
CSC 696H Homework 1

Chicheng Zhang

September 2024

• This homework is due on Oct 4 in class.

• Your solutions to these problems will be graded based on both correctness and clarity. Your arguments
should be clear: there should be no room for interpretation about what you are writing. Otherwise, I
will assume that they are wrong, and grade accordingly.

• If you feel hard to make progress on any of the questions, you can post your questions on Piazza. Try
posing your questions to be as general as possible, so that it can promote discussion among the class.

• You are encouraged to discuss the homework questions with your classmates, but the discussions should
only be at a high level, and you should write your solutions in your own words. For every question you
have had discussions on, please mention explicitly whom you have discussed with; otherwise it may be
counted as academic integrity violation.

• Feel free to use existing theorems from the course notes / the textbook.

Problem 1 (10pts)

• Describe one real-world sequential decision making problem that can be modeled as contextual bandits
but not multi-armed bandits, and explain why. What is this problem’s context space, action space,
and reward function?

• Describe one real-world sequantial decision making problem that can be modeled as reinforcement
learning but not contextual bandits, and explain why. What is this problem’s state space, action
space, reward function, and transition probability?

Problem 2 (10pts)

Recall that in the class, we defined subgaussian random variables:

Definition 1. A random variable X is said to be subgaussian with variance proxy b2 (abbrev. b2-subgaussian),
if for any λ ∈ R,

E
[
eλ(X−E[X])

]
≤ e

λ2b2

2 .

Verify that:

• If X is v2-subgaussian, then for any a ∈ R, aX is a2v2-subgaussian.

• If X is v2-subgaussian and Y is w2-subgaussian, and X,Y are independent, then X + Y is (v2 + w2)-
subgaussian. (Hint: somewhere in your proof you can use the independence property of X and Y .)

Based on the above, why do you think “variance proxy of X” is a good name for b2?

1



Problem 3 (10pts)

Suppose we have a coin represented by a random variable X with unknown bias p. We would like to estimate
p by flipping the coin and computing X̄n, the sample average of its iid outcomes X1, . . . , Xn. Additionally,
suppose we know that p ≤ 0.05 (i.e., it is heavily biased towards tail).

• Prove that Var(X) ≤ 0.05(1− 0.05).

• Suppose we would like to ensure that X̄n is within 0.01 of p, with probability at least 0.999. How many
samples n do we need, according to Chebyshev, Hoeffding, and Bernstein’s inequalities, respectively?
Which inequality suggests the smallest sample size?

• Suppose instead, we only get to flip the coin n = 1000 times. According to Chebyshev, Hoeffding, and
Bernstein’s inequalities respectively, how close do you expect X̄n to be within p, with probability 0.99?
Which inequality gives the best result?

Problem 4 (7pts)

In the lecture we saw a useful lemma:

Lemma 2. Suppose events E1, E2 happen with probabilities at least 1 − δ1 and 1 − δ2, respectively. Then
with probability 1− δ1 − δ2, E1 and E2 happen simultaneously.

• How was this fact used in our lecture?

• Suppose F1 and F2 are independent and have probabilities 0.999 and 0.998, respectively. Calculate a
lower bound of P (F1 ∩ F2) using Lemma 2, and compare it against the exact value of P (F1 ∩ F2). In
this case, do you find the lower bound provided by the lemma to be good, and why?

• Suppose we have a collection of events {En}Nn=1, with each P (En) ≥ 1− δn for δn > 0, prove that:

P

(
N⋂

n=1

En

)
≥ 1−

N∑
n=1

δn.

Problem 5 (10pts)

Suppose loss function ℓ(ŷ, y) is the absolute loss (ŷ ∈ [−1, 1], y ∈ {−1, 1}) and we are given a finite predictor
class F . Consider the following “online learning with iid data” protocol:

for t = 1, 2, . . . , T : do
Learner chooses a predictor f̂t.
Example (xt, yt) is drawn from distribution D and is shown to the learner.

Learner incurs loss ℓ(f̂t(xt), yt).
end for

Let f∗ = argminf∈F LD(f). Define the expected regret of the learner as:

Reg(T ) = E

[
T∑

t=1

ℓ(f̂t(xt, yt))− ℓ(f∗(xt), yt)

]
.

Answer the following questions:
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• Show that Reg(T ) is equal to E [PReg(T )], where PReg(T ) :=
∑T

t=1 LD(f̂t) − LD(f∗) is called the
pseudo-regret of the learner. (Hint: use the law of total expectation)

• Suppose that for every t, f̂t is chosen by the Follow-the-Leader (FTL) algorithm, i.e. it is the ERM over
F on the first t−1 examples. Show that, for every t, there exists an event Et such that P (Et) ≥ 1−δ/T ,
and when Et happens,

LD(f̂t)− LD(f∗) ≤ min

2, 4

√
ln 2|F|T

δ

t− 1


• Show that, there exists some constant c > 0 and an event E, such that P (E) ≥ 1 − δ, and when E
happens,

PReg(T ) ≤ c

√
T ln

2|F|T
δ

You may find the inequality
∑n

t=1
1√
t
≤ 2

√
n useful. (Hint: use results from Problem 4.)

• Provide a sublinear regret bound on Reg(T ). (Hint: Try to decompose E [PReg(T )] to E [PReg(T )I(E)]+
E
[
PReg(T )I(EC)

]
, and bound each part respectively. Finally we can tune the free parameter δ to

optimize our bound.)

Problem 6 (2pts)

• How much time did it take you to complete this homework?

• Do you have any suggestions for this course so far (e.g. homework length, lecture pace, etc)?
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