On Reinforcement Learning with Adversarial Corruptions and Applications to Block MDP

Tianhao Wu, Yunchang Yang, Simon S. Du, Liwei Wang ICML 2021

Presenter: Zhengguang Zhang

November 4, 2021

Outline

Introduction

- Background & Motivation
- Related Works
- Contributions
- 2 Problem Formulation
 - Episodic MDP
 - Episodic Tabular MDP with Adversarial Corruptions
- 3 Corruption Robust Monotonic Value Propogation (CR-MVP)
 - CR-MVP
 - Lower Bounds

Introduction

Background & Motivation Related Works Contributions

Problem Formulation Corruption Robust Monotonic Value Propogation (CR-MVP) Application to Episodic Block MDP

Outline

- Background & Motivation
- Related Works
- Contributions

2 Problem Formulation

- Episodic MDP
- Episodic Tabular MDP with Adversarial Corruptions
- 3 Corruption Robust Monotonic Value Propogation (CR-MVP)
 - CR-MVP
 - Lower Bounds
- 4 Application to Episodic Block MDF

Background & Motivation Related Works Contributions

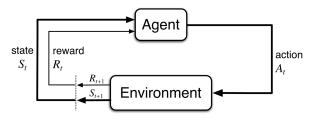
Background

Reinforcement Learning (RL) is ubiquitous for decision-making.

- Agent interacts with the environment based on observations (states, actions, rewards)
- Maximize the cumulative reward through time

Background & Motivation Related Works Contributions

Interactions between agent and environment



Example: autonomous driving

- State: position, velocity, traffic lights, congestion, accidents
- Action: direction, acceleration
- Reward: Energy consumption, safety, comfortability

Background & Motivation Related Works Contributions

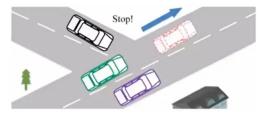
Motivation

- The truthfulness of the observed state and reward is crucial
- False state and reward observation due to:
 - Non-stationary behaviour
 - Errors in the system
 - Malicious corruption by adversary
- Various threats (efficiency, safety)

Background & Motivation Related Works Contributions

Motivation

- The adversary makes corruptions for different purposes:
 - Selfish purpose: e.g. claims false position to clear its lane
 - Malicious purpose: e.g. changes the traffic light to cause congestion or collision



 Question: How to guarantee the safety and robustness of the agent against data corruption?

Background & Motivation Related Works Contributions

Related Works

MAB with Corruption

- Corrupted rewards, corruption level is unknown, upper bound and lower bound of the regret [Lykouris et al., 2018]
- Improves above upper bound, and claims an upper bound when corruption level is known [Gupta et al., 2019]
- Episodic RL
 - Bandit feedback and unknown transition, adversarial rewards, upper bound on regret [Jin et al., 2019]
 - Corrupted rewards and transitions of selected episodes, corruption level is unknown [Lykouris et al., 2019]

$$\text{Regret} = \tilde{O}(C\sqrt{SAHK} + CS^2A + C^2SA)$$

Problem: Vacuous when *C* is large, e.g., when $C = O(\sqrt{K})$, bound grows linearly with respect to *K*

Introduction

Problem Formulation Corruption Robust Monotonic Value Propogation (CR-MVP) Application to Episodic Block MDP Background & Motivation Related Works Contributions

Stronger Real-world Corruption

- Adversary makes decision of corrupting or not after the agent takes an action at each step (more information → stronger)
- Adversary disturbs agent's observation on the state and reward signal, while leaves the underlying state and reward unchanged.
- Example: The robot player receives images with adversarial perturbations, while the true environment remains unchanged

Contributions

- Propose an algorithm that can achieve $\tilde{O}(\sqrt{SAK} + CSA)$ regret¹ when the corruption level *C* is known
- Prove the lower bound $\Omega(\sqrt{SAK} + CSA)$ with known *C*, $\Omega(C^{\alpha}K^{\beta})$ with unknown *C*
- Apply to Block MDP setting and obtain the first algorithm with \sqrt{K} -type regret

