
CSC 696H:

LinUCB analysis: Confidence Set Construction & regret analysis
Lecturer: Chicheng Zhang Scribe: Brandon Hall

1 Review: Linear Contextual Bandits

1.1 Basic overview of LCB

For t = 1, 2, . . . , T :

• Observe context xt ∈ X

• Take action at ∈ A

• Receive reward rt = f∗(xt, at) + ϵt
zero-mean 1-SG

Goal: Maximize E
[∑T

t=1 f
∗(xt, at)

]
= E

[∑T
t=1 rt

]
Linearity: f∗

f∗(x,a)=⟨θ∗,Φ(x,a)⟩
∈ F = {f(x, a) = ⟨θ,Φ(x, a)⟩ : ∥θ∥2 ≤ 1}

1.2 Performance Measure of LCB

The equation gives the performance measure:

Reg(T ) = E

 T∑
t=1

max
a∈A

(f∗(xt, a)− f∗(xt, at))︸ ︷︷ ︸
InstintaneousRegret


In this equation, the term f∗(xt, a) − f∗(xt, at) represents the instantaneous regret at time t, which

measures the difference between the reward of the best possible action a and the reward of the action taken
at.

The entire summation,
∑T

t=1 maxa∈A (f∗(xt, a)− f∗(xt, at))
I

, is referred to as the pseudo-regret (PReg)

over the time horizon T , capturing the cumulative regret incurred across all time steps.

1.3 The UCB Algorithm for Linear Contextual Bandits

For t = 1, 2, . . . , T :

• Construct the confidence set Θt for θ
∗.

– Hope: θ∗ ∈ Θt - This implies that we believe the true parameter θ∗ is contained within our
constructed set, allowing us to make reliable inferences about the reward function based on this
assumption.

– For this rest of this iteration, assume that θ∗ ∈ Θt is the only information we know about the
ground truth reward predictor θ∗. In other words, Θt is the set of all “plausible” values of θ∗.

• Observe the context xt.
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• For every action a, find the highest plausible reward. This is determined by calculating the upper
confidence bound UCBt(xt, a):

max
θ∈Θt

⟨θ, ϕ(xt, a)⟩ = UCBt(xt, a)

• Take the action:
at = argmax

a∈A
UCBt(xt, a)

This step selects the action at that maximizes the upper confidence bound, balancing between exploiting
known information and exploring uncertain options.

2 Analysis of LinUCB

2.1 Main topics of this lecture

• Q1: How to compute the confidence set Θt?

• Q2: How can we analyze the regret of LinUCB?

2.2 How to compute the confidence set Θt?

Answer 1: We are going to do this in two steps:{
1. Best guess of θ∗ using data → θ̂t

2. Quantify the closeness between θ̂t and θ∗

}

2.2.1 Answer to Q1: Computing the Confidence Set Θt

The estimate θ̂t(γ) is computed as follows:

θ̂t(γ) = argmin
θ

{
t−1∑
s=1

(⟨θ,Φ(xs, as)⟩ − rs)
2
+ γ∥θ∥2

}
In this equation: - The first term,

∑t−1
s=1 (⟨θ,Φ(xs, as)⟩ − rs)

2
, represents the squared loss incurred from

the estimated rewards compared to the actual rewards observed. - The second term, γ∥θ∥2, acts as a
regularization term, ensuring that the estimated parameters do not grow excessively large.

For convenience, we denote Φ(xs, as) as Φs to simplify notation.

2.2.2 Answer to Q2: Quantify the closeness between θ̂t and θ∗

We cannot expect θ̂t(γ) to be coordinate-wise close to θ∗ =

(
θ∗1
θ∗2

)
.

