
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bai et al. Near-optimal reinforcement learning
with self-play

Bohan Li

Department of Computer Science
University of Arizona

October 28, 2021

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 1 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Multi-agent Reinforcement Learning

Multi-agent RL is the setting where multiple agents make
sequential decisions in an interactive environment. Applications
exist in:

• Strategy games
• Robotics systems, AVs
• Social scenarios

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 2 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Zero-sum Markov Games

Zero-sum Markov Games (MGs) generalize standard MDP to two
player setting, where a max-player µ attempts to maximize the
total return and a min-player ν seeks to minimize it. Each game is
denoted MG(H,S,A,B,P, r).

• H the number of steps in an
episode
• S the set of states, with
|S| = S
• (A,B) the set of actions

taken by the max-player and
min-player, respectively

• P = {Ph}h∈[H], Ph(·|s, a, b)
is the set of transition
matrices
• r = {rh}h∈[H],

rh : S ×A× B → [0, 1] is
the reward function

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 3 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Examples

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 4 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Mathematical Definition

Algorithm 1 Markov Game
1: Given: starting state s1, max-player policy µ, min-player policy ν
2: for step h = 1 to H do
3: Max-player takes action ah ∼ µh(·|sh), min-player takes action

bh ∼ νh(·|sh).
4: Both players obtain reward rh(sh, ah, bh).
5: Observe next state sh+1 ∼ P(·|sh, ah, bh).
6: end for

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 5 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Value Functions

Given the policy of the max-player µ selecting from actions a ∈ A
and min-player ν selecting actions b ∈ B, we define the value
functions V µ,ν

h : S → R and Qµ,ν
h : S ×A× B → R :

V µ,ν
h (s) ≡ Eµ,ν

[H∑
h′=h

rh′(sh′ , ah′ , bh′)
∣∣∣sh = s

]

Qµ,ν
h (s, a, b) ≡ Eµ,ν

[H∑
h′=h

rh′(sh′ , ah′ , bh′)
∣∣∣sh = s, ah = a, bh = b

]

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 6 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Best Response

For any Markov policy of the max-player µ, there exists a best
response min-player with policy ν†(µ) satisfying

∀(s, h)V µ,ν†(µ)
h (s) = inf

ν
V µ,ν

h (s)

We can define the notion of the best-response max-player with
policy µ†(ν) and value function V µ†(ν),ν

h (s).

• We abbreviate V µ†(ν),ν
h ≡ V †,νh and V µ,ν†(µ)

h ≡ V µ,†
h

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 7 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Nash Equilibrium

In Competitive Markov Decision Processes, Filar et al. show that
for each player there exists optimal policies against the best
responses of their opponents [FV96]. In other words, there exist
optimal policies µ∗, ν∗ such that:

∀(s, h),V µ∗,†
h (s) = sup

µ
V µ,†

h (s),V †,ν
∗

h (s) = inf
ν

V †,νh (s)

Here, the pair µ∗, ν∗ is called the Nash equilibrium of the Markov
game. It is easy to see that the Nash equilibrium satisfies

sup
µ

inf
ν

V µ,ν
h (s) = V µ∗,ν∗

h (s) = inf
ν
sup
µ

V µ,ν
h (s) (1)

Abbreviation: V µ∗,ν∗

h ≡ V ∗h , and similarly Qµ∗,ν∗

h ≡ Q∗h

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 8 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Learning Objectives

• Objective 1: find an ϵ-approximate best response
Given a fixed opponent policy ν, we would like to find a policy µ̂
such that

V †,ν1 (s1)− V µ̂,ν
1 (s1) ≤ ϵ

• Objective 2: find a Nash equilibrium of the Markov games
where the suboptimality of a pair of policies µ̂, ν̂ is measured
as

V †,ν̂1 (s1)−V µ̂,†
1 (s1) =

[
V †,ν̂1 (s1)−V ∗1 (s1)

]
+

[
V ∗1 (s1)−V µ̂,†

1 (s1)