 $^{{}^1\}tilde{O}$ hides the logarithmic factor

Background & Motivation Related Works Contributions

Contributions

- Propose an algorithm that can achieve $\tilde{O}(\sqrt{SAK} + CSA)$ regret¹ when the corruption level *C* is known
- Prove the lower bound $\Omega(\sqrt{SAK} + CSA)$ with known *C*, $\Omega(C^{\alpha}K^{\beta})$ with unknown *C*
- Apply to Block MDP setting and obtain the first algorithm with \sqrt{K} -type regret

 $^{{}^1\}tilde{O}$ hides the logarithmic factor

Background & Motivation Related Works Contributions

Contributions

- Propose an algorithm that can achieve $\tilde{O}(\sqrt{SAK} + CSA)$ regret¹ when the corruption level *C* is known
- Prove the lower bound $\Omega(\sqrt{SAK} + CSA)$ with known *C*, $\Omega(C^{\alpha}K^{\beta})$ with unknown *C*
- Apply to Block MDP setting and obtain the first algorithm with √K-type regret

 $^{{}^{1}\}tilde{O}$ hides the logarithmic factor

Episodic MDP Episodic Tabular MDP with Adversarial Corruptions

Outline

Introduction

- Background & Motivation
- Related Works
- Contributions

2 Problem Formulation

- Episodic MDP
- Episodic Tabular MDP with Adversarial Corruptions
- 3 Corruption Robust Monotonic Value Propogation (CR-MVP)
 - CR-MVP
 - Lower Bounds
- 4 Application to Episodic Block MDF

Episodic MDP Episodic Tabular MDP with Adversarial Corruptions

Episodic MDP

- Finite-horizon MDP: M = (S, A, H, P, R)
- Known state space \mathcal{S} , action space \mathcal{A}
- Unknown distribution for transition P and reward R
- K episodes, each of H steps
- At episode $k = 1, \ldots, K$:
 - Initial state i.i.d from fixed distribution, i.e., $s_1^k \sim \mu$
 - Agent commits to policy: $\pi^k = \{\pi_h^k \mid \pi_h^k : S \to A\}_{h=1}^H$
 - At step h = 1, ..., H:
 - Agent takes action $a_h^k \sim \pi^k(s_h^k)$
 - Agent receives reward $r_h^k \sim R(s_h^k, a_h^k)$
 - Transits to state $s_{h+1}^k \sim P(\cdot \mid s_h^k, a_h^k)$
 - Observes state-action-reward trajectory $(s_h^k, a_h^k, r_h^k)_{h=1}^H$

Episodic MDP Episodic Tabular MDP with Adversarial Corruptions

Episodic MDP with Corruption

- Finite-horizon MDP: M = (S, A, H, P, R)
- Known state space \mathcal{S} , action space \mathcal{A}
- Unknown distribution for transition P and reward R
- K episodes, each of H steps
- At episode $k = 1, \ldots, K$:
 - Initial state i.i.d from fixed distribution, i.e., $s_1^k \sim \mu$
 - Agent commits to policy: $\pi^k = \{\pi_h^k \mid \pi_h^k : S \to A\}_{h=1}^H$
 - At step h = 1, ..., H:
 - Agent takes action $a_h^k \sim \pi^k(s_h^k)$
 - Adversary decides whether to corrupt
 - if yes: corrupts current reward r_h^k with arbitrary $(r_h^k)'$, generates arbitrary next state $(s_{h+1}^k)'$ and corresponding reward function $\tilde{r}((s_{h+1}^k)', \cdot) \in R^s$
 - Otherwise, normal episodic MDP