This limitation can be illustrated through the following example:
- Let the dimension:

d = 2

- Consider the feature vectors:

Φ1, . . . ,Φt−2 =

(
1
0

)
Φt−1 =

(
0
1

)
- The observed rewards are:

r1, . . . , rt−2, rt−1
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In this scenario:
- All the rewards r1, . . . , rt−2 only depend on the parameter θ∗1 and not θ∗2 . This is because the first t-1

feature vectors have a 0 in the second part of the vector. This causes them to give no information on θ∗2 .
- Similarly, the reward rt−1 is influenced solely by θ∗2 .
This relationship is illustrated in Figure 1, which depicts the dependence graph of these variables:

Figure 1: This diagram demonstrates how θ∗1 affects the rewards r1 to rt−2, while having no influence on
rt−1. Conversely, θ∗2 solely impacts rt−1. This indicates that rt−1 does not have sufficient data to enable
accurate estimation.

This disparity highlights the challenge that certain parameters may not have enough observed data for
reliable estimation. Consequently, it becomes unrealistic to expect coordinate-wise closeness between θ̂t(γ)
and θ∗.

Lemma 1 (Confidence Set). There exists an event E such that P (E) ≥ 1− 1
T and, on the event E, for all

t:
θ∗ ∈ Θt(λ) =

{
θ : ∥θ − θ̂t(λ)∥Vt−1(λ) ≤ Bt(λ) = Ô

(√
λ+

√
d
)}

Specifically, if λ = 1:

θ∗ ∈ Θt(1) =
{
θ : ∥θ − θ̂t(1)∥Vt−1(λ)

2 ≤ Bt(1) = Ô
(√

d
)}
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Positive Semi-definite Matrices

A matrix M ∈ Rn×n is said to be positive semi-definite (PSD) if for all vectors v ∈ Rn:

vTMv ≥ 0

This means that the quadratic form associated with M is non-negative for all vectors v.
Example 1: Consider the identity matrix:

M =

(
1 0
0 1

)
For any vector v =

(
v1
v2

)
, we have:

vTMv =
(
v1 v2

)(1 0
0 1

)(
v1
v2

)
= v21 + v22 ≥ 0

Since v21 and v22 are both non-negative, M is positive semi-definite.
A matrix M is positive definite (PD) if for all vectors v ̸= 0:

vTMv > 0

Example 2: Consider the matrix:

M =

(
1 0
0 0

)
For the vector v =

(
0
1

)
:

vTMv =
(
0 1

)(1 0
0 0

)(
0
1

)
= 0

Here, vTMv = 0, which shows that M is positive semi-definite, but not positive definite because
there exists a vector v such that vTMv = 0.
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Mahalanobis Norm

The Mahalanobis norm, denoted as ∥x∥M for a positive definite matrix M>≻0, is defined as:

∥x∥M =
√
xTMx

Notably, when M = I (the identity matrix), the Mahalanobis norm reduces to the standard Euclidean
norm:

∥x∥M = ∥x∥2
Properties of the Mahalanobis Norm:

• ∥x∥M ≥ 0

• ∥ax∥M = |a| · ∥x∥M (where a is a scalar)

• ∥x+ y∥M ≤ ∥x∥M + ∥y∥M (generalized triangle inequality)

• ⟨x,y⟩ ≤ ∥x∥M · ∥y∥M−1

(generalized Cauchy-Schwarz)

Cauchy-Schwarz The original Cauchy-Schwarz inequality states that for any two vectors u
and v:

|⟨u,v⟩| ≤ ∥u∥ · ∥v∥

This means the absolute value of the inner product of two vectors is less than or equal to the
product of their magnitudes (norms). In the context of the Mahalanobis norm, we use the
generalized version, which allows us to work with the Mahalanobis norm defined by a positive
definite matrix M . Here, we compare the inner product ⟨x,y⟩ with ∥x∥M · ∥y∥M−1 , which
incorporates the properties of M and its inverse.

Use of M−1 You may wonder why we use ∥y∥M−1 instead of ∥y∥M on the right-hand side.

If we were to use ∥y∥M , the right side would yield
√
Mx2 ·

√
My2, resulting in an expression

that contains two instances of the matrix M . We ensure the dimensions balance correctly by
using M−1 for the second term.

