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Lecture 9: Episodic MDPs and Policy Evaluation
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1 Episodic Markov Decision Processes (MDPs)

An episodic MDP starts with an initial state s drawn from a distribution µ. The agent proceeds in the
following manner for each step h = 1, . . . ,H:

1. Observe a state Sh.

2. Take action Ah.

3. Get reward rh = R(Sh, Ah), where R is the reward function.

4. Store transition Sh+1 ∼ Ph(· | sh, ah), where P is the state transition function.

1.1 Performance Measures

The performance measure is the expected return:

E

[
H∑

h=1

rh

]

This is a random variable due to randomness in state transitions and potential randomization in actions.

1.2 Policy Types

� Markovian Policy (ΠM): Each πh(a | s) is a conditional probability of taking action a given state
s. It only depends on the current state.

� History-dependent Policy (Π): Each πh(a | s1, a1, . . . , sh−1) depends on the entire history up to
step h− 1.

2 Planning (Optimal Control)

The goal is to find a policy π that maximizes the expected return:

J(π) = E

[
H∑

h=1

rh

∣∣∣π]

Given inputs ((Rh)
H
h=1, (Ph)

H
h=1, µ), it turns out that it suffices to restrict our search to Markovian policies

πM . In fact, we have:
max
π∈Π

J(π) = max
π∈ΠM

J(π)
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2.1 Policy Evaluation

A natural question is how to compute J(π) given π ∈ ΠM . This process is also known as policy evaluation.

Definition 1 (Value Function of a Policy). Given a policy π = (π1, . . . , πH) ∈ ΠM , we define its value
function as follows:

For step h = 1, . . . ,H, the value function V π
h (s) is given by:

V π
h (s) = E

[
H∑
t=h

rt | sh = s, π

]

We have the following result for the value function:

Es1∼µ[V
π
1 (s1)] = J(π)

Conventionally, this function will be used for h = 1, . . . ,H. After step H, we no longer collect rewards. That
is, V π

H+1(s) = 0

Example 1. In a grid world, where the agent get reward of 1 if at ⋆ and 0 otherwise, the policy πh(s) =
stay ∀s have the value function:

V π
1 (s) =

{
0 if s ̸= ⋆
H if s = ⋆

⋆

♂

Definition 2. Action Value Function The action value function for a step h is defined as:

Qπ
h(s, a) = E

[
H∑
t=h

rt

∣∣∣sh = s, ah = a, π

]

2.2 Representing V π
h Using Qπ

h

Consider the action selection at step h under the state s:

s

a1

a2
...

aA

. . .π π π

If we select a1, then the expected return = Qπ
h(s, a1). Let A = {a1, . . . , aA} be the action space. The

value function can be represented using the action value function as:

V π
h (s) =

∑
a∈A

πh(a | s)Qπ
h(s, a) (1)

This representation can also be written as the inner product of the policy πh and the action value function
Qπ

h:
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⟨

π(a1|s)
...

π(aA|s)

 ,

Qπ
h(s, a1)

...
Qπ

h(s, aA)

⟩ = ⟨π(·|s), Qπ
h(s, ·)⟩

2.3 Representing Qπ
h Using V π

h+1

Consider the state transition after selecting action a at state s at step h:

s a

s1

s2
...

sS

. . .π π π

The expected return after transitioning to state s1 is V π
h+1(s1). Considering all possible state transitions

after taking the action a, we sum together the product of transition probabilities Ph(s
′|s, a) and the expected

return V π
h+1(s

′) at all possible staes s′ ∈ S to get the overall expected return:∑
s′∈S

Ph(s
′ | s, a)V π

h+1(s
′)

However, taking action a at state s also leads to an immediate reward Rh(s, a). Therefore, The action value
function Qπ

h(s, a) can then be represented as:

Qπ
h(s, a) =

∑
s′∈S

Ph(s
′ | s, a)V π

h+1(s
′) +Rh(s, a) (2)

Similarly, this can be represented in inner products:

⟨

Ph(s1|s, a)
...

Ph(sS |s, a)

 ,

V π
h+1(s1)

...
V π
h+1(sS)

⟩+Rh(s, a) = ⟨Ph(·|s, a), V π
h+1(s|·)⟩+Rh(s, a)

Therefore, we can compute V π
1 and J(π) by these two equations (also known as the Bellman Consistency

Equation). In particular, we know that V π
H+1 ≡ 0, then we can perform the following process:

� Compute Qπ
H by V π

H+1 using equation 2

� Compute V π
H by Qπ

H using equation 1

� Compute Qπ
H−1 by V π

H using equation 2

� . . .

� Compute V π
1 by Qπ

1 using equation 1

Definition 3 (Bellman Backup Operator). Given an MDP M , for step h, define the Bellman backup operator
T π
h .

� Input: f : S ×A → R

� Output: (T π
h f) : S ×A → R

The Bellman backup operator is given by:

(T π
h f)(s, a) = Rh(s, a) +

∑
s′∈S

∑
a′∈A

Ph(s
′|s, a)πh+1(a

′|s′)f(s′, a′)

Applying it to the action value function, we have T π
h Qπ

h+1 = Qπ
h. This is another form of the Bellman

Consistency Equation.
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3 Finding the Optimal Policy

How to find optimal policy π ∈ ΠM that maximize J(π)?

