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multi-task learning

Given M learning tasks {Ti}Mi=1, where all the tasks or a subset of
them are related but not identical.

goal: improve the performance of multiple related learning tasks by
leveraging useful information among them.
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example: computer aided medical diagnosis
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example: navigating unsignalized intersection

three navigation tasks, non-identical but related:

■ going straight

■ turning left

■ turning right
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How to encode the task relatedness into the learning model?

■ Low-rank approach

■ Task-clustering approach

■ Task-relation learning approach

■ Multi-level approach
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■ Linear stochastic bandit

■ Multi-task linear stochastic bandit

■ Multi-task reinforcement learning
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Linear stochastic bandit

Recall Multi-Armed Bandit model in the class
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Linear stochastic bandit - Learning model

decision set (given in advance): Dt ⊂ Rd

choose action: Xt

observe reward: Yt = ⟨Xt, θ∗⟩+ ηt
where θ∗ ∈ Rd (unknown), ηt noise, centered, tail constrained

goal: max
∑n

t=1 ⟨Xt, θ∗⟩
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Linear stochastic bandit - OFUL algorithm

maximise reward ⇔ minimise regret

Rn =

(
n∑

t=1

⟨x∗t , θ∗⟩

)
−

(
n∑

t=1

⟨Xt, θ∗⟩

)
=

n∑
t=1

⟨x∗t −Xt, θ∗⟩
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Linear stochastic bandit

Theorem (Self-Normalized Bound for Vector-Valued
Martingales)

Let Xt be an Rd-valued stochastic process. Assume that V is a
d× d positive definite matrix. For any t, define

V̄t = V +

t∑
s=1

XsX
⊤
s , St =

t∑
s=1

ηsXs

Then with probability at least 1− δ for all t,

∥St∥2V̄ −1
t

≤ 2R2 log

(
det
(
V̄t

)1/2
det(V )−1/2

δ

)
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Linear stochastic bandit - confidence sets

ℓ2-regularized least-squares estimate of θ∗:

θ̂t =
(
X⊤

1:tX1:t + λI
)−1

X⊤
1:tY1:t

Theorem (Confidence Ellipsoid)

With probability at least 1− δ for all t, θ∗ lies in the set

Ct =

{
θ ∈ Rd :

∥∥∥θ̂t − θ
∥∥∥
V̄t

≤ R

√
2 log

(
det(V̄t)

1/2
det(λI)−1/2

δ

)
+ λ1/2S

}
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Linear stochastic bandit - confidence sets

Theorem (Confidence Ellipsoid Cont’d)

Furthermore, if for all t ||Xt||2 ≤ L, the with probability at least
1− δ for all t, θ∗ lies in the set

Ct =

{
θ ∈ Rd :

∥∥∥θ̂t − θ
∥∥∥
V̄t

≤ R

√
d log

(
1+tL2/λ

δ

)
+ λ1/2S

}

As comparison:

■ Dani et al. (2008):
∥∥∥θ̂t − θ∗

∥∥∥
V̄t

≤ Rmax

{√
128d log(t) log

(
t2

δ

)
, 83 log

(
t2

δ

)}
■ Rusmevichientong and Tsitsiklis (2010):∥∥∥θ̂t − θ∗

∥∥∥
V̄t

≤ 2κ2R
√
log t

√
d log(t) + log (t2/δ) + λ1/2S
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Linear stochastic bandit - regret

Theorem
Assume that for all t and all x ∈ Dt ⟨x, θ∗⟩ ∈ [−1, 1], the with
probability at least 1− δ the regret of the OFUL algorithm satisfies,

Rt ≤ 4
√

td log
(
λ+ tL

d

){√
λS +R

√
d log

(
1 + tL

λd

)
+ 2 log 1

δ

}

Almost matches lower bound by Rusmevichientong and Tsitsiklis,
which is Ω(d

√
t)
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Multi-task Linear stochastic bandit - regret
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Multi-task Linear stochastic bandit - Learning model

play M tasks concurrently for T steps each

decision set (given in advance): At,i ⊂ Rd

choose action: xt,i for i ∈ [M ]

observe reward: Yt,i = ⟨xt,i,θi⟩+ ηt,i for i ∈ [M ]

goal: minReg(T )
def
=
∑T

t=1

∑M
i=1

(〈
x⋆
t,i,θi

〉
− ⟨xt,i,θi⟩

)
where, x⋆

t,i = argmaxx∈At,i
⟨x,θi⟩.
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Multi-task Linear stochastic bandit

Key assumption:

There exists a linear feature extractor B ∈ Rd×k and and a set of
k-dimensional coefficients {wi}Mi=1 such that {θi}Mi=1 satisfies
θi = Bwi.

Other standard regularity assumptions

∥θi∥2 ≤ 1, ∀i ∈ [M ]

∥x∥2 ≤ 1, ∀x ∈ At,i, t ∈ [T ], i ∈ [M ]
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Multi-task Linear stochastic bandit

How about we run OFUL algorithm for the M tasks independently?