• max∥x∥M<1⟨x,y⟩ = ∥y∥M−1

In our analysis, we will utilize the Mahalanobis norm to define the covariance matrix for our data.
Specifically, we express the update for the covariance matrix Vt+1(λ) as follows:

Vt+1(λ) =

t−1∑
s=1

ΦsΦ
T
s + λI

Here, Vt−1(λ) appears in the lemma, where the summation represents the data covariance matrix accu-
mulated up to step t − 1. The addition of λI serves as a regularization term, ensuring the matrix remains
positive definite. ‘
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Lemma Example

Consider the following example where θ̂t ∈ R2, and the covariance matrix Vt−1(0) with λ = 0 is
computed as:

Vt−1(0) =

t−1∑
s=1

ΦsΦ
T
s = (t− 2)

(
1 0
0 0

)
+ 1

(
0 0
0 1

)
=

(
t− 2 0
0 1

)
Side Note: The individual matrices
were derived from:

Φ1 =

(
1
0

)
, Φ1Φ

T
1 =

(
1 0
0 0

)

Φt−1 =

(
0
1

)
, Φt−1Φ

T
t−1 =

(
0 0
0 1

)
Now, the confidence set Θt(0) for θ can be written as:

Θt(0) =

{
θ :

√(
θ1 − θ̂t1 θ2 − θ̂t2

)(t− 2 0
0 1

)(
θ1 − θ̂t1
θ2 − θ̂t2

)
≤

√
2

}
Expanding the quadratic form:

Θt(0) =

{
θ :

(t− 2)

2
(θ1 − θ̂t1)

2 +
1

2
(θ2 − θ̂t2)

2 ≤ 1

}
This equation represents an ellipse in the (θ1, θ2)-plane, with the center at (θ̂t1, θ̂

t
2). The lengths of

the semi-axes are determined by the coefficients of θ1 and θ2, which reflect the scaling due to the
covariance matrix.
To explicitly show this is an ellipse, we can rewrite it in standard ellipsoid form:

Θt(0) =

θ :
(θ1 − θ̂t1)

2√
2

(t−2)2

+
(θ2 − θ̂t2)

2

√
2
2 ≤ 1


Explanation: - The center of the ellipse is (θ̂t1, θ̂

t
2), meaning the estimate θ̂t is at the center. - The

size of the ellipse is determined by the scaling terms, t− 2 and 1, which influence the axes’ lengths.
Specifically, the axis along θ1 is scaled by t− 2, while the axis along θ2 is scaled by 1.
This ellipse represents the confidence region for the parameter θ∗, with different scaling along the two
axes, reflecting the uncertainty in each dimension.

2.3 Implications of Confidence Bounds

For directions in which we have more data available, the uncertainty in θ∗ along those directions is reduced.
This is an important observation that arises from the structure of the covariance matrix and how it affects
our confidence intervals.
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Figure 2: Graph of the confidence ellipse derived from the lemma example. Along the θ1 (x-axis), the width

is
√

2
(t−2)2 , while along the θ2 (y-axis), the width is 2. This shows that with fewer data points in the direction

of θ2, the plausible range of θ2 values is larger compared to θ1, where we have more data.

In Figure 2, the confidence ellipse shows the uncertainty regions for θ1 and θ2. On the θ1-axis, the smaller
width represents higher certainty in this direction due to having more data points. In contrast, the θ2-axis
has a larger width, reflecting higher uncertainty since only one data point is available in that direction.

2.4 Proof Sketch: Bound Derivation

To formalize this, consider the following proof sketch based on the data observed up to time t− 1. We will
assume that λ is very small, so that Vt−1(λ) ≈ Vt−1(0). Below, we use θ̂t and Vt−1 as shorthands of θ̂t(λ)
and Vt−1(λ), respectively.

