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Problem Definition

MDP : (S, A, T,r T, R)

State space — S

Action space — A

Transition operator — 7 : § x A — A(S)
Reward function — 7 : S x A — [—1,1]
Horizon — T

initial state distribution — Py
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Problem Definition

® Policy class: [T = {7 : S — A(A)}

e Trajectory: 7 = (84, a¢)1—;
T ~ m means that 7 is generated by s; ~ Py, a; ~ 7(s;) and
sir1 =T (st at)

® Value function : V[ (s) = E[Zfztr(st/, at/)‘T ~ TS = s]
¢ Q-value function: Q7 (s) = E[ZtT/:tT(St', ay)
® Advantage function: AT (s,a) = Q7 (s,a) — V[ (s)
® Performance: J(7) = E[ZtT,:tr(st/,at/)
® Imitation Gap: J(7g) — J(m)

TNW,StZS,atZ(I:|

T"\'Tl'i|
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Problem Definition

o Fr.={f:8xA—[—1,1]} : class of reward functions
o Fo={f:Sx A= [-T,T]} : set of @ functions induced by
sampling actions from some 7

® Fo, ={f:8 x A—[—1,1]}: set of Q functions induced by
sampling actions from g

o F={f:8 xA— R} is convex, compact, closed under negation,
and finite dimensional
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Problem Definition

Moments

Reward:
T T
J(rg) = J(7) = Bramg > 7(st,01) = Bree Y 7(s1, 1)
t=1 t=1
T T
- ]ETNT(' Z —T(St, at) - ETNTFE Z _r(5t7 at)
t=1 t=1
T T
S sup ETNWEZf(Staat) ETNWEZf(St7at)
ferr t—1 =1
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Problem Definition

Moments

Off-policy Q:

T

J(mg) = J(7) = Ernnp [Z QF (st at) — Eron(s,) QF (5t at)]
t=1

T

< sup Eronp ZETW(st) Qf (st,a) — QF (St,at)]
feFq =1

(Qf € FovVm e IL,r € F)

Need to justify using the performance diff lemma
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Problem Definition

Moments

On-policy Q:

T

Z Q:E(St, at) - Eme(st) Q?E(St, at)]

t=1

T

< sup Eron Z Qg(sta at) - ]ETNTK'(St) [Q?(stv a)]]
feFep t=1

(QrF € Fop,Vr € Fr)

In realizable setting, 7 € 11, F, C Fq.
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Problem Definition

Moment matching games

2 player minimax game:

@ Learner (min player): select policy 7w € II

@® Discriminator (max player): select function f € F
F={f:8 x A— R} is convex, compact, closed under negation,
and finite dimensional.
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Problem Definition
Moment matching games

Payoff Functions:

@ On-policy reward:

T
Ul(ﬂ-a f) = % <]ETN7T Z f(8t7 at) - ETNTFE Z f(5t7 at))

t=1 t=1

® On-policy Q:

T
Ur(m, f) = <]Ea5;(7;t Zf S1,0 MEZf(st,at)>
t=1

© Off-policy Q:

T
U1(7T, = (rerf St,at T Zf Staat>

NI~

a~7r S
B(st) 1=
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Approximate Equilibria

A pair (7 € 11, fe F) is a 6-approximate equilibrium solution if

2 . A 1)
<Uj(f,7) < ;rellfTUj(f,ﬂ) +3

NGNS

sup U; (f, ) —
feF

An imitation game J-oracle ¢{0}(-) takes payoff function U and return
(ko)-approximate equilibrium strategy for the policy player.
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MDP examples

Figure 2. Left: Borrowed from (Ross et al. 2011), the goal of LOOP
is to spend time in s;. Right: a folklore MDP CLIFF, where the
goal is to not “fall off the cliff” and end up in s, evermore.

BD (UA) Moments and Matching 12 /27



Performance Bounds

MOMENT MATCHED UPPER BOUND LOWER BOUND

REWARD O(€T) Q(eT)
OFF-POLICY Q O(eT?) Q(eT?)
ON-POLICY @ O(eHT) Q(eT)

Table 2. An overview of the difference in bounds between the three
types of moment matching. All bounds are on imitation gap (1).
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Performance Bounds

Lemma 1. Reward Upper Bound: If F, spans F, then
for all MDPs, wp, and @ < W{e}(U;), J(mg) — J(7) <
O(eT).

Proof.

T T
J(rp) — J(m) < sup <E767r Z f(st,at) — Ereny Z f(st, at))
t=1

feFr

T
< sup ( TET Z 2f St, at TEﬂ'E Z 2f(5ta at))
t=1

= 2T sup U1(7T,f) < 2Te.
fer
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Performance Bounds

Lemma 2. Reward Lower Bound: There exists an MDP,
g, and w < U{e}(Uy) such that J(rg) — J(7) > Q(eT).

