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1 Concentration of Measure

e Concentration of Measure: basically provides a way to quantify how close is the sample mean to the
population

— Factors: the distribution of the original random variable, sample size, unlucky sample draw
— Example of the concentration quality reduces all three factors above:

Theorem 1. Suppose Xy ... X,, are iid, E[X;] = u, if X;’s are b*> — SG (all random variables

are sub-Gaussian), then
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P(IX =l > ) < 2eap(—5) (1)
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— Let € to be such that 2exp( 2”52) =0=e=0b\/3;

— 2
— To prove equation 1: LHS = P(X,, — pu > €) + P(X,, — p < —e)
O) = P(Xp —p =€), (D) = P(Xp — p < —¢)

(0)=P(X, —pu=>e)
=P(X,—p>e)

= P(Z X; — nu > ne)
i=1

First we choose a free parameter A greater than zero and scale both sides by the factor of A

= P()\(Z X; —np) > Ine),A >0

=1

We need to use sub-Gaussian distribution property here. The sub-gaussianness is about the devia-
tion of the random variable to its mean, but exponentiated. It is nature that we can exponentiate
both sides of the equation.

A( i X;—np) . . -
Denote e =1 as Z, this random variable Z has non-negativity property, based on markov

inequality, the probability that it deviates is greater than the threshold w cannot be too large if
w is already very large. The tail probability will be smaller if my original random variable has a



smaller expectation or my threshold is chosen to be large. i.e. P(Z > w) <
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Is 3 X; a SG random variable? Yes. if so, what is various proxy? nb?. n = 2,11+ is 2b% — SG.
i

Given a sub-gaussian random variable, it is scaled by a constant factor. The result is still a sub-
Gaussian random variable. These various proxy will be scaled by a factor of the scaling square.
If we have two independent random variables, both of which are sub-gaussian, their summation
must be sub-gaussian. The variance proxy of the new random variable is the summation over each
individual random variable’s variance proxy. Then applying the definition of the sub-gaussian:

A2nb2
< e—)\ne—i- T

for any A > 0, choosing A that minimizes that bound = A = Z—z

Similarly

= Theorem 1

Theorem 2: (Bernstein Inequality) Let X; ... X, be iid random variables, |X; — EX;| < R,
p=EX;, 0? =var(X;), then for any € > 0:

’I’L62

P(X, —ul>¢€ <2 -
(1 pl =€) < 2exp( 207 + ZRe

) (2)

(no worse, can be much better than hoeffding equality. Because the term %Re can be ignored and
the denominator has the actual variance of the random variable rather than the variance proxy
of the random variable. Generally for a random variable, the variance of it can be much smaller
than the variance proxy which makes this bound significantly better.)

Choosing € so that RHS = §, choosing a tight enough ¢, such that RHS < ¢
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Dividing by two on both sides of the equation and taking a logarithmic on both sides, then moving
the denominator.
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X >A+ B« X >2A and x > 2B. X must be greater than the average of the two, which is
A+B. Then applying this:
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In summary:

) <6 (3)

2 Generalization in supervised machine learning

e Instance space X (e.g. [0,1]"*# camera images in pixel representation)

Label space Y (e.g. Y = {L, R})

Loss function, £(g, g) € [0, B], §: prediction, ¢g: ground truth label (e.g. £(§,9) = I(§ # g))

distribution D cover X,Y (X,Y) ~ D (e.g. Camera capture demonstrated by expert steering)

prediction rule f: X — Y, quality measure: generalization loss:

Lp(f) =Ex,y)~pll(f(X),Y)] (smaller the better) (4)

F: a predictor class to learn f from. (e.g. neural network with a fixed architecture)

e can we design a general approach to find a good f for any F? f approximately minimizes Lp(f)

Idea:
VF La() = = S (), 5) > Lo(f) (5)

i=1
(Concentration of measure)

Algorithm: Empirical risk minimization (ERM)

t A: i Ln 6
return f argl}rgg (f) (6)

Theorem: (ERM) Suppose |F| < oo, then Vé > 0, with probability 1 — ¢:

In EL
Vf € F simultaneously, |L,(f) — Lp(f)| < B n2n‘5 =€, (7)
and therefore A
Lp(f) < Lp(f*) +2en (8)

(notation: f* = argmingcp Lp(f))

Interpretation:
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Figure 1: Thm 3 figure

— as long asn >> In|F|, f ’s performance is competitive with the best model in F. To get a sense of
how large is In|F|, suppose F has m parameters, each taking V values, |F| = V™ = In|F| =mInV

— instance space X can be enormous, the training set only has a tiny fraction of all possible instances,
yet ERM has strong guarantee = achieves generalization.

— Lp(f*): approximation error
— 2€,: estimation error
— Larger F = estimation error increases, approximation error decreases.

— F can encode learner’s inductive bias, which can help the learning in application-specific ways. For
example, for image classification, X = images, F' = convolutional neural network, then classi-
fiers in F satisfies translational invariance, that is, Vf € F, f(X) = f(X'), if X is a translation of
X'.

— In modern deep learning regime, In|F| >> n is more common. The guarantees provided by
this theorem is vacuous. Nevertheless, researchers found that popular learners (e.g. stochastic
gradient-based learners) manage to converge to “simple” predictors, which implicitly uses a much
smaller F. Note: "Implicit Regularization” by Nati Srebro is a great video to watch.

Proof: (7) = (8) refer to figure 1.

Lp(f) < Lo(f) + €n f’s training and test loss are within e,
< Ln(f*) +en f is ERM
<(Lp(f*)+e€n) +en f* is training in the test loss are within €,

Proving (7): want to show: P(E) > 1 — 4, equivalently, we want to show a statement like:
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LHS = P(|J |La(f) = Lp(f)| > €)
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Setting e such that this bounds § = 2|F|exp(—2%§2) =0=e=218

= P3f :|Ln(f) = Lp(f)| > en) <0 (9)

Follow up question: what would we get for €, if we instead using Chebyshev’s inequality for bounding the

deviation probability? (Hint: In @ will become without ‘%l, can you see why?)



