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1 Concentration of Measure

• Concentration of Measure: basically provides a way to quantify how close is the sample mean to the
population

– Factors: the distribution of the original random variable, sample size, unlucky sample draw

– Example of the concentration quality reduces all three factors above:

Theorem 1. Suppose X1 ... Xn are iid, E[Xi] = µ, if Xi’s are b2 − SG (all random variables
are sub-Gaussian), then

P (|Xn − µ| ≥ ϵ) ≤ 2exp(−nϵ2

2b2
) (1)

– Let ϵ to be such that 2exp(− 2nϵ2

b2 ) = δ ⇒ ϵ = b

√
ln 2

δ

2n

– To prove equation 1: LHS = P (Xn − µ ≥ ϵ) + P (Xn − µ ≤ −ϵ)
(□) = P (Xn − µ ≥ ϵ), (△) = P (Xn − µ ≤ −ϵ)

(□) = P (Xn − µ ≥ ϵ)

= P (Xn − µ ≥ ϵ)

= P (

n∑
i=1

Xi − nµ ≥ nϵ)

First we choose a free parameter λ greater than zero and scale both sides by the factor of λ

= P (λ(

n∑
i=1

Xi − nµ) ≥ λnϵ), λ > 0

We need to use sub-Gaussian distribution property here. The sub-gaussianness is about the devia-
tion of the random variable to its mean, but exponentiated. It is nature that we can exponentiate
both sides of the equation.

= P (e
λ(

n∑
i=1

Xi−nµ)
≥ eλnϵ)

Denote e
λ(

n∑
i=1

Xi−nµ)
as Z, this random variable Z has non-negativity property, based on markov

inequality, the probability that it deviates is greater than the threshold w cannot be too large if
w is already very large. The tail probability will be smaller if my original random variable has a

1



smaller expectation or my threshold is chosen to be large. i.e. P (Z ≥ w) ≤ Z
w .

≤ e−λnϵE[e
λ(

n∑
i=1

Xi−nµ)
]

= e−λnϵϕ∑
i
Xi−nµ(λ)

= e−λnϵϕ∑
i
Xi−E[

∑
i
Xi](λ)

Is
∑
i

Xi a SG random variable? Yes. if so, what is various proxy? nb2. n = 2, x1+x2 is 2b2−SG.

Given a sub-gaussian random variable, it is scaled by a constant factor. The result is still a sub-
Gaussian random variable. These various proxy will be scaled by a factor of the scaling square.
If we have two independent random variables, both of which are sub-gaussian, their summation
must be sub-gaussian. The variance proxy of the new random variable is the summation over each
individual random variable’s variance proxy. Then applying the definition of the sub-gaussian:

≤ e−λnϵ+λ2nb2

2

for any λ > 0, choosing λ that minimizes that bound ⇒ λ = ϵ2

b2

⇒ (□) ≤ e−
nϵ2

2b2

Similarly

(△) ≤ e−
nϵ2

2b2

⇒ Theorem 1

Theorem 2: (Bernstein Inequality) Let X1 ... Xn be iid random variables, |Xi − EXi| ≤ R,
µ = EXi, σ

2 = var(Xi), then for any ϵ > 0:

P (|Xn − µ| ≥ ϵ) ≤ 2exp(− nϵ2

2σ2 + 2
3Rϵ

) (2)

(no worse, can be much better than hoeffding equality. Because the term 2
3Rϵ can be ignored and

the denominator has the actual variance of the random variable rather than the variance proxy
of the random variable. Generally for a random variable, the variance of it can be much smaller
than the variance proxy which makes this bound significantly better.)
Choosing ϵ so that RHS = δ, choosing a tight enough ϵ, such that RHS ≤ δ

2exp(− nϵ2

2σ2 + 2
3Rϵ

) ≤ δ

Dividing by two on both sides of the equation and taking a logarithmic on both sides, then moving
the denominator.

