
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Bai et al. Near-optimal reinforcement learning
with self-play

Bohan Li

Department of Computer Science
University of Arizona

October 28, 2021

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 1 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Multi-agent Reinforcement Learning

Multi-agent RL is the setting where multiple agents make
sequential decisions in an interactive environment. Applications
exist in:

• Strategy games
• Robotics systems, AVs
• Social scenarios
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Zero-sum Markov Games

Zero-sum Markov Games (MGs) generalize standard MDP to two
player setting, where a max-player µ attempts to maximize the
total return and a min-player ν seeks to minimize it. Each game is
denoted MG(H,S,A,B,P, r).

• H the number of steps in an
episode
• S the set of states, with
|S| = S
• (A,B) the set of actions

taken by the max-player and
min-player, respectively

• P = {Ph}h∈[H], Ph(·|s, a, b)
is the set of transition
matrices
• r = {rh}h∈[H],

rh : S ×A× B → [0, 1] is
the reward function
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Examples
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Mathematical Definition

Algorithm 1 Markov Game
1: Given: starting state s1, max-player policy µ, min-player policy ν
2: for step h = 1 to H do
3: Max-player takes action ah ∼ µh(·|sh), min-player takes action

bh ∼ νh(·|sh).
4: Both players obtain reward rh(sh, ah, bh).
5: Observe next state sh+1 ∼ P(·|sh, ah, bh).
6: end for
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Value Functions

Given the policy of the max-player µ selecting from actions a ∈ A
and min-player ν selecting actions b ∈ B, we define the value
functions V µ,ν

h : S → R and Qµ,ν
h : S ×A× B → R :

V µ,ν
h (s) ≡ Eµ,ν

[ H∑
h′=h

rh′(sh′ , ah′ , bh′)
∣∣∣sh = s

]

Qµ,ν
h (s, a, b) ≡ Eµ,ν

[ H∑
h′=h

rh′(sh′ , ah′ , bh′)
∣∣∣sh = s, ah = a, bh = b

]
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Best Response

For any Markov policy of the max-player µ, there exists a best
response min-player with policy ν†(µ) satisfying

∀(s, h)V µ,ν†(µ)
h (s) = inf

ν
V µ,ν

h (s)

We can define the notion of the best-response max-player with
policy µ†(ν) and value function V µ†(ν),ν

h (s).

• We abbreviate V µ†(ν),ν
h ≡ V †,νh and V µ,ν†(µ)

h ≡ V µ,†
h
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Nash Equilibrium

In Competitive Markov Decision Processes, Filar et al. show that
for each player there exists optimal policies against the best
responses of their opponents [FV96]. In other words, there exist
optimal policies µ∗, ν∗ such that:

∀(s, h),V µ∗,†
h (s) = sup

µ
V µ,†

h (s),V †,ν
∗

h (s) = inf
ν

V †,νh (s)

Here, the pair µ∗, ν∗ is called the Nash equilibrium of the Markov
game. It is easy to see that the Nash equilibrium satisfies

sup
µ

inf
ν

V µ,ν
h (s) = V µ∗,ν∗

h (s) = inf
ν
sup
µ

V µ,ν
h (s) (1)

Abbreviation: V µ∗,ν∗

h ≡ V ∗h , and similarly Qµ∗,ν∗

h ≡ Q∗h
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Learning Objectives

• Objective 1: find an ϵ-approximate best response
Given a fixed opponent policy ν, we would like to find a policy µ̂
such that

V †,ν1 (s1)− V µ̂,ν
1 (s1) ≤ ϵ

• Objective 2: find a Nash equilibrium of the Markov games
where the suboptimality of a pair of policies µ̂, ν̂ is measured
as

V †,ν̂1 (s1)−V µ̂,†
1 (s1) =

[
V †,ν̂1 (s1)−V ∗1 (s1)

]
+

[
V ∗1 (s1)−V µ̂,†

1 (s1)