Episodic MDP Episodic Tabular MDP with Adversarial Corruptions

Zoom in one Episode

Remove Dependency on k

- **①** Time step *h*: The agent takes the action a_h at state s_h
- 2 The adversary decides whether to corrupt current reward r_h and next state s_{h+1} .
- If the adversary decides to corrupt, it generates arbitrary reward r'_h , next state s'_{h+1} , and corresponding reward function $\tilde{r}(s'_{h+1}, \cdot) \in \mathbb{R}^S$
- **Time step** h + 1: The agent observes the corrupted state s'_{h+1} , it takes action a_{h+1} and observes $\tilde{r}(s'_{h+1}, a_{h+1})$ instead of $r(s_{h+1}, a_{h+1})$.

Episodic MDP Episodic Tabular MDP with Adversarial Corruptions

Setting of This Paper

Denote state \tilde{s}_h and reward \tilde{r}_h observed by the agent

- $\tilde{s}_h = s'_h$ when corrupted, and $\tilde{s}_h = s_h$ when no corruption
- $\tilde{r}_h = r'_h$ when corrupted, and $\tilde{r}_h = r_h$ when no corruption
- The underlying state and reward are always *s_h* and *r_h*
- Corruption level *C*: The number of time steps that is corrupted in each episode.

Assumption 1 (Bounded Total Reward).

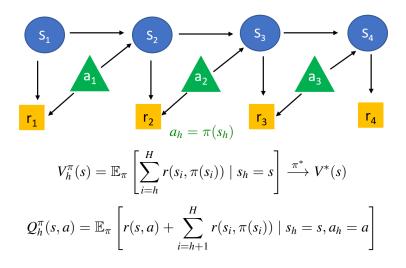
The reward r_h satisfied that $r_h \ge 0$ for all $h \in [H]$. Moreover, for all policy π , $\sum_{h=1}^{H} r_h \le 1$ almost surely.

Introduction

Problem Formulation

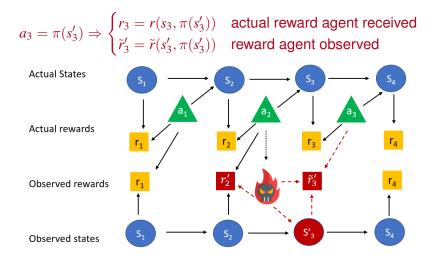
Corruption Robust Monotonic Value Propogation (CR-MVP) Application to Episodic Block MDP Episodic MDP Episodic Tabular MDP with Adversarial Corruptions

Value Functions without Corruptions



Episodic MDP Episodic Tabular MDP with Adversarial Corruptions

MDP with Corruption



Episodic MDP Episodic Tabular MDP with Adversarial Corruptions

Value Functions with Corruptions

Let \tilde{Q}, \tilde{V} be the rewards the agent actually receives under corruption. Rewards are calculated by environment based on underlying state and agent's action under corruption.

$$\tilde{V}_h^{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{i=h}^H r(s_i, \pi(\tilde{s}_i)) \mid s_h = s \right]$$

$$\tilde{Q}_h^{\pi}(s,a) = \mathbb{E}_{\pi}\left[r(s,a) + \sum_{i=h+1}^{H} r(s_i,\pi(\tilde{s}_i)) \mid s_h = s, a_h = a\right]$$

Regret(K) =
$$\sum_{k=1}^{K} V_1^*(s_1^k) - \tilde{V}_1^{\pi^k}(s_1^k)$$

CR-MVP Lower Bounds

Outline

Introduction

- Background & Motivation
- Related Works
- Contributions
- 2 Problem Formulation
 - Episodic MDP
 - Episodic Tabular MDP with Adversarial Corruptions

3 Corruption Robust Monotonic Value Propogation (CR-MVP)

CR-MVP

Lower Bounds

Application to Episodic Block MDP

CR-MVP Lower Bounds

Unbiased Empirical Estimator

Number of visits (omit *k* for simplicity):