The estimate θ̂t can be expressed as:

θ̂t = V −1
t−1

(
t−1∑
s=1

ϕsrs

)
Breaking this down into two components:

= V −1
t−1

(
t−1∑
s=1

ϕsϕ
T
s θ

∗ +

t−1∑
s=1

ϕsϵs

)
(See the handwritten notes for a full derivation.)
Which gives us:
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θ̂t ≈ θ∗ + V −1
t−1

(
t−1∑
s=1

ϕsϵs

)
The error term, V −1

t−1

∑t−1
s=1 ϕsϵs, accounts for the residuals from noisy data.

2.4.1 Measuring Distance Using Mahalanobis Norm

To measure the distance between θ̂t and θ∗, we use the Mahalanobis norm, as introduced earlier:

∥θ̂t − θ∗∥Vt−1
=

∥∥∥∥∥Vt−1

t−1∑
s=1

ϕsϵs

∥∥∥∥∥
Vt−1

This simplifies to:

=

∥∥∥∥∥
t−1∑
s=1

ϕsϵs

∥∥∥∥∥
Vt−1

With high probability (w.h.p), this bound is:

≤
√
2 ln(T ) + α ln(1 + t/d)

= Bt(λ) = O(
√
d)

Additional Notes: This bound was obtained using the Self-Normalized Tail Inequality. For further
reading, refer to Abbasi-Yadkori, Pal, and Szepesvári’s work on the topic.

Aside: Mahalanobis Norm Simplification

To simplify expressions like ∥M−1x∥M , we use the following logic:

∥M−1x∥M =
√
(M−1x)TM(M−1x) =

√
xTM−1x

Here, the M−1 and M matrices cancel out, leaving
√
xTM−1x, which is the form we end up with for

the Mahalanobis norm.

2.5 Novelty and Elliptical Potential

The term ||Φ(xt, a)||V −1
t−1

quantifies how ”novel” the feature vector Φ(xt, a) is concerning the observations

Φ1, . . . ,Φt−1 that have been previously encountered. This relationship is visualized through the concept of
”Elliptical Potential,” as depicted in Figure 3.
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Figure 3: Visualization of the elliptical potential defined by the condition {x : ||x||V −1
t−1

≤ 1}. Points inside

the ellipse indicate lower novelty, while points outside suggest higher novelty, illustrating the confidence
interval for the feature vectors.

The contours of points of equal elliptical potential can be expressed mathematically as:

{x : ||x||V −1
t−1

= c}

for different values of c; a larger c corresponds to a larger ellipse.
This representation implies that any point x satisfying this condition lies within the ellipse, while those

that do not satisfy it lie outside.
To illustrate this concept, we reference a previous example where the inverse covariance matrix is defined

as:

V −1
t−1 =

(
1

t−2 0

0 1

)
From this, we can calculate the corresponding elliptical potential as follows:

(x1, x2)

(
1

t−2 0

0 1

)(
x1

x2

)
≤ 1 =⇒ x2

1

t− 2
+ x2

2 ≤ 1

Here, 1
t−2 represents a2 and 1 represents b2 in the ellipse equation, which gives us a =

√
t− 2 and b = 1.

This is plotted in Figure 3 as the black line.
This example demonstrates that as we accumulate more data on x1, the ellipse becomes thinner along that

axis, indicating a smaller confidence interval and therefore reduced elliptical potential. Inversely, features
that have not been observed as frequently will yield a wider ellipse, reflecting greater uncertainty in their
estimates.

Additionally, the contours represented in Figure 3 provide insights into the novelty of the feature vectors.
The contours inside the black line correspond to points where the Vt−1-norm is less than 1, indicating regions
of lower novelty. In contrast, points lying outside the black line have an Vt−1-norm greater than 1, suggesting
areas of higher novelty. These contours serve as a visual representation of the varying levels of confidence
we hold in our parameter estimates based on the observed data.
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In summary, the elliptical potential and its corresponding contours provide a framework for understanding
how novelty is assessed in the context of linear contextual bandits, ultimately guiding decision-making based
on the confidence intervals established through past observations.

Final Remark: this ellipse has a shape exactly “opposite” to the confidence set. Do you think it makes
sense?

2.6 The UCB Algorithm for Linear Contextual Bandits (again)

This is a repeat from before with some added information
For t = 1, 2, . . . , T :

• Construct the confidence set Θt for θ
∗.

