arithmetic_mean(x,y) <= max(x,y)

• Can be very sensitive to class imbalance (num. positives vs negative)

• Gives equal importance to precision and recall – F1 may not be best when you
care about one more than the other (e.g., in medical tests we care about recall)

98

𝑥𝑦
1
2
𝑥 + 𝑦

1
1
2 (
1
𝑥 +

1
𝑦)

Confusion Matrix

Suppose our classifier distinguishes between cats and non-cats.
We can make the following table called confusion matrix:

It tells us if classifier is biased towards certain mistakes (False Positives, False Neg.)

Good for investigating opportunities to improve the classifier.

99

Confusion Matrix 100

Don’t just stare at the overall error rate! Let’s investigate what errors it is making.

Scikit-Learn

Python library for machine learning. Install
using Anaconda:

Or using PyPi:

101

Evaluation in Scikit-Learn
Evaluation functions live in metrics

102

Scikit-Learn

Models can be fit using the fit() function.
E.g., Random Forest Classifier,

fit() Generally accepts 2 inputs
• Sample matrix X—typically 2d array (n_samples, n_features)
• Target values Y—real numbers for regression, integer for

classification

103

Train / evaluate the KNN classifier for each value K,

y_pred = classifier.predict(X_test) k-Nearest Neighbors

Print error:

104

in practice: use geometric grid like 1,2,4,8,…

from sklearn.neighbors import KNeighborsClassifier

↑ vector operation!

Scikit-Learn
Can fit Neural Networks as well, for example a
multilayer perceptron (MLP) for classification,

Now do some prediction on new data…

Neural nets for regression too:
sklearn.neural_network.MLPRegressor

105

Preprocessing : Z-Score
Typical ML workflow starts with pre-processing
or transforming data into some useful form,
which Scikit-Learn calls transformers:

Example use this to do
standardization in k-NN.

• Features are standardized independently (columns of X)
• Other transformers live in sklearn.preprocessing

106

fit(X) returns the object created by StandardScaler() so
you can use a series of dot operations!

Preprocessing : Z-Score 107
• From k-NN: We learned Standardization
• [Definition] Standardization

• For each feature f, compute 𝜇3 =
4
5
∑.645 𝑥3

. , 𝜎3 =
4
5
∑.645 𝑥3

. − 𝜇3
/

• Then, transform the data by ∀𝑓 ∈

1,… , 𝑑 , ∀𝑖 ∈ {1,… ,𝑚}, 𝑥3
. ←

#/
0 78/
9/

• Be sure to keep the “standardize” function
and apply it to the test points.

• Save { 𝜇3, 𝜎3 }364!

• For test point 𝑥∗, apply 𝑥3∗ ←
#/
∗78/
9/

, ∀𝑓

Preprocessing : Encoding Labels
Oftentimes, categorical labels come as strings, which aren’t easily
modeled (e.g., with Naïve Bayes),

LabelEncoder transforms
these into integer values, e.g.

for categorical distributions

Can undo using inverse_transform so we don’t have to store two
copies of the data

108

fit() is doing the heavy work: create
the mapping from string to integers

Cross-Validation
Easily do cross validation for model selection / evaluation…

• sklearn.model_selection
• Many split functions: K-fold, leave-one-out, etc.

109

Pipeline
ML workflows can be

complicated. Chain tasks
into a pipeline…

Example Standardizes
data and fits logistic
regression classifier

Nice train_test_split
helper function

110

• pipeline executes fit()/transform() functions in sequence!
• The final estimator only needs to implement fit.

(default: 0.75 - 0.25 split)

↑ calls predict() in the last object in the pipeline

Scikit-Learn
Easily try out all the classifiers…

See full code.

111

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Scikit-Learn
Easily try out all the classifiers…

See full code.

Naïve Bayes

112

https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

Naïve Bayes Classifier

113

Naïve Bayes Overview

• Introduction to Naïve Bayes Classifier

• Maximum Likelihood Estimation

Heads Up This section will return to some math as we
go in depth. There will be lots of abstraction. However,

much of it is review of MLE that you already know with a
new application (Naïve Bayes Classification)

1) Ask questions if you are lost
2) Prerequisite/ details like derivative will not be

included in your evaluation

114

Probabilistic Approach to ML

Training Data:

115

Features

Task: Observe features 𝑥!, … , 𝑥l and predict
class label 𝑦 ∈ {1,… , 𝐶}

Model: Assume that the feature 𝑥 and its label
𝑦 follows certain type of distribution 𝒟 with
parameter 𝜃.