]
Furthermore, we define µ̂, ν̂ to be an ϵ-approximate Nash
equilibrium if

V †,ν̂1 (s1)− V µ̂,†
1 (s1) ≤ ϵ
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Bellman Equations for Markov Games

• Fixed policies µ, ν:

Qµ,ν
h (s, a, b) = (rh + PhV µ,ν

h+1)(s, a, b),

V µ,ν
h (s) = (Dµh×νh Q

µ,ν
h )(s)

• Best response for policy of the max-player µ:

Qµ,†
h (s, a, b) = (rh + PhV µ,†

h+1)(s, a, b),

V µ,†
h (s) = inf

ν∈∆B
(Dµh×νQµ,ν

h )(s)

• Nash equilibria:

Q∗
h (s, a, b) = (rh + PhV ∗

h+1)(s, a, b),

V ∗
h (s) = sup

µ
inf
ν
(Dµ×νQ∗

h )(s) = inf
µ
sup
ν
(Dµ×νQ∗

h )(s)
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Sample Complexity of RL Algorithms

RL algorithms typically require a large amount of samples to be
effective.
• AlphaGo Zero trained on O(107) games and took over a

month to train [SSS+17].
• In two player Markov games, VI-ULCB finds an ϵ-approximate

Nash equilibrium in Θ(poly(H)SAB/ϵ2) samples[BJ20].
The theoretical lower bound of samples needed to compute Nash
equilibria in two player Markov games is Ω(poly(H)S(A + B)/ϵ2).

• Goal: Design an algorithm that learns a Markov game with
near optimal sample complexity
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Sample Complexity of RL Algorithms

RL algorithms typically require a large amount of samples to be
effective.
• AlphaGo Zero trained on O(107) games and took over a

month to train [SSS+17].
• In two player Markov games, VI-ULCB finds an ϵ-approximate

Nash equilibrium in Θ(poly(H)SAB/ϵ2) samples[BJ20].
The theoretical lower bound of samples needed to compute Nash
equilibria in two player Markov games is Ω(poly(H)S(A + B)/ϵ2).
• Goal: Design an algorithm that learns a Markov game with

near optimal sample complexity
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Contributions

The paper:
• proposes an optimistic variant of Nash Q-learning with sample

complexity O(H5SAB/ϵ2) that finds an ϵ-approximate Nash
equilibrium.
• describes a new algorithm Nash V-learning that achieves

sample complexity O(H6S(A + B)/ϵ2).
• This improves on Nash Q-learning in the event that

min(A,B) > H.
• demonstrates that learning best responses of fixed opponents

is as hard as learning parity with noise, which is thought to be
computationally intensive.
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Optimistic Nash Q-learning Algorithm

Algorithm 2 Optimistic Nash Q-Learning
1: Initialize: for any (s, a, b, h), Q̄h(s, a, b)← H,

¯
Qh(s, a, b)← 0, Nh(s, a, b)← 0,

πh(a, b|s)← 1/(AB)
2: for episode k = 1 to K do
3: receive s1.
4: for step h = 1 to H do
5: take action (ah, bh) ∼ πh(·, ·|sh)
6: observe reward rh(sh, ah, bh) and next state sh+1
7: t = Nh(sh, ah, bh)← Nh(sh, ah, bh) + 1
8: Q̄h(sh, ah, bh)← (1−αt)Q̄h(sh, ah, bh)+αt(rh(sh, ah, bh)+ V̄h+1(sh+1)+βt)
9:

¯
Qh(sh, ah, bh)← (1−αt)

¯
Qh(sh, ah, bh)+αt(rh(sh, ah, bh)+

¯
Vh+1(sh+1)−βt)

10: πh(·, ·|sh)← CCE(Q̄h(sh, ·, ·),
¯
Qh(sh, ·, ·))

