Of Moments and Matching:

A Game-Theoretic Framework for Closing the Imitation Gap

G. Swammy, S. Chouldhury, J. Bagnell, Z. Wu

presented by: Bao Do

Applied Math Program University of Arizona

November 2021

Table of Contents

Introduction

```
\begin{split} \mathsf{MDP}: & (\mathcal{S}, \mathcal{A}, \mathcal{T}, r, T, P_0) \\ \mathsf{State space} &- \mathcal{S} \\ \mathsf{Action space} &- \mathcal{A} \\ \mathsf{Transition operator} &- \mathcal{T}: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S}) \\ \mathsf{Reward function} &- r: \mathcal{S} \times \mathcal{A} \to [-1, 1] \\ \mathsf{Horizon} &- T \\ \mathsf{initial state distribution} &- P_0 \end{split}
```

- Policy class: $\Pi = \{\pi : \mathcal{S} \to \Delta(\mathcal{A})\}$
- Trajectory: $\tau=(s_t,a_t)_{t=1}^T$ $\tau\sim\pi$ means that τ is generated by $s_1\sim P_0$, $a_t\sim\pi(s_t)$ and $s_{t+1}=\mathcal{T}(s_t,a_t)$
- Value function : $V_t^{\pi}(s) = \mathbb{E}\Big[\sum_{t'=t}^T r(s_{t'}, a_{t'}) \Big| \tau \sim \pi, s_t = s\Big]$
- Q-value function: $Q_t^{\pi}(s) = \mathbb{E}\Big[\sum_{t'=t}^T r(s_{t'}, a_{t'}) \Big| \tau \sim \pi, s_t = s, a_t = a\Big]$
- Advantage function: $A^\pi_t(s,a) = Q^\pi_t(s,a) V^\pi_t(s)$
- Performance: $J(\pi) = \mathbb{E}\left[\sum_{t'=t}^{T} r(s_{t'}, a_{t'}) \middle| \tau \sim \pi\right]$
- Imitation Gap: $J(\pi_E) J(\pi)$

- $\mathcal{F}_r = \{f : \mathcal{S} \times \mathcal{A} \rightarrow [-1, 1]\}$: class of reward functions
- $\mathcal{F}_Q=\{f:\mathcal{S}\times\mathcal{A}\to[-T,T]\}:$ set of Q functions induced by sampling actions from some π
- $\mathcal{F}_{Q_E} = \{f : \mathcal{S} \times \mathcal{A} \rightarrow [-1,1]\}$: set of Q functions induced by sampling actions from π_E
- $\mathcal{F}=\{f:\mathcal{S}\times\mathcal{A}\to\mathbb{R}\}$ is convex, compact, closed under negation, and finite dimensional

Reward:

$$J(\pi_E) - J(\pi) = \mathbb{E}_{\tau \sim \pi_E} \sum_{t=1}^T r(s_t, a_t) - \mathbb{E}_{\tau \sim \pi} \sum_{t=1}^T r(s_t, a_t)$$

$$= \mathbb{E}_{\tau \sim \pi} \sum_{t=1}^T -r(s_t, a_t) - \mathbb{E}_{\tau \sim \pi_E} \sum_{t=1}^T -r(s_t, a_t)$$

$$\leq \sup_{f \in \mathcal{F}_r} \left[\mathbb{E}_{\tau \sim \pi_E} \sum_{t=1}^T f(s_t, a_t) - \mathbb{E}_{\tau \sim \pi_E} \sum_{t=1}^T f(s_t, a_t) \right]$$

Off-policy Q:

$$J(\pi_E) - J(\pi) = \mathbb{E}_{\tau \sim \pi_E} \left[\sum_{t=1}^T Q_t^{\pi}(s_t, a_t) - \mathbb{E}_{\tau \sim \pi(s_t)} Q_t^{\pi}(s_t, a_t) \right]$$

$$\leq \sup_{f \in \mathcal{F}_Q} \mathbb{E}_{\tau \sim \pi_E} \left[\sum_{t=1}^T \mathbb{E}_{\tau \sim \pi(s_t)} Q_t^{\pi}(s_t, a) - Q_t^{\pi}(s_t, a_t) \right]$$

$$(Q_t^{\pi} \in \mathcal{F}_Q \forall \pi \in \Pi, r \in \mathcal{F}_r)$$

Need to justify using the performance diff lemma

On-policy Q:

