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multi-task learning

Given M learning tasks {7;}M,, where all the tasks or a subset of
them are related but not identical.

goal: improve the performance of multiple related learning tasks by
leveraging useful information among them.
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example: computer aided medical diagnosis



example: navigating unsignalized intersection

three navigation tasks, non-identical but related:
B going straight
B turning left
B turning right



How to encode the task relatedness into the learning model?

B Low-rank approach
B Task-clustering approach
B Task-relation learning approach

B Multi-level approach



B Linear stochastic bandit

B Multi-task linear stochastic bandit

B Multi-task reinforcement learning



Linear stochastic bandit

Recall Multi-Armed Bandit model in the class

Algorithm 2 Multi-Armed Bandits
for k=0.1,..., K —1do
agent takes action aj according to 7
agent receives a noisy reward 7y, € [0,1], with E[rg|as] = r(a®).
end for

ke




Linear stochastic bandit - Learning model

decision set (given in advance): D, C R?
choose action: X,

observe reward: Y; = (Xy,60,) + n
where 0, € R? (unknown), 7; noise, centered, tail constrained

goal: max >, | (X4, 0,)



Linear stochastic bandit - OFUL algorithm

for ¢ =1,2,... do
(Xi,0;) = argmax, pyep, xc,_, (7,0)
Play X; and observe reward Y;
Update

end for

maximise reward < minimise regret

R, = <Z <x:;,e*>> — (Z <Xt,0*>> =Y (= Xi,0.)

t=1 t=1 t=1



S
Linear stochastic bandit

Theorem (Self-Normalized Bound for Vector-Valued
Martingales)

Let X; be an R%-valued stochastic process. Assume that V is a
d x d positive definite matrix. For any t, define

t t
Vi=V+Y XX, S=> nX,
s=1

s=1

Then with probability at least 1 — § for all t,

V)12 ~1/2
det (V4 det(V
HStH%‘/tfl < 2R? log ( ( t) 5 (V) )



Linear stochastic bandit - confidence sets

£o-regularized least-squares estimate of 6,:

~ —1
6, = (x{txm + )J) X7, Y1,

Theorem (Confidence Ellipsoid)
With probability at least 1 — & for all t, 0, lies in the set

Ny -
o SR\/QlOg <M> +/\1/25}
t

Ct:{é’eRd:HéA'tfH
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Linear stochastic bandit - confidence sets

Theorem (Confidence Ellipsoid Cont'd)

Furthermore, if for all t || X¢||2 < L, the with probability at least
1— 46 forallt, 0, lies in the set

Ct:{eeRd:H@g—ﬁ

1+tL2 /X 1/2
< e~ /A
7 <R dlog( 5 ) + A S}

As comparison:

M Dani et al. (2008): |4 - 0.

% < Rmax{ 128d log(t) log <%), glog (%)}
B Rusmevichientong and Tsitsiklis (2010):
H@fa* . < 262RyIogt\/dlog(?) + log (7/8) + A1/2S
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Linear stochastic bandit - regret

Theorem
Assume that for all t and all x € Dy (x,0,) € [—-1,1], the with
probability at least 1 — § the regret of the OFUL algorithm satisfies,

Ry < 4y/tdlog (A + &) {ﬁS+R\/dlog(1 +1) +210g%}

Almost matches lower bound by Rusmevichientong and Tsitsiklis,
which is Q(dv/t)
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Multi-task Linear stochastic bandit - regret
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Multi-task Linear stochastic bandit - Learning model

play M tasks concurrently for T" steps each
decision set (given in advance): A;; C R?
choose action: x;; for i € [M]

observe reward: Y ; = (x4, 0;) + n:; for i € [M]

. def
goal: minReg(T) = Zle Zi‘il (<mjz,01> — (:ctyi,BZ-))
where, ¥, = argmax,c 4, , (z, 0;).



Multi-task Linear stochastic bandit

Key assumption:

There exists a linear feature extractor B € R%** and and a set of
k-dimensional coefficients {w;}}%, such that {6;}}, satisfies

Other standard regularity assumptions

161, < 1,Vi € [M]
2|2 < 1,Vx € Ayt € [T),i € [M]



Multi-task Linear stochastic bandit

How about we run OFUL algorithm for the M tasks independently?
Recall the confidence set from OFUL algorithm:

1+tL2 /X 1/2
< —_
Vﬁ_R,/dlog( FL) S}

Ctz{aeRd:H@—e
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Multi-task Linear stochastic bandit - Multi-Task Low-Rank
OFUL

Algorithm 1 Multi-Task Low-Rank OFUL

1: for stept=1,2,---,7 do

2: Calculate the confidence interval C; by Eqn 8

3: O, Ty = argMmaxgec, ;€A sz\i1 (i, 0;)