Recall the confidence set from OFUL algorithm:

Ct =

{
θ ∈ Rd :

∥∥∥θ̂t − θ
∥∥∥
V̄t

≤ R

√
d log

(
1+tL2/λ

δ

)
+ λ1/2S

}
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Multi-task Linear stochastic bandit - Multi-Task Low-Rank
OFUL
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Multi-task Linear stochastic bandit - confidence sets

optimism in the face of uncertainty principle

choose an optimistic estimation

θ̃t = argmaxθ∈Ct

(
max
x∈At

⟨x,θ⟩
)

multi-task setting:

Θ̃t = argmaxΘ∈Ct

(
max

{xi∈At,i}Mi=1

M∑
i=1

⟨xi,θi⟩

)

where Θ
def
= [θ1,θ2, · · · ,θM]
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Multi-task Linear stochastic bandit - confidence sets

Suppose we have samples collected till t− 1, calculate by
least-square problem:

argmin
B∈Rd×k,w1..M∈Rk×M

M∑
i=1

∥∥∥yt−1,i −X⊤
t−1,iBwi

∥∥∥2
2

s.t. ∥Bwi∥2 ≤ 1,∀i ∈ [M ]
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Multi-task Linear stochastic bandit - confidence sets

Theorem
With probability at least 1− δ for all t, the true parameter
θ = Bw is always contained in the confidence set

Ct
def
=

{
Θ = BW :

∑M
i=1

∥∥∥B̂tŵt,i −Bwi

∥∥∥2
Ṽ t−1,i(λ)

≤ L , B ∈ Rd×k,wi ∈ Rk, ∥Bwi∥2 ≤ 1,∀i ∈ [M ]
}

where. L = Õ(Mk + kd).
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Multi-task Linear stochastic bandit - regret

Theorem
With probability at least 1− δ for all t, the regret of Multi-Task
Low-Rank OFUL algorithm is bounded by:

Reg(T ) = Õ(M
√
dkT + d

√
kMT +MT

√
dζ)

Theorem
For any k,M, d, T , with k < d < T and k < M , and any learning
algorithm. There exist a multi-task linear bandit instance such that
the regret of algorithm is lower bounded by

Reg(T ) ≥ Ω(Mk
√
T + d

√
kMT +MT

√
dζ)
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Multi-task RL

undiscounted episodic MDP:

M = (S,A, p, r,H)

multi-task episodic MDP:

M1,M1, · · · ,Mm

share the same state space and action space, but have different
rewards and transitions
The total regret of M tasks in T episodes:

Reg(T )
def
=

T∑
t=1

M∑
i=1

(
V i∗
1 − V

πi
t

1

) (
si1t
)
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Multi-task RL - approximate linear value functions

at h ∈ [H], define the following function space

Q′
h =

{
Qh (θh) | θh ∈ Θ′

h

}
where Qh (θh) (s, a)

def
= ϕ(s, a)⊤θh.

V ′
h =

{
Vh (θh) | θh ∈ Θ′

h

}
where Vh (θh) (s)

def
= maxaϕ(s, a)

⊤θh
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Multi-task RL - approximate linear value functions

inherent Bellman error (Zanette et al., 2020a):

Ih
def
= sup

Qh+1∈Qh+1

inf
Qh∈Qh

sup
s∈S,a∈A

|(Qh − Th (Qh+1)) (s, a)|

where, Bellman optimality operator:

Th (Qh+1) (s, a)
def
= rh(s, a) + Es′∼ph(·|s,a)max

a′
Qh+1

(
s′, a′

)
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Multi-task RL

in the case of multi-task RL, redefine the parameter space:

Θh
def
=
{(

Bhw
1
h,Bhw

2
h, · · · ,Bhw

M
h

)
: Bh ∈ Od×k,wi

h ∈ Bk,Bhw
i
h ∈ Θi′

h

}
a generalization of inherent Bellman error:

Imul
h

def
= sup{Qi

h+1}
M

i=1
∈Qh+1

inf{Qi
h}

M

i=1
∈Qh

sups∈S,a∈A,i∈[M ]

∣∣(Qi
h − T i

h

(
Qi

h+1

))
(s, a)

∣∣
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Multi-task RL - MTLR-LSVI

optimization procedure in every episode:

max
ξ
i
h,θ̂

i
h,θ

i
h

∑M
i=1maxai

(
ϕ
(
si1, a

i
))⊤

θ
i
1

constraints:

■ B̂h

[
ŵ1

h ŵ2
h · · · ŵM

h

]
≤ argmin

||Bhw
i
h||2≤D

∑M
i=1

∑t−1
j=1 L

(
Bh,w

i
h

)
■ θ

i
h = θ̂

i

h + ξ
i
h;

∑M
i=1

∥∥∥ξih∥∥∥2
Ṽ

i
ht(λ)

≤ αht;
(
θ
1
h,θ

2
h, · · · ,θ

M
h

)
∈ Θh
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Multi-task RL - regret

Theorem
With probability at least 1− δ the regret after T episodes is
bounded by:

Reg(T ) = Õ(HM
√
dkT +Hd

√
kMT +HMT

√
dI)

Key step to the result:

M∑
i=1

∥∥∥θ̂i

h − θ̇
i
h

∥∥∥2
Ṽ

i
ht(λ)

= Õ
(
Mk + kd+MTI2

)
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Multi-task RL - lower bound

Theorem
The expected regret of any algorithm where
d, k,H > 10, |A| ≥ 3,M ≥ k, T = Ω(d2H), I ≤ 1/4H is

Ω(Mk
√
HT + d

√
HkMT +HMT

√
dI)
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Multi-task RL - MTLR-LSVI

Thanks!
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