
CSC 696H: Topics in Bandits and Reinforcement Learning Theory Fall 2024

Lecture 5: Multi-Armed Bandits

Lecturer: Chicheng Zhang Scribe: Aryan Pathare

1 Recap: Exponential Weight Algorithm [EWA]

The general steps in the Exponential Weight Algorithm are -

1. Initialize w1(f) = 1 for all f ∈ F

2. For t = 1, 2, . . . , T , compute the distribution -

qt(f) =
wt(f)

Wt
, where Wt =

∑
f∈F

wt(f),

3. Compute the predictor

f̂t(x) =
∑
f∈F

qt(f)f(x).

4. Observe (xt, yt) and incur loss ℓ(f̂t(xt), yt)

5. Update weights:

wt+1(f) = wt(f) · e−ηℓ(f(xt),yt).

In EWA, over time, the weights of the models with good performance increase exponentially.

For absolute loss, the regret of EWA is bounded by Reg(F,T) ≤ O
(√

T ln |F|
)
.

For α-exp-concave loss, the regret of EWA is bounded by Reg(F,T) ≤ O
(
1
α ln |F|

)

2 Recap: KL-Divergence

The Kullback-Leibler divergence is used to measure the difference between two probability distributions.

For distributions p and q, the KL-Divergence is defined as -

K(p(x), q(x)) =
∑

x∈X p(x) ln p(x)
q(x)

Some important properties of KL-Divergence are -

1

1. K(p(x), q(x)) ≥ 0

2. If K(p(x), q(x)) = 0, then the distributions p and q are the same/

3. K(p(x), q(x)) ̸= K(q(x), p(x)) i.e KL-Divergence is asymmetric.

3 Introduction

This lecture introduces the multi-armed bandits problem. It sheds light on the setup of the problem and

also explains three algorithms for solving the problem.

4 Online Learning Remarks

1. V Vovk authored the paper ”A Game of Prediction with Expert Advice” on the unified treatment of

online learning with general losses.

2. Consider online learning with square loss l(ŷ, y) = (ŷ − y)2

with the additional assumption that there exists a f∗ ∈ f such that yt = f∗(xt) + ϵt for all t and

zero-mean independent noise ϵt. This is called realizable regression.

The EWA guarantee is -∑T
t=1(f̂t(xt)− yt)

2 − (f∗(xt)− yt)
2 ≤ c.ln|F |.

We can make the guarantee more interpretable as follows:

Taking expectation on both sides the t-th term is,

E[regt] = E[(f̂t(xt)− f∗(xt)− ϵt)
2 − ϵ2t] = E[(f̂t(xt)− f∗(xt))

2 − 2(f̂t(xt)− f∗(xt)).ϵt]

Denote by f̂t(xt)− f∗(xt) =: zt. Therefore, as ϵt is zero-mean independent noise, zt ⊥⊥ ϵt. Therefore,

E[zt.ϵt] = E[zt].E[ϵt] = 0*0 = 0.

Based on the above, E[
∑T

t=1 regt] = E[
∑T

t=1(f̂t(xt)− f∗(xt))
2] ≤ c.ln|F |

Thus, this equation signifies that in the long run, even though we do not ever observe the condition

mean f∗(xt) (since they are always corrupted by noise), the predictions estimate the conditional means

well enough.

The behaviour of f∗ can be observed in figure 1

2

Figure 1: Behaviour of f∗

5 Multi-Armed Bandits [MAB]

In the MAB model, the agent performs an action and based on that receives evaluative feedback. This is in

constrast to instructive feedback for supervised learning.

The setup for MAB is as follows -

• Action set A = {1, 2, ...A}. The action set is also called the arm set.

• For t = 1, 2,, T ,

Agent takes action at and based on this receives the reward rt = f∗(at) + Σtϵt. Here, f∗(at) and

the distribution of the zero-mean random noise Σtϵt are unknown. We know, though, that ϵt is 1-

subgaussian

• The agent’s performance is evaluated based on the expected total reward i.e E[
∑T

t=1 rt] = E[
∑T

t=1 f
∗(at)]

Throughout, we make the assumption that the expected reward function f∗ is such that f∗(a) ∈ [0, 1],∀a.