$$J(\pi_E) - J(\pi) = -\mathbb{E}_{\tau \sim \pi} \left[\sum_{t=1}^T Q_t^{\pi_E}(s_t, a_t) - \mathbb{E}_{\tau \sim \pi_E(s_t)} Q_t^{\pi_E}(s_t, a_t) \right]$$

$$\leq \sup_{f \in \mathcal{F}_{Q_E}} \mathbb{E}_{\tau \sim \pi} \left[\sum_{t=1}^T Q_t^{\pi}(s_t, a_t) - \mathbb{E}_{\tau \sim \pi(s_t)} \left[Q_t^{\pi}(s_t, a) \right] \right]$$

$$(Q_t^{\pi_E} \in \mathcal{F}_{Q_E} \forall r \in \mathcal{F}_r)$$

In realizable setting, $\pi_E \in \Pi, \mathcal{F}_{Q_e} \subseteq \mathcal{F}_Q$.

Moment matching games

2 player minimax game:

- **1** Learner (min player): select policy $\pi \in \Pi$
- ② Discriminator (max player): select function $f \in \mathcal{F}$ $\mathcal{F} = \{f : \mathcal{S} \times \mathcal{A} \to \mathbb{R}\}$ is convex, compact, closed under negation, and finite dimensional.

Moment matching games

Payoff Functions:

On-policy reward:

$$U_1(\pi, f) = \frac{1}{T} \left(\mathbb{E}_{\tau \sim \pi} \sum_{t=1}^{T} f(s_t, a_t) - \mathbb{E}_{\tau \sim \pi_E} \sum_{t=1}^{T} f(s_t, a_t) \right)$$

2 On-policy Q:

$$U_1(\pi, f) = \frac{1}{T} \left(\mathbb{E}_{\substack{\tau \sim \pi \\ a \sim \pi(s_t)}} \sum_{t=1}^T f(s_t, a) - \mathbb{E}_{\tau \sim \pi_E} \sum_{t=1}^T f(s_t, a_t) \right)$$

3 Off-policy Q:

$$U_1(\pi, f) = \frac{1}{T} \left(\mathbb{E}_{\tau \sim \pi} \sum_{t=1}^T f(s_t, a_t) - \mathbb{E}_{\substack{\tau \sim \pi \\ a \sim \pi_E(s_t)}} \sum_{\substack{t=1 \\ s_t = s_t$$

Approximate Equilibria

A pair $(\hat{\pi} \in \Pi, \hat{f} \in \mathcal{F})$ is a δ -approximate equilibrium solution if

$$\sup_{f \in \mathcal{F}} U_j(f, \hat{\pi}) - \frac{\delta}{2} \le U_j(\hat{f}, \hat{\pi}) \le \inf_{\pi \in \Pi} U_j(\hat{f}, \pi) + \frac{\delta}{2}.$$

An imitation game δ -oracle $\phi\{\delta\}(\cdot)$ takes payoff function U and return $(k\delta)$ -approximate equilibrium strategy for the policy player.

MDP examples

Figure 2. Left: Borrowed from (Ross et al. 2011), the goal of LOOP is to spend time in s_1 . Right: a folklore MDP CLIFF, where the goal is to not "fall off the cliff" and end up in s_x evermore.

Performance Bounds

MOMENT MATCHED	UPPER BOUND	LOWER BOUND
REWARD OFF-POLICY Q ON-POLICY Q	$O(\epsilon T) \ O(\epsilon T^2) \ O(\epsilon HT)$	$\begin{array}{c} \Omega(\epsilon T) \\ \Omega(\epsilon T^2) \\ \Omega(\epsilon T) \end{array}$

Table 2. An overview of the difference in bounds between the three types of moment matching. All bounds are on imitation gap (1).

Performance Bounds

Lemma 1. Reward Upper Bound: If \mathcal{F}_r spans \mathcal{F} , then for all MDPs, π_E , and $\pi \leftarrow \Psi\{\epsilon\}(U_1)$, $J(\pi_E) - J(\pi) \leq O(\epsilon T)$.