- $\hat{N}^k(s, a, s') \rightarrow \hat{N}(s, a, s')$
- $\hat{N}^k(s,a) \rightarrow \hat{N}(s,a)$

Transition dynamics:

$$\hat{P}_{s,a}(s') = \hat{P}(s' \mid s, a) = \frac{\hat{N}(s, a, s')}{\hat{N}(s, a)}$$

$$\hat{Q}_h(\hat{N},\hat{P})(s,a) = \hat{r}(s,a) + \hat{P}_{s,a}V_{h+1} + \hat{b}_h(s,a)$$

CR-MVP Lower Bounds

Biased Empirical Estimator Due to Corruption

Number of visits (omit *k* for simplicity):

•
$$\tilde{N}^k(s, a, s') \to \tilde{N}(s, a, s')$$

•
$$\tilde{N}^k(s,a) \to \tilde{N}(s,a)$$

$$|\hat{N}(s, a, s') - \tilde{N}(s, a, s')| \le C$$

 $|\hat{N}(s, a) - \tilde{N}(s, a)| \le C$

Transition dynamics:

$$ilde{P}_{s,a}(s') = \hat{P}(s' \mid s, a) = rac{ ilde{N}(s, a, s')}{ ilde{N}(s, a)}$$

CR-MVP Lower Bounds

Logic Behind CR-MVP

Optimism in the face of uncertainty

 Typical approach: maintains an optimistic estimation of Q-function by adding a bonus term to the empirical Bellman Equation

$$\hat{Q}_h(s,a) = \hat{r}(s,a) + \hat{P}_{s,a}V_{h+1} + \hat{b}_h(s,a)$$

- Problem: Relies on the access to the unbiased estimators \hat{N} and \hat{P} , which are unavailable in the corrupted setting.
- Solution:

$$\begin{aligned} Q_h(\tilde{N}, \tilde{P})(s, a) &= \tilde{r}(s, a) + \tilde{P}_{s,a} V_{h+1} + \tilde{b}_h(s, a) \\ &\geq \hat{Q}_h(\hat{N}, \hat{P})(s, a) = \hat{r}(s, a) + \hat{P}_{s,a} V_{h+1} + \hat{b}_h(s, a) \end{aligned}$$

CR-MVP Lower Bounds

Design of Bonus Term

Lemma 1

Suppose $c_1, c_2, c_3 \ge 0$, let $\tilde{b}_h = \tilde{b}_{h,con} + \tilde{b}_{h,bia}$, then $Q_h \ge \hat{Q}_h$

$$\begin{split} \tilde{b}_{h,bia} = & 2\min\left\{\frac{2C}{|\tilde{N}-C|}, 1\right\} \\ & + (c_1+c_2)\min\left\{\frac{\sqrt{C\iota}}{|\tilde{N}-C|}, 1\right\}. \end{split}$$

$$\begin{split} \tilde{b}_{h,con} = & c_1 \min\left\{\sqrt{\frac{\mathbb{V}(\tilde{P}, V_{h+1})\iota}{|\tilde{N} - C|}}, 1\right\} \\ & + & c_2 \min\left\{\sqrt{\frac{\tilde{r}\iota}{|\tilde{N} - C|}}, 1\right\} + & c_3 \min\left\{\frac{\iota}{|\tilde{N} - C|}, 1\right\}, \end{split}$$

CR-MVP Lower Bounds

CR-MVP Algorithm

Algorithm 1 Corruption Robust Monotonic Value Propagation

Input: *C* is the corruption level. for k = 1, 2, ..., K do for h = 1, 2, ..., H do Observe s_h^k , take action $a_h^k = \arg \max_a Q_h(s_h^k, a)$; Receive reward r_{h}^{k} and next state s_{h+1}^{k} . Update empirical estimate $\tilde{P}_{s,a,\cdot} \leftarrow \tilde{N}_{s,a,\cdot}/\tilde{N}(s,a)$, and $\tilde{r}(s,a)$. for h = H, H - 1, ..., 1 do for $(s, a) \in S \times A$ do Set confidence bonus term \tilde{b}_{h} . $Q_h(s,a) \leftarrow \min\{\tilde{r}(s,a) + \tilde{P}_{s,a}V_{h+1} + \tilde{b}_h(s,a), 1\}.$ $V_h(s) \leftarrow \max_a Q_h(s, a).$ end for end for end for end for

