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1 Introduction

Online Learning is a form of machine learning where data becomes available in a sequential order, and
learning updates are made incrementally as each new data point is received. It contrasts with traditional
batch learning, where the model is trained on the entire dataset at once.

2 Online Learning Protocol

In online learning, the goal is to make predictions sequentially while receiving data points one at a time.
The learner needs to make a prediction before knowing the correct label, and the learner’s performance is
evaluated based on how close these predictions are to the true labels.

• Instance space: X , the set of possible inputs.

• Label space: Y, the set of possible labels.

• Prediction space: Ŷ, where ŷ ∈ Y.

• Loss function: ℓ(ŷ, y) is a measure of how far the predicted value ŷ is from the true label y. The loss
function provides a way to quantify the prediction error.

ℓ(ŷ, y) = |ŷ − y| (absolute loss)

ℓ(ŷ, y) = (ŷ − y)2 (squared loss)

ℓlog(p, y) = log(
1

p(y)
) (log loss)

The loss function where y is the discrete label space, and ŷ = ∆(y) = {P : p is a probability distribution over y}
(conditional density estimation)

• Predictor class: In online learning, the learner chooses predictors from a predefined class of functions
that map inputs to outputs.

Formally we denote it by F ⊆ X → Ŷ, which is the set of functions or models the learner can choose
from. These are functions that predict the output (label) based on the input.

At each time step t, the learner performs the following steps:

1. Choose a predictor: The learner selects a function ft ∈ F , which maps input xt to a prediction ŷt.
This choice is typically made based on historical data {(xs, ys)}t−1

s=1 observed in previous rounds.

2. Observe new data: The learner receives a new data point (xt, yt), where xt is the input and yt is
the corresponding label.

The objective of the learner is to choose predictors such that the total prediction error is minimized over
time. The challenge lies in the fact that the learner only has access to past data and must make predictions
without seeing future data.
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2.1 Performance Measure: Regret

In online learning, the performance of the learner is typically measured using the concept of regret. Regret
quantifies how well the learner performs compared to the best predictor in hindsight (i.e., after all the data
has been seen).

• Regret: The regret after T rounds is defined as:

Regret(F , T ) =

T∑
t=1

ℓ(ft(xt), yt)− min
f∗∈F

T∑
t=1

ℓ(f∗(xt), yt)

The first term is the cumulative loss incurred by the learner, and the second term is the cumulative
loss of the best predictor f∗ in the class F .

• If the regret grows sublinearly, i.e., Regret(F,T )
T → 0 as T → ∞, the learner is considered to be

performing well, because this means that over time the learner’s predictions are as good as the best
predictor in hindsight.

2.2 Examples of Loss Functions

Several loss functions are commonly used to quantify prediction error:

1. Absolute Loss:
ℓ(ŷ, y) = |ŷ − y|

This loss measures the absolute difference between the predicted value ŷ and the true label y. It is
useful when the magnitude of the error is important.

2. Square Loss:
ℓ(ŷ, y) = (ŷ − y)2

The squared loss penalizes larger errors more than smaller ones. This is a popular choice in regression
problems where we care about minimizing the squared difference between predictions and actual values.

3. Log Loss

ℓlog(p, y) = log

(
1

p(y)

)
= − log(p(y))

This loss measures the error between the predicted probability p(y) assigned to the true label y and the
actual outcome. The log loss penalizes lower confidence in the correct label and rewards high confidence.
It is widely used in classification tasks where the model outputs probabilities, and minimizing this loss
encourages the model to assign higher probabilities to the true label.
If the model predicts the true class with high probability, the log loss will be small. However, if the
predicted probability for the true class is small, the log loss will increase.

Data Compression Example: In the context of online learning, consider the scenario where the
labels yt represent tokens that are part of a data compression task. The learner uses a coding strategy
that assigns each token to a code word. The length of the code word is log( 1

p(y) ), where p is the

probability distribution over the tokens.
This relates to loss minimization in that shorter code words are assigned to more frequent tokens,
optimizing the overall efficiency of the coding strategy.
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3 Connection to Supervised Learning

3.1 Key Concepts

• Online Learning vs. Supervised Learning: In online learning, the boundary between training
and test data is blurred. The learner updates its model after every data point, whereas in supervised
learning, the model is trained on a fixed training set and tested afterward.

• No Assumption on Data Generation Process in Online Learning: Online learning doesn’t
require the assumption that data points are independent and identically distributed (IID), a common
assumption in supervised learning.

3.2 Online to Batch Conversion

There is a connection between online learning algorithms (which aim to minimize regret) and supervised
learning algorithms (which aim to generalize well). Specifically, an online algorithm can be converted into a
batch algorithm with low generalization error.