11: V̄h(sh)← (Dπh Q̄h)(sh);
¯
Vh(sh)← (Dπh

¯
Qh)(sh)

12: end for
13: end for

Where αt =
H+1
H+t , βt = c

√
H3ι

t are hyperparameters.
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Coarse Correlated Equilibrium (CCE)

Introduced by Xie et al.[XCWY20], CCE(Q̄,
¯
Q) for any matrices

Q̄,
¯
Q ∈ [0,H]A×B returns a distribution in polynomial time

π ∈ ∆A×B such that

E(a,b)∼πQ̄(a, b) ≥ max
a∗

E(a,b)∼πQ̄(a∗, b)

E(a,b)∼π
¯
Q(a, b) ≤ min

b∗
E(a,b)∼π

¯
Q(a, b∗)
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The Learned Policy

Here, we define the following
notation:
• α0

t :=
∏t

j=1(1− αj),

αi
t := αi

∏t
j=i+1(1−αj),

and
∑t

i=1 α
i
t = 1

• km
h (s, a, b) is the index

of the episode where
(s, a, b) was observed in
step h for the m-th time.

Algorithm 3 Certified Policy µ̂ of
Nash Q-Learning
1: sample k ← Uniform([K ])
2: for step h = 1 to H do
3: observe sh, and take action ah ∼ µk

h(·|sh)

4: observe bh, and set t ← Nk
h (sh, ah, bh)

5: sample m ∈ [t] with P(m = i) = αi
t

6: k ← km
h (sh, ah, bh)

7: end for

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 15 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Theorems for Nash Q-learning

We assume that the algorithm has played the game for K episodes, using
V k ,Qk ,Nk , πk to denote quantities at the beginning of the k-th episode.

Lemma 3
For any p ∈ (0, 1] with ι = log(SABT/p), algorithm 2 guarantees
• V̄ k

h (s) ≥ V ∗
h (s) ≥ ¯

V k
h (s) for all s, h, k.

• 1
K
∑K

k=1(V̄ k
1 − ¯

V k
1 )(s) ≤ O(

√
H5SABι/K )

with probability 1− p.

Theorem 4 (Sample complexity of Nash Q-learning)
For any p ∈ (0, 1] with ι = log(SABT/p), if we run algorithm 2 for K
episodes where K ≥ Ω(H5SABι/ϵ2), the certified policies µ̂, ν̂ computed
using algorithm 3 will be ϵ-approximate Nash with probability 1− p.
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Improving on Nash Q-learning

• For each state, we have a
fixed set of actions that yield
varying unknown rewards
• Analogous to a bandit

learning problem where
µ(·|s) can be represented as
a set of weights for selecting
each action

We can use bandit techniques to
learn Nash equilibria.
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Optimistic Nash V-learning algorithm

Algorithm 4 Optimistic Nash V-Learning (max-player version)
1: Initialize: for any (s, a, b, h), V̄h(s)← H, L̄h(s, a)← 0, Nh(s)← 0, µh(a|s)← 1/(A)
2: for episode k = 1 to K do
3: receive s1.
4: for step h = 1 to H do
5: take action (ah) ∼ µh(·|sh), observe action bh from opponent
6: observe reward rh(sh, ah, bh) and next state sh+1
7: t = Nh(sh)← Nh(sh) + 1
8: V̄h(sh)← min{H, (1− αt )V̄h(sh) + αt (rh(sh, ah, bh) + V̄h+1(sh+1) + βt )}
9: for all a ∈ A do

10: ℓ̄h(sh, a)← [H − rh(sh, ah, bh)− V̄h(sh)]I{ah = a}/[µh(ah|sh) + η̄t ]
11: L̄h(sh, a)← (1− αt )L̄h(sh, a) + αt ℓ̄h(sh, a)
12: end for
13: set µ(·|sh) ∝ exp[−(η̄t/αt )L̄h(sh, ·)]
14: end for
15: end for