CR-MVP Lower Bounds

Regret Upper Bound of CR-MVP

By setting \tilde{b}_h as in Lemma 1:

Theorem 1

With probability at least $1 - \delta$ the regret of CR-MVP satisfies:

$$\operatorname{Regret}(K) \le O(\sqrt{SAK} + S^2A + CSA),$$

where K is the total number of episodes. In other words, the regret caused by the corruptions only scales linearly with regard to C.

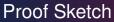
CR-MVP Lower Bounds

Proof Sketch

Lemma 4. For any vector $V \in \mathbb{R}^S$, $V(s) \in [0, 1]$ for any $s \in S$, it holds that

$$\begin{split} ||\tilde{P}_{s,a} - \hat{P}_{s,a}||_1 &\leq 2\min\{\frac{C}{|\tilde{n}(s,a) - C|}, 1\},\\ |\mathbb{V}(\tilde{P}_{s,a}, V) - \mathbb{V}(\hat{P}_{s,a}, V)| &\leq 6\min\{\frac{C}{|\tilde{n}(s,a) - C|}, 1\},\\ |\tilde{r} - \hat{r}| &\leq \min\{\frac{C}{|\tilde{n} - C|}, 1\}. \end{split}$$

CR-MVP Lower Bounds



Bounding Bellman Error

Lemma 5. With probability $1 - 3S^2AH(\log_2(KH) + 1)\delta$, for any $1 \le k \le K$, $1 \le h \le H$ and (s, a), it holds that

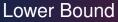
$$\begin{split} &Q_{h}^{k}(s,a) - r(s,a) - P_{s,a}V_{h+1}^{k} \\ \leq \min\{2\tilde{b}_{h}^{k}(s,a) + \frac{2C}{\tilde{n}(s,a) + C} + \sqrt{\frac{2\mathbb{V}(P_{s,a},V_{h+1}^{*})\iota}{\hat{n}^{k}(s,a)}} + \sqrt{\frac{2S\mathbb{V}(P_{s,a},V_{h+1}^{k} - V_{h+1}^{*})\iota}{\hat{n}^{k}(s,a)}} + \frac{2S\iota}{3\hat{n}^{k}(s,a)}, 1\}. \end{split}$$

Proof Sketch

Regret Analysis

$$\begin{split} &\operatorname{Regret}(K) := \sum_{k=1}^{K} (V_1^*(s_1^k) - \bar{V}_1^{\pi^k}(s_1^k)) \\ &\leq \sum_{k=1}^{K} (V_1^k(s_1^k) - \bar{V}_1^{\pi^k}(s_1^k)) \\ &= \sum_{k=1}^{K} (\bar{V}_1^k(s_1^k) - \bar{V}_1^{\pi^k}(s_1^k)) \\ &= \sum_{k=1}^{K} (\bar{V}_1^k(s_1^k) - \sum_{h=1}^{H} \bar{r}_h^k) + \sum_{k=1}^{K} (\sum_{h=1}^{H} \bar{r}_h^k - \bar{V}_1^{\pi^k}(s_1^k)) \\ &= \sum_{k=1}^{K} \sum_{h=1}^{H} (P_{s_h^k, a_h^k} \bar{V}_{h+1}^k - \bar{V}_{h+1}^k(s_{h+1}^k)) + \sum_{k=1}^{K} \sum_{h=1}^{H} (\bar{V}_h^k(s_h^k) - \bar{r}_h^k - P_{s_h^k, a_h^k} \bar{V}_{h+1}^k) + \sum_{k=1}^{K} (\sum_{h=1}^{H} \bar{r}_h^k - \bar{V}_1^{\pi^k}(s_1^k)) \\ &\leq \sum_{k=1}^{K} \sum_{h=1}^{H} (P_{s_h^k, a_h^k} \bar{V}_{h+1}^k - \bar{V}_{h+1}^k(s_{h+1}^k)) + \sum_{k=1}^{K} \sum_{h=1}^{H} \bar{\beta}_h^k(s_h^k, a_h^k) + \sum_{k=1}^{K} (\sum_{h=1}^{H} \bar{r}_h^k - \bar{V}_1^{\pi^k}(s_1^k)) + |\mathcal{K}^C|. \end{split}$$

