CSC 696H: Topics in Bandits and Reinforcement Learning Theory

Fall 2024

Lecture 2 - Concentration of Measure; Generalization in ML

Lecturer: Chicheng Zhang

1 **Concentration of Measure**

- Concentration of Measure: basically provides a way to quantify how close is the sample mean to the population
 - Factors: the distribution of the original random variable, sample size, unlucky sample draw
 - Example of the concentration quality reduces all three factors above:
 - **Theorem 1.** Suppose $X_1 \ldots X_n$ are iid, $\mathbb{E}[X_i] = \mu$, if X_i 's are $b^2 SG$ (all random variables are sub-Gaussian), then

$$P(|\overline{X_n} - \mu| \ge \epsilon) \le 2exp(-\frac{n\epsilon^2}{2b^2})$$
(1)

- Let ϵ to be such that $2exp(-\frac{2n\epsilon^2}{b^2}) = \delta \Rightarrow \epsilon = b\sqrt{\frac{\ln\frac{2}{\delta}}{2n}}$
- To prove equation 1: $LHS = P(\overline{X_n} \mu \ge \epsilon) + P(\overline{X_n} \mu \le -\epsilon)$ $(\Box) = P(\overline{X_n} \mu \ge \epsilon), (\bigtriangleup) = P(\overline{X_n} \mu \le -\epsilon)$

$$(\Box) = P(\overline{X_n} - \mu \ge \epsilon)$$

= $P(\overline{X_n} - \mu \ge \epsilon)$
= $P(\sum_{i=1}^n X_i - n\mu \ge n\epsilon)$

First we choose a free parameter λ greater than zero and scale both sides by the factor of λ

$$= P(\lambda(\sum_{i=1}^{n} X_i - n\mu) \ge \lambda n\epsilon), \lambda > 0$$

We need to use sub-Gaussian distribution property here. The sub-gaussianness is about the deviation of the random variable to its mean, but exponentiated. It is nature that we can exponentiate both sides of the equation.

$$= P(e^{\lambda(\sum_{i=1}^{n} X_i - n\mu)} \ge e^{\lambda n\epsilon})$$

Denote $e^{\lambda(\sum_{i=1}^{n} X_i - n\mu)}$ as Z, this random variable Z has non-negativity property, based on markov inequality, the probability that it deviates is greater than the threshold w cannot be too large if w is already very large. The tail probability will be smaller if my original random variable has a smaller expectation or my threshold is chosen to be large. i.e. $P(Z \ge w) \le \frac{\mathbb{Z}}{w}$.

$$\leq e^{-\lambda n\epsilon} \mathbb{E}[e^{\lambda(\sum_{i=1}^{n} X_{i} - n\mu)}]$$

= $e^{-\lambda n\epsilon} \phi_{\sum_{i} X_{i} - n\mu}(\lambda)$
= $e^{-\lambda n\epsilon} \phi_{\sum_{i} X_{i} - \mathbb{E}[\sum_{i} X_{i}]}(\lambda)$

Is $\sum_{i} X_i$ a SG random variable? Yes. if so, what is various proxy? nb^2 . $n = 2, x_1 + x_2$ is $2b^2 - SG$. Given a sub-gaussian random variable, it is scaled by a constant factor. The result is still a sub-Gaussian random variable. These various proxy will be scaled by a factor of the scaling square. If we have two independent random variables, both of which are sub-gaussian, their summation must be sub-gaussian. The variance proxy of the new random variable is the summation over each individual random variable's variance proxy. Then applying the definition of the sub-gaussian:

$$\leq e^{-\lambda n\epsilon + \frac{\lambda^2 nb^2}{2}}$$

for any $\lambda > 0$, choosing λ that minimizes that bound $\Rightarrow \lambda = \frac{\epsilon^2}{b^2}$

$$\Rightarrow (\Box) \le e^{-\frac{n\epsilon^2}{2b^2}}$$

Similarly

$$(\triangle) \le e^{-\frac{n\epsilon}{2b^2}}$$

 \Rightarrow Theorem 1

Theorem 2: (Bernstein Inequality) Let $X_1 \dots X_n$ be iid random variables, $|X_i - \mathbb{E}X_i| \leq R$, $\mu = \mathbb{E}X_i, \sigma^2 = var(X_i)$, then for any $\epsilon > 0$:

$$P(|\overline{X_n} - \mu| \ge \epsilon) \le 2exp(-\frac{n\epsilon^2}{2\sigma^2 + \frac{2}{3}R\epsilon})$$
(2)

(no worse, can be much better than hoeffding equality. Because the term $\frac{2}{3}R\epsilon$ can be ignored and the denominator has the actual variance of the random variable rather than the variance proxy of the random variable. Generally for a random variable, the variance of it can be much smaller than the variance proxy which makes this bound significantly better.)

Choosing ϵ so that RHS = δ , choosing a tight enough ϵ , such that RHS $\leq \delta$

$$2exp(-\frac{n\epsilon^2}{2\sigma^2 + \frac{2}{3}R\epsilon}) \le \delta$$

Dividing by two on both sides of the equation and taking a logarithmic on both sides, then moving the denominator.

$$\Leftrightarrow \ n\epsilon^2 \ge (2\sigma^2 + \frac{2}{3}R\epsilon)\ln\frac{2}{\delta}$$