Proof.

$$J(\pi_E) - J(\pi) \le \sup_{f \in \mathcal{F}_r} \left(\mathbb{E}_{\tau \in \pi} \sum_{t=1}^T f(s_t, a_t) - \mathbb{E}_{\tau \in \pi_E} \sum_{t=1}^T f(s_t, a_t) \right)$$
$$\le \sup_{f \in \mathcal{F}} \left(\mathbb{E}_{\tau \in \pi} \sum_{t=1}^T 2f(s_t, a_t) - \mathbb{E}_{\tau \in \pi_E} \sum_{t=1}^T 2f(s_t, a_t) \right)$$
$$= 2T \sup_{f \in \mathcal{F}} U_1(\pi, f) \le 2T\varepsilon.$$

Performance Bounds

Lemma 2. Reward Lower Bound: There exists an MDP, π_E , and $\pi \leftarrow \Psi\{\epsilon\}(U_1)$ such that $J(\pi_E) - J(\pi) \ge \Omega(\epsilon T)$.

Proof. Consider CLIFF example with $r(s,a)=-\mathbb{1}_{s_x}-\mathbb{1}_{a_2}$ and a perfect expert that never takes a_2 . If $P(a_2|s_0)=\varepsilon$, the optimal discriminator would be able to penalize the learner on average ε per step for T steps. Therefore, $J(\pi_E)-J(\pi)=\varepsilon T\leq \Omega(\varepsilon T)$.

Recoverability

considering skipping

Theoretical guarantees

Goal: Construct the oracle.

Assumptions:

- State is finite
- Policy class is complete

Approach:

- ① Outer player follows a no regret strategy
- 2 Inner player follows a best response strategy

Theoretical guarantees

An efficient no-regret algorithm over a class \mathcal{X} produces $x^1,\ldots,x^H\in\mathcal{X}$ that satisfy the following property for any sequence of loss functions l^1,\ldots,l^H :

Regret
$$(H) = \sum_{t=0}^{H} l^{t}(x^{t}) - \min_{x \in \mathcal{X}} \sum_{t=0}^{H} l^{t}(x) \le \beta_{\mathcal{X}}(H)$$

where $\frac{\beta \chi(H)}{H} \leq \varepsilon$ holds for H that are $\mathcal{O}(\operatorname{poly}(1/\varepsilon))$

Theoretical guarantees

Primal. We execute a no-regret algorithm on the policy representation, while a maximization oracle over the space \mathcal{F} computes the best response to those policies.

Dual. We execute a no-regret algorithm on the space \mathcal{F} , while a minimization oracle over policies computes *entropy regularized* best response policies.

	Outer player	Inner player	Application
Primal	Learner	Discriminator	Off-Q, On-Q
Dual	Discriminator	Learner	Reward

Theoretical guarantees

Theorem 1. Given access to the no-regret and maximization oracles in either **primal** or **dual** above, for all three imitation games we are able to compute a δ -approximate equilibrium strategy for the policy player in $poly(\frac{1}{\delta}, T, \ln |\mathcal{S}|, \ln |\mathcal{A}|)$ iterations of the outer player optimization.

Proof of theorem 1: Primal case

Goal: Find $\hat{\pi}$ such that $\max_{f \in \mathcal{F}} U_j(\hat{\pi}, f) \leq \delta$

Procedure:

- **1** For t = 1, ..., N do:
 - No-regret algorithm to find π^t
 - $\bullet \ \mbox{Set} \ f^t$ to be the best response to π^t
- **2** Return $\hat{\pi} = \pi^{t^*}, t^* = \operatorname{argmin}_t U_j(\pi^t, f^t)$

Proof of theorem 1: Primal case

By the no-regret assumption with $l^t(\pi) = U_j(\pi, f^t)$:

$$\frac{1}{N} \sum_{t}^{N} U_j(\pi^t, f^t) - \frac{1}{N} \min_{\pi \in \Pi} U_j(\pi^t, f^t) \le \frac{\beta_{\Pi}(N)}{N} \le \delta$$

for $N = \text{poly}(1/\delta)$. Since $\pi_E \in \Pi$,

$$\min_{t} U_j(\pi^t, f^t) \le \frac{1}{N} \sum_{t}^{N} U_j(\pi^t, f^t) \le \delta$$

Since f^t is the best response to π^t :

$$\min_{t} \max_{f \in \mathcal{F}} U_j(\pi^t, f) \le \delta$$

Integral Probability Metric (IPM):

$$\sup_{f \in \mathcal{F}} \left\{ \mathbb{E}_{x \sim P_1}[f(x)] - \mathbb{E}_{x \sim P_2}[f(x)] \right\}$$