CR-MVP Lower Bounds



CR-MVP Lower Bounds

Theorem 2

For any fixed C, A, and any algorithm, there exists an episodic MDP, such that the regret incurred after K episodes is at least $\Omega(CSA)$, where K satisfies $K \ge 2CSA$.

CR-MVP Lower Bounds

Special case: MAB

S = 1, H = 1, C is the number of episodes being corrupted

- If an algorithm visit all arms for at least *C* times, then directly lead to a Ω(*CA*) regret.
- If the number of visit of arm *i* is less than *C* times, directly lead to a Ω(*K*) regret.

Proposition 1

In an MAB instance with adversarial corruptions, assume that the corruption level *C* is unknown. If there exists an algorithm that can achieve a high probability regret upper bound $\tilde{O}(\sqrt{K} + C^{\alpha}K^{\beta})$ for any *C* and *K*, then $\alpha + \beta/2 \ge 1$.

Outline

Introduction

- Background & Motivation
- Related Works
- Contributions
- 2 Problem Formulation
 - Episodic MDP
 - Episodic Tabular MDP with Adversarial Corruptions
- 3 Corruption Robust Monotonic Value Propogation (CR-MVP)
 - CR-MVP
 - Lower Bounds

- $M = (S, \mathcal{X}, \mathcal{A}, H, P, r, q)$
- S is finite hidden state space that the agent can't observe
- X is the observable context space, maybe infinite
- *P* is the transition dynamics $P(\cdot | s, a)$
- q is the context emission function: $q: S \to \Delta(\mathcal{X})$

$$\forall s \neq s', q(s) \neq q(s')$$

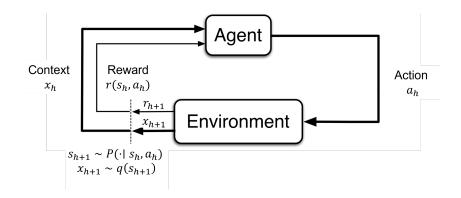
Introductio

roblem Formulation

Corruption Robust Monotonic Value Propogation (CR-MVP)

Application to Episodic Block MDP

Agent-environment Interactions in BMDP



BMDP with a Decoding Function

Decoding function: f

 $f: \mathcal{X} \to \mathcal{S}$

We say the decoding function is an ϵ -error decoding if $P_{x \sim q(s)}(f(x) = s) \ge 1 - \epsilon$ holds for all s. The block assumption ensures a 0-error decoding.

- Under some assumptions, the PCID can output a ϵ -error decoding function within $O(poly(H, S, A)/\epsilon)$ time steps
- BMDP with a ϵ -error decoding function can be seen as a MDP with adversarial corruptions and $C = \epsilon H K \iota$. (if $\alpha f(x) = s' \neq s$, it is equivalent to a adversary that substitute s with s')

So combine PCID and CR-MVP, we have regret $O(poly(H, S, A)/\epsilon + \epsilon SAHK + \sqrt{SAK})$, set ϵ properly we have $O(\sqrt{K})$ regret.