𝑥, 𝑦 ~ 𝒟m

To classify: Compute
�̂� = arg max

(∈{!,…,-}
𝑝 𝑦 = 𝑐 𝑥; r𝜃)

Training Algorithm: Estimate 𝜃
(if D is gaussian, then 𝜃 is the mean & var)

i.i.d.

what comes after semicolon is the parameter of the distribution
In this case, think of 𝒟23

Labels

Naïve Bayes is a Specific Probabilistic Approach

Training Data:

116
Task: Observe features 𝑥!, … , 𝑥l and predict
class label 𝑦 ∈ {1,… , 𝐶}

Naïve Bayes Model: Treat features as
conditionally independent given class label,

To classify a given instance 𝒙: Bayes rule!

𝑝 𝑥, 𝑦 = 𝑝 𝑦 𝑝 𝑥 𝑦 = 𝑝 𝑦 A
V%!

l

𝑝 𝑥V 𝑦)

𝑝 𝑦 = 𝑐 𝑥 =
𝑝 𝑦 = 𝑐 𝑝 𝑥 𝑦 = 𝑐)

𝑝 𝑥

build individual models for these

P(y=c): Class prior dist.
P(x|y=c): class-conditional dist.

FeaturesLabels

Naïve Bayes Classifier

Features are typically not independent!

Example 1 If a recent news article
contains word “Biden” it is much more
likely to contain the word “Joe”.

Example 2 If the flower petal width is very
large then the petal length is also likely to
be large.

Source: Matt Gormley

117

https://www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture5-nb.pdf

Naïve Bayes: The Key Feature
Simplifying Assumption: “Class conditional” distribution assumes features are
conditionally independent given class

• “Naïve” as in general features are likely to be dependent.
• Every feature can have a different class-conditional distribution

118

𝑝 𝑥 𝑦) =A
V%!

l

𝑝 𝑥V 𝑦)

Doesn’t capture correlation among features. But why would it be a good idea?
• Easy computation: For C classes and D features only 𝑂(𝐶𝐷) parameters
• Prevents overfitting
• Simplicity

Naïve Bayes Classifier: Class prior parameters
For the class prior distribution, take categorical distribution.

𝑦~Categorical 𝜋 , 𝜋 ∈ ℝ- , 𝜋(≥ 0,G
(

𝜋(= 1

Þ 𝑝 𝑦 = 𝑐 = 𝜋(
Þ C parameters for the ‘class prior distribution’

119
(recall: extension of Bernoulli)

Naïve Bayes Classifier: likelihood parameters
For real-valued features we can use Normal distribution:

For binary features 𝑥V ∈ 0,1 can use Bernoulli distributions:
Parameters of featured for class c

• K-valued discrete features: use Categorical.
• Can mix-and-match, e.g. some discrete, some continuous features

120

𝑝 𝑥 𝑦 = 𝑐) =A
V%!

l

𝒩 𝑥V 𝜇(V , 𝜎(V")

“Coin bias” for dth
feature and class c

𝑝 𝑥 𝑦 = 𝑐) =A
V%!

l

Bernoulli 𝑥V 𝜃(V)

Q: how many parameters?

Q: how many parameters?

𝑝 𝑥 𝑦 = 𝑐) =p
4$%

56

Bernoulli 𝑥4 𝜃74) p
4$5!8%

5

𝒩 𝑥4 𝜇74 , 𝜎749)

A: 2 𝐶𝐷

Naïve Bayes Classifier: Example

• When class prior distribution, class-conditional distributions
are all Bernoulli

121

Feature

Assumption

e.g.) x= (Smoke?, Military?, Religion?)
y= (resident=0, foreigner=1)

Classify: After training (fix 𝜙 and 𝜃:,<),
if x=(1,0,1),
substitute x1=1, x2=0, x3=1
and compare p(x,0) and p(x,1)
if p(x,1)>p(x,0), then
output (prediction) is 1.