]
Furthermore, we define µ̂, ν̂ to be an ϵ-approximate Nash
equilibrium if

V †,ν̂1 (s1)− V µ̂,†
1 (s1) ≤ ϵ

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 9 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bellman Equations for Markov Games

• Fixed policies µ, ν:

Qµ,ν
h (s, a, b) = (rh + PhV µ,ν

h+1)(s, a, b),

V µ,ν
h (s) = (Dµh×νh Q

µ,ν
h)(s)

• Best response for policy of the max-player µ:

Qµ,†
h (s, a, b) = (rh + PhV µ,†

h+1)(s, a, b),

V µ,†
h (s) = inf

ν∈∆B
(Dµh×νQµ,ν

h)(s)

• Nash equilibria:

Q∗
h (s, a, b) = (rh + PhV ∗

h+1)(s, a, b),

V ∗
h (s) = sup

µ
inf
ν
(Dµ×νQ∗

h)(s) = inf
µ
sup
ν
(Dµ×νQ∗

h)(s)

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 10 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sample Complexity of RL Algorithms

RL algorithms typically require a large amount of samples to be
effective.
• AlphaGo Zero trained on O(107) games and took over a

month to train [SSS+17].
• In two player Markov games, VI-ULCB finds an ϵ-approximate

Nash equilibrium in Θ(poly(H)SAB/ϵ2) samples[BJ20].
The theoretical lower bound of samples needed to compute Nash
equilibria in two player Markov games is Ω(poly(H)S(A + B)/ϵ2).

• Goal: Design an algorithm that learns a Markov game with
near optimal sample complexity

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 11 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sample Complexity of RL Algorithms

RL algorithms typically require a large amount of samples to be
effective.
• AlphaGo Zero trained on O(107) games and took over a

month to train [SSS+17].
• In two player Markov games, VI-ULCB finds an ϵ-approximate

Nash equilibrium in Θ(poly(H)SAB/ϵ2) samples[BJ20].
The theoretical lower bound of samples needed to compute Nash
equilibria in two player Markov games is Ω(poly(H)S(A + B)/ϵ2).
• Goal: Design an algorithm that learns a Markov game with

near optimal sample complexity

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 11 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Contributions

The paper:
• proposes an optimistic variant of Nash Q-learning with sample

complexity O(H5SAB/ϵ2) that finds an ϵ-approximate Nash
equilibrium.
• describes a new algorithm Nash V-learning that achieves

sample complexity O(H6S(A + B)/ϵ2).
• This improves on Nash Q-learning in the event that

min(A,B) > H.
• demonstrates that learning best responses of fixed opponents

is as hard as learning parity with noise, which is thought to be
computationally intensive.

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 12 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Optimistic Nash Q-learning Algorithm

Algorithm 2 Optimistic Nash Q-Learning
1: Initialize: for any (s, a, b, h), Q̄h(s, a, b)← H,

¯
Qh(s, a, b)← 0, Nh(s, a, b)← 0,

πh(a, b|s)← 1/(AB)
2: for episode k = 1 to K do
3: receive s1.
4: for step h = 1 to H do
5: take action (ah, bh) ∼ πh(·, ·|sh)
6: observe reward rh(sh, ah, bh) and next state sh+1
7: t = Nh(sh, ah, bh)← Nh(sh, ah, bh) + 1
8: Q̄h(sh, ah, bh)← (1−αt)Q̄h(sh, ah, bh)+αt(rh(sh, ah, bh)+ V̄h+1(sh+1)+βt)
9:

¯
Qh(sh, ah, bh)← (1−αt)

¯
Qh(sh, ah, bh)+αt(rh(sh, ah, bh)+

¯
Vh+1(sh+1)−βt)

10: πh(·, ·|sh)← CCE(Q̄h(sh, ·, ·),
¯
Qh(sh, ·, ·))

11: V̄h(sh)← (Dπh Q̄h)(sh);
¯
Vh(sh)← (Dπh

¯
Qh)(sh)

12: end for
13: end for

Where αt =
H+1
H+t , βt = c

√
H3ι

t are hyperparameters.