⇔ nϵ2 ≥ (2σ2 +
2

3
Rϵ) ln

2

δ
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X > A + B ⇐ X ≥ 2A and x ≥ 2B. X must be greater than the average of the two, which is
A+B. Then applying this:

⇐ nϵ2 ≥ 2 ∗ 2σ2 ln
2

δ
and nϵ2 ≥ 2 ∗ 2

3
Rϵ ln

2

δ

⇔ ϵ ≥

√
4σ2 ln 2

δ

n
and ϵ ≥

4R ln 2
δ

3n

⇐ ϵ ≥

√
4σ2 ln 2

δ

n
+

4R ln 2
δ

3n

In summary:

P (|Xn − µ| ≥

√
4σ2 ln 2

δ

n
+

4R ln 2
δ

3n
) ≤ δ (3)

2 Generalization in supervised machine learning

• Instance space X (e.g. [0, 1]W×H camera images in pixel representation)

• Label space Y (e.g. Y = {L,R})

• Loss function, ℓ(ŷ, g) ∈ [0, B], ŷ: prediction, g: ground truth label (e.g. ℓ(ŷ, g) = I(ŷ ̸= g))

• distribution D cover X,Y (X,Y ) ∼ D (e.g. Camera capture demonstrated by expert steering)

• prediction rule f : X → Y , quality measure: generalization loss:

LD(f) = E(X,Y )∼D[ℓ(f(X), Y )] (smaller the better) (4)

• F : a predictor class to learn f̂ from. (e.g. neural network with a fixed architecture)

• can we design a general approach to find a good f̂ for any F? f̂ approximately minimizes LD(f)

Idea:

∀f : Ln(f) =
1

n

n∑
i=1

ℓ(f(xi), yi) → LD(f) (5)

(Concentration of measure)

Algorithm: Empirical risk minimization (ERM)

return f̂ = argmin
f∈F

Ln(f) (6)

Theorem: (ERM) Suppose |F | ≤ ∞, then ∀δ > 0, with probability 1− δ:

∀f ∈ F simultaneously, |Ln(f)− LD(f)| ≤ B

√
ln |F |

δ

2n
=: ϵn (7)

and therefore
LD(f̂) ≤ LD(f∗) + 2ϵn (8)

(notation: f∗ = argminf∈F LD(f))

Interpretation:
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Figure 1: Thm 3 figure

– as long as n >> ln |F |, f̂ ’s performance is competitive with the best model in F. To get a sense of
how large is ln|F |, suppose F has m parameters, each taking V values, |F | = V m ⇒ ln |F | = m lnV

– instance space X can be enormous, the training set only has a tiny fraction of all possible instances,
yet ERM has strong guarantee ⇒ achieves generalization.

– LD(f∗): approximation error

– 2ϵn: estimation error

– Larger F ⇒ estimation error increases, approximation error decreases.

– F can encode learner’s inductive bias, which can help the learning in application-specific ways. For
example, for image classification, X = images, F = convolutional neural network, then classi-
fiers in F satisfies translational invariance, that is, ∀f ∈ F , f(X) = f(X ′), if X is a translation of
X ′.

– In modern deep learning regime, ln |F | >> n is more common. The guarantees provided by
this theorem is vacuous. Nevertheless, researchers found that popular learners (e.g. stochastic
gradient-based learners) manage to converge to “simple” predictors, which implicitly uses a much
smaller F . Note: ”Implicit Regularization” by Nati Srebro is a great video to watch.

Proof: (7) ⇒ (8) refer to figure 1.

LD(f̂) ≤ Ln(f̂) + ϵn f̂ ’s training and test loss are within ϵn

≤ Ln(f
∗) + ϵn f̂ is ERM

≤ (LD(f∗) + ϵn) + ϵn f∗ is training in the test loss are within ϵn

Proving (7): want to show: P (E) ≥ 1− δ, equivalently, we want to show a statement like:

P (∀f ∈ F : |Ln(f)− LD(f)| ≤ ϵ) ≥ 1− δ

⇔ P (∃f ∈ F : |Ln(f)− LD(f)| > ϵ) ≤ δ
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LHS = P (
⋃
f∈F

|Ln(f)− LD(f)| > ϵ)

≤
∑
f∈F

P (|Ln(f)− LD(f)| > ϵ)

≤ exp(−2nϵ2

B2
)

= |F |2exp(−2nϵ2

B2
)

Setting ϵ such that this bounds δ ⇒ 2|F |exp(− 2nϵ2

B2 ) = δ ⇒ ϵ = B

√
ln 2F

B

2n = ϵn

⇒ P (∃f : |Ln(f)− LD(f)| > ϵn) ≤ δ (9)

Follow up question: what would we get for ϵn if we instead using Chebyshev’s inequality for bounding the

deviation probability? (Hint: ln |F |
δ will become without |F |

δ , can you see why?)
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