Where we have hyperparameters

αt =
H + 1
H + t

, η̄t =

√
log A
At

,
¯
ηt =

√
log B

Bt
, β̄t = c

√
H4Aι

t
,
¯
βt = c

√
H4Bι

t
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Policy and Resulting Theorem

Algorithm 5 Certified Policy µ̂ of Nash V-Learning
1: sample k ← Uniform([K ])
2: for step h = 1 to H do
3: observe sh, and set t ← Nk

h (sh)
4: sample m ∈ [t] with P(m = i) = αi

t
5: k ← km

h (sh)
6: take action ah ∼ µk

h(·|sh)
7: end for

Theorem 5 (Sample Complexity of Nash V-learning)
For any p ∈ (0, 1] with ι = log(SABT/p), if we run algorithm 4 for
K episodes where K ≥ Ω(H6S(A + B)ι/ϵ2), the certified policies
µ̂, ν̂ computed using algorithm 3 will be ϵ-approximate Nash with
probability 1− p.
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Hardness for Learning the Best Response

Theorem 6 (Hardness for learning the best response)
There exists a Markov game with deterministic transitions and rewards
defined for any horizon H ≥ 1 with S = 2, A = 2, and B = 2, such that
if there exists a polynomial time algorithm for learning the best response
for this Markov game, then there exists a polynomial time algorithm for
learning parity with noise.
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Two-state Markov Game

We define a game with two actions {a0, a1} and {b0, b1} for each
player, H episodes, and therefore 2H states {i0, i1}Hi=2 with 10 as
the initial state and ⊥ as the terminal state.

State/Action (a0, b0) (a0, b1) (a1, b0) (a1, b1)

i0 (i + 1)0 (i + 1)0 (i + 1)0 (i + 1)1
i1 (i + 1)1 (i + 1)0 (i + 1)1 (i + 1)1

Table 1: Transition Kernel of the Markov Game

State/Action (·, b0) (·, b1)

H0 1 0
H1 0 1

Table 2: Reward matrix of the Markov Game
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Learning Parity with Noise Problem

Given x a vector of 0s and 1s of size n, parity is defined as a
function ϕT (x) that returns 0 if the number of ones in the
subvector (xi)i∈T is even and 1 otherwise.

Suppose we have a noisy query function f (x) such that
f (x) = ϕT (x) with probability α and f (x) = 1− ϕT (x) with
probability 1− α.

Bohan Li Department of Computer Science, U of A
Bai et al. Near-optimal reinforcement learning with self-play 22 / 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Set of Computational Problems

1 The max-player ϵ-approximates the best response for any
general policy ν in the Markov game with probability at least
1/2 in poly(H, 1/ϵ) time.

2 Suppose we have x ∈ {0, 1}n, T ⊆ [n], and the noisy query
function f (x). Find a function h : {0, 1}n → {0, 1} such that:

1 With probability at least 1/2, EhPx [h(x) ̸= ϕT (x)] ≤ ϵ in
poly(n, 1/ϵ) time.

2 With probability at least 1/4, Px [h(x) ̸= ϕT (x)] ≤ ϵ in
poly(n, 1/ϵ) time.

3 With probability at least 1− p, Px [h(x) ̸= ϕT (s)] ≤ ϵ in
poly(n, 1/ϵ, 1/p) time.
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Problem 2.3 reduces to Problem 2.2