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 13 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Coarse Correlated Equilibrium (CCE)

Introduced by Xie et al.[XCWY20], CCE(Q̄,
¯
Q) for any matrices

Q̄,
¯
Q ∈ [0,H]A×B returns a distribution in polynomial time

π ∈ ∆A×B such that

E(a,b)∼πQ̄(a, b) ≥ max
a∗

E(a,b)∼πQ̄(a∗, b)

E(a,b)∼π
¯
Q(a, b) ≤ min

b∗
E(a,b)∼π

¯
Q(a, b∗)

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 14 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The Learned Policy

Here, we define the following
notation:
• α0

t :=
∏t

j=1(1− αj),

αi
t := αi

∏t
j=i+1(1−αj),

and
∑t

i=1 α
i
t = 1

• km
h (s, a, b) is the index

of the episode where
(s, a, b) was observed in
step h for the m-th time.

Algorithm 3 Certified Policy µ̂ of
Nash Q-Learning
1: sample k ← Uniform([K])
2: for step h = 1 to H do
3: observe sh, and take action ah ∼ µk

h(·|sh)

4: observe bh, and set t ← Nk
h (sh, ah, bh)

5: sample m ∈ [t] with P(m = i) = αi
t

6: k ← km
h (sh, ah, bh)

7: end for

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 15 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Theorems for Nash Q-learning

We assume that the algorithm has played the game for K episodes, using
V k ,Qk ,Nk , πk to denote quantities at the beginning of the k-th episode.

Lemma 3
For any p ∈ (0, 1] with ι = log(SABT/p), algorithm 2 guarantees
• V̄ k

h (s) ≥ V ∗
h (s) ≥ ¯

V k
h (s) for all s, h, k.

• 1
K
∑K

k=1(V̄ k
1 − ¯

V k
1)(s) ≤ O(

√
H5SABι/K)

with probability 1− p.

Theorem 4 (Sample complexity of Nash Q-learning)
For any p ∈ (0, 1] with ι = log(SABT/p), if we run algorithm 2 for K
episodes where K ≥ Ω(H5SABι/ϵ2), the certified policies µ̂, ν̂ computed
using algorithm 3 will be ϵ-approximate Nash with probability 1− p.

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 16 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Improving on Nash Q-learning

• For each state, we have a
fixed set of actions that yield
varying unknown rewards
• Analogous to a bandit

learning problem where
µ(·|s) can be represented as
a set of weights for selecting
each action

We can use bandit techniques to
learn Nash equilibria.

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 17 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Optimistic Nash V-learning algorithm

Algorithm 4 Optimistic Nash V-Learning (max-player version)
1: Initialize: for any (s, a, b, h), V̄h(s)← H, L̄h(s, a)← 0, Nh(s)← 0, µh(a|s)← 1/(A)
2: for episode k = 1 to K do
3: receive s1.
4: for step h = 1 to H do
5: take action (ah) ∼ µh(·|sh), observe action bh from opponent
6: observe reward rh(sh, ah, bh) and next state sh+1
7: t = Nh(sh)← Nh(sh) + 1
8: V̄h(sh)← min{H, (1− αt)V̄h(sh) + αt (rh(sh, ah, bh) + V̄h+1(sh+1) + βt)}
9: for all a ∈ A do

10: ℓ̄h(sh, a)← [H − rh(sh, ah, bh)− V̄h(sh)]I{ah = a}/[µh(ah|sh) + η̄t]
11: L̄h(sh, a)← (1− αt)L̄h(sh, a) + αt ℓ̄h(sh, a)
12: end for
13: set µ(·|sh) ∝ exp[−(η̄t/αt)L̄h(sh, ·)]
14: end for
15: end for

Where we have hyperparameters

αt =
H + 1
H + t

, η̄t =

√
log A
At

,
¯
ηt =

√
log B

Bt
, β̄t = c

√
H4Aι

t
,
¯
βt = c

√
H4Bι

t

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 18 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Policy and Resulting Theorem

Algorithm 5 Certified Policy µ̂ of Nash V-Learning
1: sample k ← Uniform([K])
2: for step h = 1 to H do
3: observe sh, and set t ← Nk

h (sh)
4: sample m ∈ [t] with P(m = i) = αi

t
5: k ← km

h (sh)
6: take action ah ∼ µk

h(·|sh)
7: end for

Theorem 5 (Sample Complexity of Nash V-learning)
For any p ∈ (0, 1] with ι = log(SABT/p), if we run algorithm 4 for
K episodes where K ≥ Ω(H6S(A + B)ι/ϵ2), the certified policies
µ̂, ν̂ computed using algorithm 3 will be ϵ-approximate Nash with
probability 1− p.