Definition 4 (Optimal Value Function of a Policy). For MDP M , we define its optimal value function:
For step h = 1, . . . ,H, the optimal value function V ∗

h (s) is given by:

V ∗
h (s) = max

π∈ΠM
E

[
H∑
t=h

rt | sh = s, π

]
This objectively meausres how advantageous state s is. Similar the the optimal policy definition, we use

the convention that V ∗
H+1(s) = 0.

Example 2. Consider the same grid world, where the agent get reward of 1 if at ⋆ and 0 otherwise. The
optimal value function at the following state would be:

� At state s = ⋆: V ∗
1 (s) = H, which can be achieved by staying for all steps 1, . . . ,H

� At state s = ■: V ∗
1 (s) = H − 1, which can be achieved by going left at the first step (no rewards) and

then stay until H

� At state s =  : V ∗
1 (s) = H − 2, which can be acheived by going right and down at the first two steps

(no rewards) and then stay until H

⋆

♂

␣

○

Definition 5. Optimal Action Value Function The optimal action value function for a step h is defined as:

Q∗
h(s, a) = max

π∈ΠM
E

[
H∑
t=h

rt

∣∣∣sh = s, ah = a, π

]
Given these, the policy π∗

h = (π∗
h)

H
h+1: π

∗
h(s) = argmaxa∈A Qh(s, a) is the optimal policy.

3.1 Representing V ∗
h Using Q∗

h

Consider the action selection at step h under the state s, how do we select the opimal action?

s

a1

a2
...

aA

. . .π π π

Suppose that we act optimally for all steps after selecting the action a1, then the expected return would be
Q∗

h(s, a1). The action that should be taken at step h is the one that optimize expected future return. That
is,

a∗ = argmax
a∈A

Qπ
h(s, a)

Therefore, the optimal value at state s is the Q∗
h with the optimal action taken. That is,

V ∗
h (s) = max

a∈A
Q∗

h(s, a)
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3.2 Representing Q∗
h Using V ∗

h+1

Consider the state transition after selecting action a at state s at step h:

s a

s1

s2
...

sS

. . .π π π

Suppose that we act optimally for all steps after transitioning to state s1 at step h + 1, then the expected
value would be V ∗

h+1(s1). Therefore, the optimal action value function Q∗
h can be represented by considering

the transition function Ph and the immediate reward Rh(s, a):

Q∗
h(s, a) =

∑
s′∈S

Ph(s
′ | s, a)V ∗

h+1(s
′) +Rh(s, a)

3.3 Fact

We have (can be shown by induction from h = H)

1. Policy π step h, V ∗
h ≥ V π∗

h (by definition), and Q∗
h ≥ Qπ

h.

2. Policy π∗: V ∗
h = V π∗

h , Q∗
h = Qπ∗

h

3.4 Bellman Backup Equation (Revisited)

The Bellman backup equation for step h is given by:

(T ∗
h f)(s, a) = Rh(s, a) +

∑
s′∈S

Ph(s
′ | s, a)max

a′∈A
f(s′, a′)

Thus:
T ∗
h Qh+1 = Q∗

h

Remark 1. The process of iteratively applying Q∗
h = T ∗

h Q∗
h+1, h = H, . . . , 1, is called value iteration.

In an infinite horizon setting, we introduce a discount factor γ < 1, and the expected return becomes:

(T ∗f)(s, a) = Rh(s, a) + γ
∑
s′∈S

Ph(s
′ | s, a)max

a′
f(s′, a′)

4 Online Reinforcement Learning

4.1 Interaction Protocol

The agent knows (Rh)
H
h=1 but does not know (Ph)

H
h=1.

For episodes t = 1, 2, . . . T :

� See initial state st1 ∼ µ.

� For steps h = 1, . . . ,H:

– Observe St
h.

– Take action At
h.

– Get reward rth = Rh(s
t
h, a

t
h).

– Transition to St
h+1 ∼ Ph(· | sth, ath).
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4.2 Regret Minimization

The goal is to minimize the regret:

Reg(T ) := TJ(π∗)− E

[
T∑

t=1

J(πt)

]

where TJ(π∗) is the optimal return for all T episodes and πt is the policy used at episode t. The regret
measures the difference between the optimal return for all T episodes and the cumulative return obtained by
the agent’s policies over T episodes. When the initial state s1 is deterministic, we can write the regret as:

Reg(T ) = V ∗
1 (s1)− V πt

1 (s1)

To solve this, we apply the optimism principle, which defines the bonus to motivate the model to explore.

� Model optimism: Use the transition probabilities to represent the world and estimate them based on
the collected trajectory data. We then maintain a confidence set of the transition probabilities. Then
apply the optimism principle so that it gives us the highest possible reward under the best possible
transition.

� Value optimism: Don’t maintain a model estimate of the world. Intead, just construc optimisitc upper
bounds on the optimal Q and V functions and take the action greedily with resepect to these upper
bounds.
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