Naïve Bayes Model : Maximum Likelihood

Fitting the model requires learning all parameters…

Class Prior Parameters Likelihood Parameters

122

𝑝 𝑥 𝑦 = 𝑐) = 𝑝 𝑦 = 𝑐; 𝜋 A
V%!

l

𝑝 𝑥V 𝜃(V)

Given training data 𝒟 = 𝑥 $, 𝑦 $
$%!
~ maximize the likelihood function,

Naïve Bayes Model : Maximum Likelihood

Fitting the model requires learning all parameters…

Given training data maximize the likelihood function,

Substitute general form of Naïve Bayes distribution and simplify…

Prior Parameters Likelihood ParametersLet’s review maximum likelihood estimation…

123

Maximum Likelihood

Maximum Likelihood Estimator (MLE) as the name suggests,
maximizes the likelihood function.

Question How do we find the MLE?
1. closed-form
2. iterative methods

124

argmax
m
A
$%!

~

𝑝(𝑥 $, 𝑦 $; 𝜃)

Finding the maximum/maximizer of a function 125
Example: Suppose 𝑓 𝜃 = −𝑎𝜃" + 𝑏𝜃 + 𝑐 with 𝑎 > 0

It is a quadratic function.
=> finding the ’flat’ point suffices

Compute the gradient and set it equal to 0
𝑓1 𝜃 = −2𝑎𝜃 + 𝑏 => 𝜃 = �

"4

Q: Does this trick work for other functions?
ÞYes, for concave functions!
ÞRoughly speaking, functions that curves down only, never

upwards

Closed form!

(gradient illustration)

Finding the maximum/maximizer of a function 126
What if there is no closed form solution?

Example: 𝑓 𝜃 = !
"
𝑥(𝑎𝑥 − 2 log 𝑥 + 2)

𝑓1 𝜃 = 𝑎𝑥 − log(𝑥)

No known closed form for 𝑎𝑥 = log 𝑥

Iterative methods:
- Gradient ascent (or descent if you are minimizing)
- Newton’s method
- Etc. (beyond the scope of our class)

Iterative methods for concave functions
=> Will find the global maximum
for nonconcave,
=> usually find a local maximum but could
also get stuck at stationary point.

Gradient ‘descent’

Naïve Bayes Model : Maximum Likelihood

Fitting the model requires learning all parameters…

Given training data maximize the likelihood function,

Substitute general form of Naïve Bayes distribution and simplify…

Prior Parameters Likelihood Parameters…OK, back to Naïve Bayes

127

Naïve Bayes Model : Maximum Likelihood

Fitting the model requires learning all parameters…

Prior Parameters Likelihood Parameters

128

𝑝 𝑥 𝑦 = 𝑐) = 𝑝 𝑦 = 𝑐; 𝜋 A
V%!

l

𝑝 𝑥V 𝜃(V)

Given training data 𝒟 = 𝑥 $, 𝑦 $
$%!
&

maximize the likelihood function,

Naïve Bayes Model : Maximum Likelihood

log(ab) = log a + log b

Since data are iid

Conditional probability +
Naïve Bayes assumption

Find zero-gradient if concave, or gradient-based optimization otherwise

129
𝜃��� = argmax

�,m
log 𝑝(𝒟; 𝜋, 𝜃)

= argmax
�,m

logA
$%!

&

𝑝(𝑥 $, 𝑦 $; 𝜋, 𝜃)

= argmax
�,m

G
$%!

&

log 𝑝(𝑥 $, 𝑦 $; 𝜋, 𝜃)

= argmax
�,m

G
$%!

&

log 𝑝(𝑦 $; 𝜋) +G
$%!

&

G
V%!

l

log 𝑝 𝑥V
$ 𝑦 $; 𝜃] 1 V

𝜃74 : parameter for feature d for class c

(𝒟 ≔ { 𝑥 " , 𝑦 " }"$%
&)

Example: Naïve Bayes with Bernoulli Features

Roll a biased C-sided die (can be unfair)
0 1 1 0 1 0

1 0 0 0 0 0

1 1 1 1 0 0

0 0 1 1 0 1

…

5

2

3

4

…

…

Flip D biased coins

…

Y =

X_1 | Y

X_2 | Y

X_D | Y

Adapted from: Matt Gormley

130
Analogy:

H

H

T

head prb

𝜃(%

𝜃(9

𝜃(5

…

https://www.cs.cmu.edu/~mgormley/courses/10601-s17/slides/lecture5-nb.pdf

Example: Naïve Bayes with Bernoulli Features
Let each feature follow a Bernoulli distribution then the model is…

The Naïve Bayes joint distribution is then:

Write down log-likelihood and optimize…

131

A

𝑝 𝒟;𝜋, 𝜃 =A
$%!