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 19 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Hardness for Learning the Best Response

Theorem 6 (Hardness for learning the best response)
There exists a Markov game with deterministic transitions and rewards
defined for any horizon H ≥ 1 with S = 2, A = 2, and B = 2, such that
if there exists a polynomial time algorithm for learning the best response
for this Markov game, then there exists a polynomial time algorithm for
learning parity with noise.

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 20 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Two-state Markov Game

We define a game with two actions {a0, a1} and {b0, b1} for each
player, H episodes, and therefore 2H states {i0, i1}Hi=2 with 10 as
the initial state and ⊥ as the terminal state.

State/Action (a0, b0) (a0, b1) (a1, b0) (a1, b1)

i0 (i + 1)0 (i + 1)0 (i + 1)0 (i + 1)1
i1 (i + 1)1 (i + 1)0 (i + 1)1 (i + 1)1

Table 1: Transition Kernel of the Markov Game

State/Action (·, b0) (·, b1)

H0 1 0
H1 0 1

Table 2: Reward matrix of the Markov Game

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 21 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Learning Parity with Noise Problem

Given x a vector of 0s and 1s of size n, parity is defined as a
function ϕT (x) that returns 0 if the number of ones in the
subvector (xi)i∈T is even and 1 otherwise.

Suppose we have a noisy query function f (x) such that
f (x) = ϕT (x) with probability α and f (x) = 1− ϕT (x) with
probability 1− α.

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 22 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Set of Computational Problems

1 The max-player ϵ-approximates the best response for any
general policy ν in the Markov game with probability at least
1/2 in poly(H, 1/ϵ) time.

2 Suppose we have x ∈ {0, 1}n, T ⊆ [n], and the noisy query
function f (x). Find a function h : {0, 1}n → {0, 1} such that:

1 With probability at least 1/2, EhPx [h(x) ̸= ϕT (x)] ≤ ϵ in
poly(n, 1/ϵ) time.

2 With probability at least 1/4, Px [h(x) ̸= ϕT (x)] ≤ ϵ in
poly(n, 1/ϵ) time.

3 With probability at least 1− p, Px [h(x) ̸= ϕT (s)] ≤ ϵ in
poly(n, 1/ϵ, 1/p) time.

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 23 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Problem 2.3 reduces to Problem 2.2

1 Repeatedly apply algorithm for problem 2.2 ℓ times to obtain h1, · · · , hℓ such
that

min
i

Px [hi (x) ̸= ϕT (x)] ≤ ϵ w.p at least 1− (3/4)ℓ

Define i∗ = argmini erri where erri = Px [hi (x) ̸= ϕT (x)].
2 Construct estimators using N additional data points (x (j), y (j))N

j=1,

êrri :=
1
N
∑N

j=1 I{hi (x (j) ̸= y (j)} − α

1− 2α

Choose î = argmini êrri . For N ≥ ln(1/p)/ϵ2, w.p at least 1− p/2, we have

max
i
|êrri − erri | ≤

ϵ

1− 2α

This step takes poly(n,N, ℓ) = poly(n, 1/ϵ, log(1/p), ℓ) time. We therefore have:

err̂i ≤ êrr̂i +
ϵ

1− 2α
≤ êrri∗ +

ϵ

1− 2α
≤ erri∗ +

2ϵ
1− 2α

≤ O(1)ϵ

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 24 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Problem 2.2 reduces to Problem 2.1

Markov’s inequality states that for a non-negative RV X ,

X ≤
E[X]