For example, consider a 2-armed setup as in figure 2. In this case, a good strategy would be to always

use slot machine 1 as it has a higher expected reward.

In an ideal world, if f∗ was known to the agent, the optimal strategy would be to always take the action

a∗ = argmaxa∈A f∗(a). The corresponding optimal reward would be T.f∗(a).

In MAB, the performance measure used is regret. In this context, it is given by -

Reg(T) = T.f∗(a)− E[
∑T

t=1 f
∗(at)] = E[

∑T
t=1(f

∗(a∗)− f∗(at))].

To design a sublinear regret strategy, we need to do the following -

3

Figure 2: 2-armed bandit example

1. Need to learn f∗ by taking all possible actions. This is known as exploration.

2. Need to take action at that we believe to be good i.e has a large f∗ value. This is known as exploitation.

Now we will look at some of the algorithms for MAB

5.1 Algorithm 1: Explore then Exploit

This algorithm proceeds in 2 phases. In phase 1, we use the 1st To rounds to estimate f∗ by taking all

actions in a round-robin manner and estimating f̂ = (f(1)....f(A)).

Phase 2 starts from (To +1) round onwards. In this phase, we only take the action â = argmaxa∈A f̂(a).

Thus, in phase 1 we perform exploration by performing all possible actions to try and estimate their

rewards. In Phase 2, based on the results (reward estimates) obtained from phase 1, we ”exploit” the high

reward actions.

We can now analyze the regret for each of the phases and thereby the total regret.

5.1.1 Phase 1 regret

Phase 1 lasts for To rounds. We know, Reg(T) = E[ΣT
t=1(f

∗(a∗)− f∗(at))]. Therefore, for To rounds, Phase

1 regret ≤ To.

5.1.2 Phase 2 regret

In phase 2, by Hoeffding’s inequality, maxa|f̂(a)− f∗(a)| ≤
√

A
To
.

Thus, based on ERM analysis, f∗(a)− f∗(â) ≤ 2.
√

A
To
.

Since, phase 2 has (T − To) rounds, Phase 2 regret ≤ (T − To).2.
√

A
To
.

Figure 3 provides a visualization of the phase 2 regret and its bound.

4

Figure 3: Phase 2 regret visualization

5.1.3 Total regret

Combining the regrets from both the phases, Total regret is Reg(T) ≤ To + (T − To).2.
√

A
To
.

Further simplifying, Reg(T) ≤ To + T.2.
√

A
To
.

The optimal value of To is A
1
3 .T

2
3 and the corresponding optimal value of regret is Reg(T) = O(A

1
3 .T

2
3).

5.2 Algorithm 2: ϵ-Greedy

The ϵ-Greedy algorithm intersperses exploration and exploitation. The algorithm is as follows -

1. For t=1,2,..T, flip a coin z ∼ Bernouli(ϵ). Thus, z = 1 with probability ϵ.

2. If z = 1, take action at ∼ Unif(1, ..., A)

3. If z = 0, take action at = ât = argmaxa∈Af̂t(a).

Thus, with probablity ϵ we perform exploration by picking an action uniformly randomly. Conversly,

with probability (1− ϵ), we ”exploit” the action estimated to have the highest reward.

In step 3 of the algorithm, f̂t(a) is calculated as f̂t(a) =
Total reward of a at (t−1)

times a is taken upto (t−1) .

To define this mathematically, we introduce some notations that will be useful for later part of the

class. Let I be an indicator variable such that I(aj = a) = 1 if aj = a and 0 otherwise. Thus, Nt−1(a) =∑t−1
i=1 I(ai = a) i.e the variable Nt−1 indicates how many times an action a is taken in the first (t−1) rounds.

∴ f̂t(a) =
∑t−1

i=1 I(ai=a).ri
Nt−1(a)

.

Thereby, Reg(T) ≤ ϵ.T +
√

A.T
ϵ . Setting ϵ optimally, Reg(T) = O(A

1
3 .T

2
3)

5

5.3 Algorithm 3: Optimism Principle

The optimism principal is also know as optimism in face of uncertainty. In this algorithm, the agent acts

according to the best pausible world. The best pausible world is also called the optimistic world model.