&

𝑝(𝑦 $; 𝜋) A
V

𝑝 𝑥V
$; 𝜃] 1 V

𝑦 ~ Categorical 𝜋 𝑥S | 𝑦 = 𝑐 ~ Bernoulli(𝜃fS)

Bernoulli Naïve Bayes MLE
Let 𝑚(≔ ∑$%!& 𝐈{𝑦 $ = 𝑐} be number of training examples in class c then,

Log-likelihood function is concave in all parameters so…
1. Take derivatives with respect to 𝜋 and 𝜃 separately.
2. Set derivatives to zero and solve

Fraction of training
examples from class c

Number of “heads” in
training set from class c

132

log 𝑝 𝒟; 𝜋, 𝜃 =G
(%!

-

𝑚(log 𝜋(+G
(%!

-

G
$:] 1 %(

G
V%!

l

log 𝑝 𝑥V
$; 𝜃(V

r𝜃(V =
𝑚(V
𝑚(

𝑚(V =G
$%!

&

𝐼{𝑦 $ = 𝑐, 𝑥V
$ = 1}

�̂�(=
𝑚(

𝑚

Naïve Bayes in Scikit-learn

Scikit-learn has separate classes each feature type

https://scikit-learn.org/stable/modules/naive_bayes.html

sklearn.naive_bayes.GaussianNB

Real-valued features
sklearn.naive_bayes.MultinomialNB
Discrete K-valued feature counts (e.g. multiple die rolls, word count for
an article)
sklearn.naive_bayes.BernoulliNB
Binary features (e.g. coinflip)

sklearn.naive_bayes.CategoricalNB
Discrete K-valued features (e.g. single die roll)

For large training data that
don’t fit in memory use

Scikit-learn’s out-of-core
learning

133

https://scikit-learn.org/stable/modules/naive_bayes.html
https://scikit-learn.org/stable/computing/scaling_strategies.html
https://scikit-learn.org/stable/computing/scaling_strategies.html

Bernoulli Naïve Bayes MLE

What if there are no examples of class c in the training set?

What if all data points 𝑖 in class c has 𝑥S
! = 0 in the training set?

Model will never learn to
guess class c

Model will assign 0 likelihood for test
data with 𝒙𝒅 = 𝟏 for class c

(i.e., 𝑝(𝑥|𝑦 = 𝑐)).

Training data needs to see every possible outcome for each feature

Any ideas how we can fix this problem?

134
Fraction of training

examples from class c
Number of “heads” in

training set from class c
r𝜃(V =

𝑚(V

𝑚(
�̂�(=

𝑚(

𝑚

r𝜃(V = 0

What does it imply on 𝑝 𝑦 = 𝑐 𝑥 ?

0!

Fixing Bernoulli MLE
We could add a small constant to prevent zero probabilities…

Pseudocounts
add-𝜶 Smoothing

Laplace smoothing
….

Coincides with so-called Maximum a Posteriori (MAP) estimate! (as opposed to MLE)

135

�̂�(∝ 𝑚(+ 𝛼 r𝜃(� ∝ 𝑚(� + 𝛽 𝛼, 𝛽 > 0

Bayesian approach: Place a prior distribution over the parameter 𝜋 and {𝜃(V} and
then compute the posterior mean.

(Theorem) 𝑝 𝜋 𝑦 ! , … , 𝑦 # = Dirichlet(𝑚! + 𝛼!, … ,𝑚- + 𝛼-)

It follows that 𝐄 𝜋 𝑦 ! , … , 𝑦 & ∝ 𝑚(+ 𝛼(

E.g., assume: 𝜋 ~ Dirichlet(𝛼!, … , 𝛼-) and 𝑦 ! , … , 𝑦 # ∼ Bernoulli(𝜋)

typical choice: set 𝜶 = 𝜷 = 𝟏

Bernoulli Naïve Bayes in Scikit-learn

Beta prior hyperparameter
set to 0 for MLE

136

Gaussian Naïve Bayes in Scikit-learn

Bayesian prior on class-conditional variances
MLE if set to 0

137

this is to guard against the same kind of error as
in Bernoulli NB due to all-1s in some features for
a particular class.