1− p

with probability 1− p. Suppose we have an algorithm that gives h such that
EhPx [h(x) ̸= ϕT (x)] ≤ ϵ with 1/2 probability. Assuming this condition is satisfied, we
can then sample an ĥ such that with probability 1/2,

Px [h(x) ̸= ϕT (x)] ≤ 2ϵ

by Markov’s inequality. Thus, with probability 1/4, we have

Px [h(x) ̸= ϕT (x)] ≤ 2ϵ

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 25 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Problem 2.1 reduces to Problem 1

State/Action (a0, b0) (a0, b1) (a1, b0) (a1, b1)
i0 (i + 1)0 (i + 1)0 (i + 1)0 (i + 1)1
i1 (i + 1)1 (i + 1)0 (i + 1)1 (i + 1)1

State/Action (·, b0) (·, b1)
H0 1 0
H1 0 1

Consider the Markov game constructed previously with H − 1 = n. We define the
policy of the min-player ν as follows:
• Draw a sample (x , y) from the noisy query function.
• For each step h ≤ H − 1, if xh=0, take action b0. Otherwise, take action b1.
• At step H, take b0 if y = 0 and b1 otherwise.

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 26 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Problem 2.1 reduces to Problem 1, cont.

The policy µ̂ can be thought of as a set of indices T̂ ⊆ [H] where it takes action a1 at
all indices in T̂ and a0 otherwise.

The max-player only receives a nonzero reward iff ϕT̂ (s) = y

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 27 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Problem 2.1 reduces to Problem 1, cont.

In the Markov game, we have

V µ,ν
1 (s1) = E[I(ϕT̂ (s) = y)] = P(ϕT̂ (s) = y)

This implies that the optimal policy µ∗ corresponds to the actual
parity set T . By the ϵ-approximation guarantee,

(V †,ν1 − V µ̂,ν
1)(s1) = Px ,y (ϕT (x) = y)− Px ,y (ϕT̂ (x) = y)

= (1− Px ,y (ϕT (x) ̸= y))− (1− Px ,y (ϕT̂ (x) ̸= y))
= Px ,y (ϕT̂ (x) ̸= y)− Px ,y (ϕT (x) ̸= y) ≤ ϵ

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 28 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Problem 2.1 reduces to Problem 1, cont.

Next, we condition over the actual parity set T :

Px,y (ϕT̂ (x) ̸= y)− Px,y (ϕT (x) ̸= y) = (1− α)Px (ϕT̂ (x) ̸= ϕT (x))
+ αPx (ϕT̂ (x) = ϕT (x))− α

= (1− 2α)Px (ϕT̂ (x) ̸= ϕT (x))

Thus,
Px (ϕT̂ (x) ̸= ϕT (x)) ≤

ϵ

1− 2α

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 29 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Conclusion

This paper:
• proposed an Optimistic Nash Q-Learning, which finds
ϵ-approximate Nash equilibrium with sample complexity
O(H5SAB/ϵ2).
• introduces a new algorithm Nash V-learning that achieves

sample complexity O(H6S(A + B)/ϵ2), which matches the
theoretical lower bound for zero-sum MGs.
• shows the difficulty in computing optimal policies in MGs by

proving equivalence of solving a fixed Markov game with the
problem of learning parity with noise.

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 30 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

[BJ20] Yu Bai and Chi Jin.
Provable self-play algorithms for competitive
reinforcement learning, 2020.

[FV96] Jerzy A. Filar and Koos Vrieze.
Competitive markov decision processes.
1996.

[SSS+17] David Silver, Julian Schrittwieser, Karen Simonyan,
Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas
Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre,
George Driessche, Thore Graepel, and Demis Hassabis.
Mastering the game of go without human knowledge.
Nature, 550:354–359, 10 2017.

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 31 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

[XCWY20] Qiaomin Xie, Yudong Chen, Zhaoran Wang, and
Zhuoran Yang.
Learning zero-sum simultaneous-move markov games
using function approximation and correlated
equilibrium, 2020.

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 32 / 33

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Thanks!

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 33 / 33