4: for task i =1,2,--- , M do

5 Play x;; for task i, and obtain the reward y; ;
6: end for

7: end for
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Multi-task Linear stochastic bandit - confidence sets

optimism in the face of uncertainty principle

choose an optimistic estimation

0; = argmaxgec, <g&>§<$a 9>>

multi-task setting:

M
ét = argmaxgec, ( max Z <5L'i70i>)

{mic A} T

where © & [0,,0,, - ,00]



Multi-task Linear stochastic bandit - confidence sets

Suppose we have samples collected till ¢ — 1, calculate by
least-square problem:

M 9
. T
arg min g Hyt_l’i - X, ;Bw; )

BeRI*k quy pyeRFXM 5

st. ||[Buwil, < 1,Vi € [M]




Multi-task Linear stochastic bandit - confidence sets

Theorem

With probability at least 1 — & for all t, the true parameter
0 = Bw is always contained in the confidence set

I def

v e . 2
, & {@:BW:Z;Z1 HBtwm—Bwi

, < L,BeR™ w,; € R, |Bw;|, < 1,Vi € [M]}
Vic1,i(A)

where. L = O(Mk + kd).



Multi-task Linear stochastic bandit - regret

Theorem
With probability at least 1 — & for all t, the regret of Multi-Task
Low-Rank OFUL algorithm is bounded by:

Reg(T) = O(MVdET + dVkMT + MTVdC)

Theorem

For any k,M,d, T, with k <d <T and k < M, and any learning
algorithm. There exist a multi-task linear bandit instance such that
the regret of algorithm is lower bounded by

Reg(T) > Q(MEVT + dVEMT + MTVd¢)



Multi-task RL
undiscounted episodic MDP:
M= (S, A pr H)
multi-task episodic MDP:
MMM

share the same state space and action space, but have different
rewards and transitions
The total regret of M tasks in T episodes:



Multi-task RL - approximate linear value functions

at h € [H], define the following function space
Q) = {Qn (84) | 01 € O}, }
where Q1 (81) (s,a) < ¢(s,0) 70,
Vi, ={Vi(0n) | 61 € O}, }

where V3, (61,) (s) ©f nax, o(s,a)" 0y



Multi-task RL - approximate linear value functions

inherent Bellman error (Zanette et al., 2020a):

def .
I, = sup inf  sup |[(Qn — Th (Qn+1)) (s, a)]
Qni1€Qn 11 QnEQh s€8,aeA

where, Bellman optimality operator:

def
T (Qnt1) (s,a) = ri(s,a) + By (50) max Qn1 (s',a")



e
Multi-task RL

in the case of multi-task RL, redefine the parameter space:

def

0, = (Bhw,lL,Bhwf“ s 7.Bh'l.U;,LV[) : By € Oka7w§L € Bk7Bh’wﬁl S @Z

a generalization of inherent Bellman error:

def . i i i
I}TUI = Sup{Q;LH}{lEQh,ﬂ mf{Q;b}i\ilEQh SUPses ac A ig[M] }(QZ N 7711 (thJrl)) (37 a)|



Multi-task RL - MTLR-LSVI

Algorithm 2 Multi-Task Low-Rank LSVT

1: Input: low-rank parameter k, failure probability §, regularization A = 1, inherent Bellman error

z

2: Initialize Vj,y = A for h € [H]

3: for episodet=1,2,--- do

4 Compute e for h € [H]. (see Lemma 9)
5 Solve the global optimization problem 1
6: Compute 7}, (s) = argmax,, ¢(s,a)’ 6},
K
8:
9:

Execute 7, for task i at step h
. Collect {shy, aj,y, 7 (shy,al,) } for episode t.
: end for

optimization procedure in every episode:

M i i\\ 1 pt
maxg: i gi ity maxg (¢ (s8,a?)) 6
constraints:

. R . . ) M 71 )
[ | By, [ 'w}L w% w;\L/I } < argmin )L, 3‘:1 L (Bh,w}l)
[|Brwj||l2<D

—i i i —i ||? . (Al 22 —M
n 0, =0, + & Zi]\il thH~i < <9h=9ha“' , 0 ) €Oy
V(N



Multi-task RL - regret

Theorem
With probability at least 1 — § the regret after T' episodes is
bounded by:

Reg(T) = O(HMVdET + HdVEMT + HMTVdT)
Key step to the result:

M N .i 112
> |6 - 6,
=1

1=

o= O (Mk +kd+ MTT?)



Multi-task RL - lower bound

Theorem
The expected regret of any algorithm where
d,k,H>10,|A| >3, M >k, T =Qd*H), T <1/4H is

Q(MkVHT + dVHEMT + HMTVdT)



-
Multi-task RL - MTLR-LSVI

Thanks!
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