1 Repeatedly apply algorithm for problem 2.2 ℓ times to obtain h1, · · · , hℓ such
that

min
i

Px [hi (x) ̸= ϕT (x)] ≤ ϵ w.p at least 1− (3/4)ℓ

Define i∗ = argmini erri where erri = Px [hi (x) ̸= ϕT (x)].
2 Construct estimators using N additional data points (x (j), y (j))N

j=1,

êrri :=
1
N
∑N

j=1 I{hi (x (j) ̸= y (j)} − α

1− 2α

Choose î = argmini êrri . For N ≥ ln(1/p)/ϵ2, w.p at least 1− p/2, we have

max
i
|êrri − erri | ≤

ϵ

1− 2α

This step takes poly(n,N, ℓ) = poly(n, 1/ϵ, log(1/p), ℓ) time. We therefore have:

err̂i ≤ êrr̂i +
ϵ

1− 2α
≤ êrri∗ +

ϵ

1− 2α
≤ erri∗ +

2ϵ
1− 2α

≤ O(1)ϵ
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Problem 2.2 reduces to Problem 2.1

Markov’s inequality states that for a non-negative RV X ,

X ≤
E[X ]

1− p

with probability 1− p. Suppose we have an algorithm that gives h such that
EhPx [h(x) ̸= ϕT (x)] ≤ ϵ with 1/2 probability. Assuming this condition is satisfied, we
can then sample an ĥ such that with probability 1/2,

Px [h(x) ̸= ϕT (x)] ≤ 2ϵ

by Markov’s inequality. Thus, with probability 1/4, we have

Px [h(x) ̸= ϕT (x)] ≤ 2ϵ
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Problem 2.1 reduces to Problem 1

State/Action (a0, b0) (a0, b1) (a1, b0) (a1, b1)
i0 (i + 1)0 (i + 1)0 (i + 1)0 (i + 1)1
i1 (i + 1)1 (i + 1)0 (i + 1)1 (i + 1)1

State/Action (·, b0) (·, b1)
H0 1 0
H1 0 1

Consider the Markov game constructed previously with H − 1 = n. We define the
policy of the min-player ν as follows:
• Draw a sample (x , y) from the noisy query function.
• For each step h ≤ H − 1, if xh=0, take action b0. Otherwise, take action b1.
• At step H, take b0 if y = 0 and b1 otherwise.
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Problem 2.1 reduces to Problem 1, cont.

The policy µ̂ can be thought of as a set of indices T̂ ⊆ [H] where it takes action a1 at
all indices in T̂ and a0 otherwise.

The max-player only receives a nonzero reward iff ϕT̂ (s) = y
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Problem 2.1 reduces to Problem 1, cont.

In the Markov game, we have

V µ,ν
1 (s1) = E[I(ϕT̂ (s) = y)] = P(ϕT̂ (s) = y)

This implies that the optimal policy µ∗ corresponds to the actual
parity set T . By the ϵ-approximation guarantee,

(V †,ν1 − V µ̂,ν
1 )(s1) = Px ,y (ϕT (x) = y)− Px ,y (ϕT̂ (x) = y)

= (1− Px ,y (ϕT (x) ̸= y))− (1− Px ,y (ϕT̂ (x) ̸= y))
= Px ,y (ϕT̂ (x) ̸= y)− Px ,y (ϕT (x) ̸= y) ≤ ϵ
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Problem 2.1 reduces to Problem 1, cont.

Next, we condition over the actual parity set T :

Px,y (ϕT̂ (x) ̸= y)− Px,y (ϕT (x) ̸= y) = (1− α)Px (ϕT̂ (x) ̸= ϕT (x))
+ αPx (ϕT̂ (x) = ϕT (x))− α

= (1− 2α)Px (ϕT̂ (x) ̸= ϕT (x))

Thus,
Px (ϕT̂ (x) ̸= ϕT (x)) ≤

ϵ

1− 2α
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Conclusion

This paper:
• proposed an Optimistic Nash Q-Learning, which finds
ϵ-approximate Nash equilibrium with sample complexity
O(H5SAB/ϵ2).
• introduces a new algorithm Nash V-learning that achieves

sample complexity O(H6S(A + B)/ϵ2), which matches the
theoretical lower bound for zero-sum MGs.
• shows the difficulty in computing optimal policies in MGs by

proving equivalence of solving a fixed Markov game with the
problem of learning parity with noise.
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Thanks!
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