The effectiveness of the algorithm follows from the the following “win or win” argument -

• If the optimistic world model is correct, all are choices will be optimal and thereby the agent will have

no regret.

• If the model is wrong, the agent will learn new things and avoid making the same mistakes in the

future.

In order to construct the optimistic world mode, we take samples of rewards for different actions. Based

on these samples, we need to find the highest plausible f∗(a). for every action a. We can do this with the

help of the confidence interval for each f∗(a).

For each f∗(a), the confidence interval is [f̂t(a)±bt(a)], where f̂t(a) is the sample mean for arm a and bt(a)

is the corresponding confidence width i.e
√

1
Nt−1(a)

. Using this, the best plausible world for (f∗(1)...f∗(a))

is defined as (f̂t(1) + bt(1),, f̂t(a) + bt(a)). This can be observed in figure 4.

Figure 4: Illustration of the optimism principle

Using the best plausible world model, the Upper Confidence Bound Algorithm [UCB] is devised as -

• At time t, define UCBt(a) = f̂t(a) + bt(a)) such that bt(a) =
√

l
Nt−1(a)+1 and l = 8.ln(2AT). Here,

the term bt is the confidence width for arm a.

• Choose the action at such that at = argmaxa∈AUCBt(a).

We note that the algorithm chooses the arm with the highest UCB index, which is a summation over

the historical mean reward f̂t(a) and a confidence width bt(a). The role of f̂t(a) is to promote exploitation:

6

choosing arms that performs well historically. On the other hand, bt(a) is called the explorative bonus for

action a as it is the confidence interval i.e uncertainty in the possible reward from performing an action.

Thus, it incentivizes exploring action by giving the hope of receiving a higher reward than the estimate. As

bt(a) is inversely proportional to the number of times an action is taken, its value decreases with time as we

perform the action. Thus, the UCB algorithm can balance between exploration and exploitation by using

the bt term to represent the potential of exploring new actions.

5.3.1 Validity of UCB

Validity of UCB is proven based on the following lemma -

There exists an event E such that P (E) ≥ 1 − 2
T when E happens ∀a, t |f̂t(a) − f∗(a)| ≤ ht(a) =√

l
Nt−1(a)+1 . Thus, UCBt(a) ≥ f∗(a).

An initial trial in proving the lemma is based on the idea Et,a|f̂t(a)− f∗(a)| ≤ ht(a)∀t, a.

∴ E = ∩T
t=1 ∩A

a=1 Et,a. It then suffices to show that each individual P (Et,a) is large.

One might use Hoeffding’s inequality to prove this, but the key difficulty is that f̂t(a) is an average

over Nt−1(a) random variables; However, Nt−1(a) is a random number, making Hoeffding’s inequality not

directly applicable.

This challenge is further addressed in the book ”Introduction to Multi-Armed Bandits” by Aleksandrs

Slivkins.

5.3.2 Regret analysis of UCB

The regret analysis of UCB is based on the theorem that UCB guarantees Reg ≤ Õ(
√
AT). It can also be

shown that UCB has instance-dependent guaranteed Reg ≤ Õ(ln(T.(
∑

a ̸=a∗
1

f∗(a∗)+f∗(a)))). The instance-

dependent guarantee of UCB is interesting because, unlike the other seen algorithms (i.e Explore then Exploit

and ϵ-greedy), the regret of UCB depends on f∗.

The proof is as follows -

Let regt be the regret at time t. Thus, we know, Reg(T) = E[
∑T

t=1 regt] = E[
∑T

t=1 regt(I(E) + I(Ec))]

= E[(
∑T

t=1 regt).I(E) + (
∑T

t=1 regt).I(E
c)].

Consider E[(
∑T

t=1 regt).I(E
c)] ≤ T.E[I(Ec)] ≤ T. 2T ≤ 2

In the next lecture we will come back to handle the more challenging E
[
(
∑T

t=1 regt).I(E)
]
term.

7