Proof. Consider CLIFF example with r(s,a) = —15, — 1,, and a perfect
expert that never takes as. If P(az|sg) = ¢, the optimal discriminator
would be able to penalize the learner on average € per step for T steps.

Therefore, J(ng) — J(w) =T < Q(eT).
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Recoverability

considering skipping
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Algorithms

Theoretical guarantees

Goal: Construct the oracle.

Assumptions:

@ State is finite

® Policy class is complete
Approach:

@ Outer player follows a no regret strategy

® Inner player follows a best response strategy
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Algorithms

Theoretical guarantees

An efficient no-regret algorithm over a class X' produces

z', ..., 2! € X that satisfy the following property for any sequence of loss

functions 11, ..., 1H:

H
Regret(H) = Z mlnz I'(z) < Bx(H)
t

TeEX

where 52 ( ) < ¢ holds for H that are O(poly(1/¢))
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Algorithms

Theoretical guarantees

Primal. We execute a no-regret algorithm on the policy
representation, while a maximization oracle over the space
JF computes the best response to those policies.

Dual. We execute a no-regret algorithm on the space F,
while a minimization oracle over policies computes entropy
regularized best response policies.

Outer player | Inner player Application
Primal Learner Discriminator | Off-Q, On-Q
Dual | Discriminator Learner Reward
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Algorithms

Theoretical guarantees

Theorem 1. Given access to the no-regret and maxi-
mization oracles in either primal or dual above, for
all three imitation games we are able to compute a o-
approximate equilibrium strategy for the policy player in
poly(3,T,In S|, In | A|) iterations of the outer player opti-
mization.
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Algorithms

Proof of theorem 1: Primal case

Goal: Find 7 such that maxser U;(7, f) <6

Procedure:

® Fort=1,...,N do:

® No-regret algorithm to find 7
® Set f?to be the best response to 7’

@® Return # = 7", t* = argmin, U; (7, f?)
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Algorithms

Proof of theorem 1: Primal case

N
S ft)—%mmU( ft>s5“(N)s5
t

mell
for N = poly(1/6). Since mg € 1II,
L
mtan L < — zt:Uj
Since f! is the best response to 7:
min max U; (7", f) < 6

t feF
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Algorithms

Theoretical guarantees

Integral Probability Metric (IPM):

sup {Ezp, [f(2)] = Exnp, [f(2)]}
feFr

In our case: (IPM ojective)

T
sup Y {Eonn[f(@)] = Exnrp[f (2)]}

feri=

Need to connect this IPM to the imitation gap or payoff functions
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Algorithms

Off-Q

AdVIL: Adversarial Value-moment Imitation Learning

Algorithm 1 AdVIL
Input: Expert demonstrations D, Policy class II, Dis-
criminator class F, Performance threshold ¢, Learning
rates ny > 1)
Output: Trained policy 7
Setwr €I, f € F, L(m, f) =28
while L(7, f) > § do
L(m, £) = By appp[Eamno)[f(5,2)] — (5, a)]
f e f+nViL(r, f)
T T —NVL(m, [)
end while
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Algorithm: Off-Q

Derivation
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Algorithms

Reward

AdRIL: Adversarial Reward-moment Imitation Learning

Algorithm 2 AdRIL
Input: Expert demonstrations D, Policy class I, Dy-
namics 7, Kernel K, Performance threshold o
Output: Trained policy 7
Setr eI, f=0,D,={},D' ={}, L(~, f) =26
while L(r, f) > ¢ do
f — ]ETND7r [Zt K(sa7 )] - ET~DE [Zt K(Sa7 )]
7, D' <~ MaxEntRL(T =T7,r = —f)

D, + D,UD'
L(m, [) = Ernp 204 f(5:0)] = Ernpp D f(5,a)]
end while
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Algorithms

On-Q

DAeQulL: DAgger-esque Qu-moment Imitation Learning

Algorithm 3 DAeQuIL
Input: Queryable expert 7, Policy class II, Discrimina-
tor class F, Performance threshold §, Behavioral cloning
loss {pc : II — R, Strongly convex fn R : II — R
Output: Trained policy 7
Optimize: 7 < arg min, e £pc(n’).
Set L(m)=20,D=[,F=[,t=1
while L(7) > ¢ do
Rollout 7 to generate D < [(s, a),...].
Relabel Dy to D < [(s,d')|a’ ~ 7E(s), Vs € Dx]
L(f) = IE(S,&)N'D7r [f(s’ (l)] - E(s,a)N'DE [f(S, (1)]
Append: F' < F U [argmaxycr L(f')].
Append: D < DU |(s,t)|Vs € Dy].
L(r) = E(s pep[F[t(s, 7(s))] + £c(m) + R(7)
Optimize: 7 < arg ming e L(7’).
tt+1
end while
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