Here is the problem setup:

• Online Learning Algorithm O: An online learning algorithm with low regret – suppose O, on any
sequence of examples, have a regret bound of RegretO(F , T ).

• Supervised Learning Algorithm S: The converted algorithm can be used on a dataset {(xt, yt)}Tt=1 ∼
iid from D to output a predictor f with low expected loss LD(f).

3.3 Online to Batch Conversion Algorithm

Algorithm (Online to Batch Conversion): Input: Dataset {(xt, yt)}Tt=1, Online learning algorithm O
For t = 1, 2, . . . , T :

1. Algorithm O outputs a predictor f̂t.

2. Algorithm O receives (xt, yt) and update its state

Output f(x) = 1
T

∑T
t=1 f̂t(x) Alternatively: f ∼ unif({f̂i...f̂T }).

3.4 Theorem and Assumptions

Theorem: Assume that for all t, the loss function ℓ(ŷ, y) is bounded within [0, B], and that the loss is
convex in fŷ (this is true for several loss functions like absolute and square loss). Then, with high probability
(specifically, at least 1− δ): algorithm S obtained by online to batch conversion on O, outputs f̄ such that:

LD(f̂)
(a)

≤ 1

T

T∑
t=1

LD(f̂t)
(b)

≤ LD(f∗) + 2B

√
2ln( 4δ )

T
+

RegretO(F , T )

T

Where f∗ = argminf∈F LD(f).

3.5 Proof of Eq. (b)

O guarantees that:

1

T

T∑
t=1

ℓ(f̂t(xt), yt) ≤
1

T

T∑
t=1

ℓ(f∗(xt), yt) +
RegretO(F , T )

T
(1)

The proof of this theorem follows these key steps:
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1. Find events F1, F2:

F1 :
∣∣∣ 1T ∑T

t=1 ℓ(f
∗(xt), yt)− LD(f∗)

∣∣∣ ≤ B

√
2 ln 4

δ

T

F2 :
∣∣∣ 1T ∑T

t=1 ℓ(ft(xt), yt)− 1
T

∑T
t=1 LD(f̂t)

∣∣∣ ≤ εT ; where εT = B

√
2 ln 4

δ

T

show that P (F1), P (F2) ≥ 1− δ
2

2. Argue that when F = F1

⋂
F2 happens, Equation (b) holds.

3. Argue that P (F ) ≥ 1− δ

Let’s now carry out our plan.

1. We will tackle item 3 first. We begin by applying a basic result from probability theory regarding the
union of events.

Lemma 1. if E1 and E2 are events such that P (E1) ≥ 1− δ1 and P (E2) ≥ 1− δ2, then:

P (E1 ∩ E2) ≥ 1− (δ1 + δ2)

This means that the probability of both events occurring is at least 1− (δ1 + δ2).

Proof. Our goal is to show that:
P (F1 ∪ Fc

2) ≤ δ1 + δ2

Since:
P (Fc

1) ≤ δ1 and P (Fc
2) ≤ δ2

We can conclude that:
P (Fc

1 ∪ Fc
2) ≤ δ1 + δ2

2. For item 2, it simply follows by Eq. (1) and the definition of event F . (Note that when F happens,

the terms on the left and right of Eq. (1) can be replaced by 1
T

∑T
t=1 LD(f̂t) and LD(f∗) respectively,

with additional slack 2ϵT added.)

3. For the rest of the proof we focus on verifying item 1.

Next, we use Hoeffding’s inequality to bound the probability of deviations from the expected loss for
F1.

From our previous lecture, we know that

P

(∣∣∣∣∣ 1T
T∑

t=1

ℓ(f∗(xt), yt)− LD(f∗)

∣∣∣∣∣ ≥ ϵT

)
≤ 2 exp

(
−2Tϵ2T
B2

)
≤ δ/2,

so P (F1) ≥ 1− δ/2.

For F2, ideally, we would like to use Hoeffding’s inequality to get the same inequality:

P

(∣∣∣∣∣ 1T
T∑

t=1

ℓ(ft(xt), yt)− LD(ft)

∣∣∣∣∣ ≥ ϵT

)
≤ 2 exp

(
−2Tϵ2T
B2

)

However, Hoeffding’s inequality is no longer applicable, since 1
T

∑T
t=1 (ℓ(ft(xt), yt)− LD(ft)) is not an

average of iid random variables.
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4. To handle the deviation of noniid random variables, we utilize Azuma’s inequality, which applies to
martingales. Consider a sequence of random variables Y1, Y2, . . . , YT such that Yt ∈ [−B,B] and the
conditional expectation E[Yt|Y1, . . . , Yt−1] = 0. Then:

P

(∣∣∣∣∣
T∑

t=1

Yt

∣∣∣∣∣ ≥ ϵ

)
≤ 2 exp

(
−ϵ2

2TB2

)
Azuma’s inequality generalizes Hoeffding’s inequality for sequences that evolve in a dependent manner.