In our case: (IPM ojective)

$$\sup_{f \in \mathcal{F}} \sum_{t=1}^{T} \left\{ \mathbb{E}_{x \sim \pi}[f(x)] - \mathbb{E}_{x \sim \pi_E}[f(x)] \right\}$$

Need to connect this IPM to the imitation gap or payoff functions

Algorithms Off-Q

AdVIL: Adversarial Value-moment Imitation Learning

Algorithm 1 AdVIL

Input: Expert demonstrations \mathcal{D}_E , Policy class Π , Discriminator class \mathcal{F} , Performance threshold δ , Learning rates $\eta_f > \eta_\pi$

Output: Trained policy π Set $\pi \in \Pi$, $f \in \mathcal{F}$, $L(\pi, f) = 2\delta$

while $L(\pi, f) > \delta$ do

$$L(\pi, f) = \mathbb{E}_{(s, a) \sim \mathcal{D}_E} [\mathbb{E}_{x \sim \pi(s)} [f(s, x)] - f(s, a)]$$

$$f \leftarrow f + \eta_f \nabla_f L(\pi, f)$$

$$\pi \leftarrow \pi - \eta_\pi \nabla_\pi L(\pi, f)$$

end while

Algorithm: Off-Q

Derivation

AdRIL: Adversarial Reward-moment Imitation Learning

Algorithm 2 AdRIL

```
Input: Expert demonstrations \mathcal{D}_E, Policy class \Pi, Dynamics \mathcal{T}, Kernel K, Performance threshold \delta Output: Trained policy \pi Set \pi \in \Pi, f = 0, \mathcal{D}_{\pi} = \{\}, \mathcal{D}' = \{\}, L(\pi, f) = 2\delta while L(\pi, f) > \delta do f \leftarrow \mathbb{E}_{\tau \sim D_{\pi}}[\sum_t K(sa, \cdot)] - \mathbb{E}_{\tau \sim D_E}[\sum_t K(sa, \cdot)] \pi, \mathcal{D}' \leftarrow \text{MaxEntRL}(\mathbb{T} = \mathcal{T}, \mathbb{r} = -f) \mathcal{D}_{\pi} \leftarrow \mathcal{D}_{\pi} \cup \mathcal{D}' L(\pi, f) = \mathbb{E}_{\tau \sim D'}[\sum_t f(s, a)] - \mathbb{E}_{\tau \sim D_E}[\sum_t f(s, a)] end while
```

DAeQuIL: DAgger-esque Qu-moment Imitation Learning

```
Algorithm 3 DAeQuIL
    Input: Queryable expert \pi_E, Policy class \Pi, Discrimina-
    tor class \mathcal{F}, Performance threshold \delta, Behavioral cloning
    loss \ell_{BC}:\Pi\to\mathbb{R}, Strongly convex fn R:\Pi\to\mathbb{R}
   Output: Trained policy \pi
    Optimize: \pi \leftarrow \arg\min_{\pi' \in \Pi} \ell_{BC}(\pi').
    Set L(\pi) = 2\delta, \mathcal{D} = [], F = [], t = 1
    while L(\pi) > \delta do
       Rollout \pi to generate \mathcal{D}_{\pi} \leftarrow [(s, a), \dots].
       Relabel \mathcal{D}_{\pi} to \mathcal{D}_{E} \leftarrow [(s, a')|a' \sim \pi_{E}(s), \forall s \in \mathcal{D}_{\pi}]
       L(f) = \mathbb{E}_{(s,a) \sim \mathcal{D}_{\tau}}[f(s,a)] - \mathbb{E}_{(s,a) \sim \mathcal{D}_{\tau}}[f(s,a)]
       Append: F \leftarrow F \cup [\arg \max_{f' \in \mathcal{F}} L(f')].
       Append: \mathcal{D} \leftarrow \mathcal{D} \cup [(s,t) \mid \forall s \in \mathcal{D}_{\pi}].
       L(\pi) = \mathbb{E}_{(s,t)\in\mathcal{D}}[F[t](s,\pi(s))] + \ell_{BC}(\pi) + R(\pi)
       Optimize: \pi \leftarrow \arg\min_{\pi' \in \Pi} L(\pi').
       t \leftarrow t + 1
    end while
```