 $X > A + B \Leftarrow X \ge 2A$ and $x \ge 2B$. X must be greater than the average of the two, which is A+B. Then applying this:

$$\begin{array}{ll} \Leftarrow & n\epsilon^2 \geq 2 * 2\sigma^2 \ln \frac{2}{\delta} \text{ and } n\epsilon^2 \geq 2 * \frac{2}{3}R\epsilon \ln \frac{2}{\delta} \\ \Leftrightarrow & \epsilon \geq \sqrt{\frac{4\sigma^2 \ln \frac{2}{\delta}}{n}} \text{ and } \epsilon \geq \frac{4R \ln \frac{2}{\delta}}{3n} \\ \Leftarrow & \epsilon \geq \sqrt{\frac{4\sigma^2 \ln \frac{2}{\delta}}{n}} + \frac{4R \ln \frac{2}{\delta}}{3n} \end{array}$$

In summary:

$$P(|\overline{X_n} - \mu| \ge \sqrt{\frac{4\sigma^2 \ln \frac{2}{\delta}}{n}} + \frac{4R \ln \frac{2}{\delta}}{3n}) \le \delta$$
(3)

2 Generalization in supervised machine learning

- Instance space X (e.g. $[0,1]^{W \times H}$ camera images in pixel representation)
- Label space Y (e.g. $Y = \{L, R\}$)
- Loss function, $\ell(\hat{y}, g) \in [0, B]$, \hat{y} : prediction, g: ground truth label (e.g. $\ell(\hat{y}, g) = I(\hat{y} \neq g)$)
- distribution D cover $X, Y(X, Y) \sim D$ (e.g. Camera capture demonstrated by expert steering)
- prediction rule $f: X \to Y$, quality measure: generalization loss:

$$L_D(f) = \mathbb{E}_{(X,Y)\sim D}[\ell(f(X),Y)] \quad \text{(smaller the better)}$$
(4)

- \mathcal{F} : a predictor class to learn \hat{f} from. (e.g. neural network with a fixed architecture)
- can we design a general approach to find a good \hat{f} for any F? \hat{f} approximately minimizes $L_D(f)$

Idea:

$$\forall f: L_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i) \to L_D(f) \tag{5}$$

(Concentration of measure)

Algorithm: Empirical risk minimization (ERM)

$$return \ \hat{f} = \arg\min_{f \in \mathcal{F}} L_n(f) \tag{6}$$

Theorem: (ERM) Suppose $|F| \leq \infty$, then $\forall \delta > 0$, with probability $1 - \delta$:

$$\forall f \in F \text{ simultaneously, } |L_n(f) - L_D(f)| \le B\sqrt{\frac{\ln \frac{|F|}{\delta}}{2n}} =: \epsilon_n$$
(7)

and therefore

$$L_D(\hat{f}) \le L_D(f^*) + 2\epsilon_n \tag{8}$$

(notation: $f^* = \operatorname{argmin}_{f \in F} L_D(f)$)

Interpretation:

Figure 1: Thm 3 figure

- as long as $n >> \ln |F|$, \hat{f} 's performance is competitive with the best model in F. To get a sense of how large is $\ln |F|$, suppose F has m parameters, each taking V values, $|F| = V^m \Rightarrow \ln |F| = m \ln V$
- instance space X can be enormous, the training set only has a tiny fraction of all possible instances, yet ERM has strong guarantee \Rightarrow achieves generalization.
- $-L_D(f^*)$: approximation error
- $-2\epsilon_n$: estimation error
- Larger $F \Rightarrow$ estimation error increases, approximation error decreases.
- F can encode learner's inductive bias, which can help the learning in application-specific ways. For example, for image classification, X = images, F = convolutional neural network, then classifiers in F satisfies translational invariance, that is, $\forall f \in F$, f(X) = f(X'), if X is a translation of X'.
- In modern deep learning regime, $\ln |F| >> n$ is more common. The guarantees provided by this theorem is vacuous. Nevertheless, researchers found that popular learners (e.g. stochastic gradient-based learners) manage to converge to "simple" predictors, which implicitly uses a much smaller \mathcal{F} . Note: "Implicit Regularization" by Nati Srebro is a great video to watch.

Proof: $(7) \Rightarrow (8)$ refer to figure 1.

$$\begin{split} L_D(\hat{f}) &\leq L_n(\hat{f}) + \epsilon_n & \hat{f} \text{'s training and test loss are within } \epsilon_n \\ &\leq L_n(f^*) + \epsilon_n & \hat{f} \text{ is ERM} \\ &\leq (L_D(f^*) + \epsilon_n) + \epsilon_n & f^* \text{ is training in the test loss are within } \epsilon_n \end{split}$$

Proving (7): want to show: $P(E) \ge 1 - \delta$, equivalently, we want to show a statement like:

$$P(\forall f \in F : |L_n(f) - L_D(f)| \le \epsilon) \ge 1 - \delta$$

$$\Rightarrow \quad P(\exists f \in F : |L_n(f) - L_D(f)| > \epsilon) \le \delta$$

$$LHS = P(\bigcup_{f \in F} |L_n(f) - L_D(f)| > \epsilon)$$

$$\leq \sum_{f \in F} P(|L_n(f) - L_D(f)| > \epsilon)$$

$$\leq exp(-\frac{2n\epsilon^2}{B^2})$$

$$= |F| 2exp(-\frac{2n\epsilon^2}{B^2})$$

Setting ϵ such that this bounds $\delta \Rightarrow 2|F|exp(-\frac{2n\epsilon^2}{B^2}) = \delta \Rightarrow \epsilon = B\sqrt{\frac{\ln \frac{2F}{B}}{2n}} = \epsilon_n$ $\Rightarrow P(\exists f: |L_n(f) - L_D(f)| > \epsilon_n) \le \delta$ (9)

Follow up question: what would we get for ϵ_n if we instead using Chebyshev's inequality for bounding the deviation probability? (Hint: $\ln \frac{|F|}{\delta}$ will become without $\frac{|F|}{\delta}$, can you see why?)