5. Equivalently: For any η > 0, we have:

P

(∣∣∣∣∣
T∑

t=1

Yt

∣∣∣∣∣ ≥
√
2TB2 ln

2

η

)
≤ η

6. We now apply Azuma’s inequality to our sequence of losses. Let Zt = ℓ(ft(xt), yt)− LD(ft). We need
to check two conditions:

Zt =
1

T

T∑
t=1

(ℓ(ft(xt), yt)− LD(ft))

• Zt ∈ [−B,B]: This is true, as the loss function is bounded.

• E[Zt|Z1, . . . , Zt−1] = 0:

This holds because:

E[ℓ(ft(xt), yt)− LD(f̂t)[history up to t− 1, f̂t] = 0 ⇒ E[ℓ(f̂t(xt), yt)− LD(f̂t) | Zt, Zt−1, . . . ] = 0

Here, the ”⇒” step uses the Law of the Iterative Expectation:

E[E[A | C]] = E[E[A | B,C] | C]

Therefore, Azuma’s inequality can be applied to sequence {Yt}Tt=1 = {Zt}Tt=1. We have the bound from
Azuma’s inequality:

η =
δ

2
⇒

∣∣∣∣∣
T∑

t=1

Zt

∣∣∣∣∣ ≤
√

2TB2 ln
4

δ
happens with probability 1− δ

2

Thus, we conclude that:

P (F2) ≥ 1− δ

2

By combining the bounds from Hoeffding’s and Azuma’s inequalities, we conclude that with probability
at least 1 − δ, the expected loss of the online learner is close to the expected loss of the best predictor, up
to the regret term and a small deviation ϵT .
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3.6 Proof of Eq. (a)

Eq. (a) is a consequence of the convexity of the loss function ℓ(ŷ, y) with respct to prediction ŷ. We leave
this to be an exercise. We recall the definition of convex functions below:

A function f : X → R is said to be convex if, for all x1, x2 ∈ X and α ∈ [0, 1]:

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2)

Convexity is crucial for proving regret bounds and ensuring that the algorithm converges to the optimal
solution. In many cases, loss functions used in online learning, such as the squared loss, are convex, which
simplifies the analysis.

4 Basic Online Learning Algorithm & Analysis

The goal is to Design an Online Learning Algorithm with sublinear regret.

4.1 Iterative Empirical Risk Minimization (ERM)

Also known as Follow the Leader (FTL).

At each time step t, the learner chooses:

f̂t = argmin
f∈F

t−1∑
s=1

ℓ(f(xs), ys)

where f̂t is the predictor chosen based on past observations up to time t− 1.

4.1.1 Example

• Hypothesis class: F = {f+, f−}

• Input space: X = {z}

• Label space: Y = {−1,+1}

• Loss function: ℓ(ŷ, y) = |ŷ − y| (absolute loss)

Here is what happens if we run FTL on a sequence of examples (z,−1), (z,+1), (z,−1), (z,+1), . . .:

t (z, yt) f̂t ℓ(ft(xt), yt) ℓ(ft(xt), yt) ℓ(ft(xt), yt)
1 (z,−1) f+ 2 2 0
2 (z,+1) f− 2 0 2
3 (z,−1) f+ 2 2 0

... and so on for subsequent time steps.

4.1.2 Cumulative Loss, Benchmark, and Regret Analysis

The cumulative loss of the algorithm is calculated as the total loss incurred by the chosen predictors over all
time steps. For the FTL algorithm, this can result in high cumulative loss in certain cases. In this example,
the cumulative loss of the algorithm is:

T∑
t=1

ℓ(f̂t(xt), yt) = 2T
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Next, we compare this with the performance of the best predictor in hindsight. The benchmark loss for
the best fixed predictor, which minimizes the total loss over all time steps, is:

min
f∈F

T∑
t=1

ℓ(f(xt), yt) ≤
T

2
× 2 = T

Finally, the regret of the algorithm, which is the difference between the cumulative loss of the algorithm
and the benchmark, can be computed as follows:

Regret(F , T ) ≥ 2T − T = T

This analysis shows that the Follow the Leader (FTL) algorithm can suffer from linear regret, meaning
that the regret grows proportionally with T , making it unsuitable for achieving sublinear regret in this
scenario.
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