– Hope: θ∗ ∈ Θt - This implies that we believe the true parameter θ∗ is contained within our
constructed set, allowing us to make reliable inferences about the reward function based on this
assumption.

– For this rest of this iteration, assume that θ∗ ∈ Θt is the only information we know about the
ground truth reward predictor θ∗. In other words, Θt is the set of all “plausible” values of θ∗.

• Observe the context xt.

• For every action a, find the highest plausible reward. This is determined by calculating the upper
confidence bound UCBt(xt, a). The process is as follows:

1. First, compute the maximum inner product between θ and the context-action pair ϕ(xt, a), con-
strained to the confidence set Θt:

max
θ∈Θt

⟨θ, ϕ(xt, a)⟩ = UCBt(xt, a)

2. Then, approximate the reward using the current estimate θ̂t to obtain a more explicit expression
of UCBt(xt, a) by solving the maximization problem.

UCBt(xt, a) = max
θ:∥θ−θ̂t∥Vt−1

≤βt(1)
⟨θ, ϕ(xt, a)⟩

= max
z:∥z∥Vt−1

≤βt(1)
⟨θ̂t, ϕ(xt, a)⟩+ ⟨z, ϕ(xt, a)⟩ (Change of variable θ = θ̂t + z)

=⟨θ̂t, ϕ(xt, a)⟩+ βt(1)∥ϕ(xt, a)∥V −1
t−1

3. Finally, introduce the Exploration Bonus, which accounts for the uncertainty in the estimate:

UCBt(xt, a) = ⟨θ̂t, ϕ(xt, a)⟩+ βt(1)∥ϕ(xt, a)∥V −1
t−1

This Exploration Bonus term at the end encourages exploring actions where we have less confi-
dence, as it grows with the uncertainty ∥ϕ(xt, a)∥V −1

t−1
.

• Take the action:
at = argmax

a∈A
UCBt(xt, a)

This step selects the action at that maximizes the upper confidence bound, balancing between exploiting
known information and exploring uncertain options.
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3 Regret Analysis

In this section, we analyze the regret associated with the Linear Upper Confidence Bound (LinUCB) algo-
rithm. This section was discussed quickly as time was limited.

3.1 Theorem

The following theorem encapsulates the regret bounds for LinUCB:

Theorem 2. For a given event E such that P (E) ≥ 1− 1
T , we have the following bound on the cumulative

regret:

Reg(T ) ≤ Õ(d
√
T ),

where d represents the dimensionality of the feature space and T is the number of time steps. This result
is generally unimprovable.

Additionally, when applying LinUCB to a multi-armed bandit (MAB) problem, we observe that:

Reg(T ) ≤ A
√
T ,

where A is a constant that reflects the problem’s specific characteristics. This is notable because the
standard Native UCB approach yields a regret of

√
AT , which is better than the regret incurred by LinUCB.

3.2 Proof

The cumulative regret over T time steps can be expressed as:

PReg(T ) =

T∑
t=1

regt,

where regt denotes the regret at time t.

3.2.1 Claim 1

For each time step t, we assert the following:

regt ≤ 2bt(at),

where bt(at) represents the bound on the confidence interval for the action at. This claim is similar to the
analysis of upper confidence bounds in the multi-armed bandit (MAB) context. For a detailed understanding,
refer to the handwritten notes accompanying this section.

3.2.2 Claim 2

T∑
t=1

bt(at) ≤ Õ(d
√
T ).

This observation can be rewritten as:

βt(1)

T∑
t=1

||Φ(xt, at)||V −1
t−1

,

which provides insight into how novel the feature vector Φ(xt, at) is in relation to the previously observed
feature vectors Φ1, . . . ,Φt−1.
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This concept ties directly into the earlier discussed Elliptical Potential, where the novelty of the observed
feature vector influences the bounds on the regret. In our next lecture we will introduce the Elliptical
Potential Lemma that provide a bound on this.
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