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1 Infinite hypothesis classes can be PAC learnable

In the last lecture, we have seen that the size of a hypothesis class H can be a important factor of sample
complexity of learning from that H. Specifically, if H is finite, then it has a PAC sample complexity upper
bound of O( 1

ε (ln |H |+ ln 1
δ )), and an agnostic PAC sample complexity upper bound of O( 1

ε2 (ln |H |+ ln 1
δ )).

Does that mean that if H is infinite, then H is not PAC learnable?
In this section, we give a counterexample, showing that for the hypothesis class of threshold functions on

the [0, 1] interval, H is PAC learnable. To formalize the statement, we need some notation setup.

1. The instance domain X be the [0, 1] interval,

2. The label space Y be {−1,+1}.

3. The hypothesis class H =
{
ht , 21(x > t)− 1 : t ∈ [0, 1]

}
is the set of threshold functions over [0, 1].

Given classifier ht, it will classify all examples x on the left of t as label −1, and classify all examples
x on the right of t (including t) as label +1. Note that H is (uncountably) infinite.

Recall that the consistency algorithm is one that returns a classifier ĥ in H that agrees with all training
examples. We have the following theorem on the sample complexity of the consistency algorithm.

Theorem 1. Suppose D is a distribution over [0, 1] that is realizable with respect to H. Then, for any
ε ∈ (0, 12 ), δ ∈ (0, 1), given m ≥ 1

ε ln 2
δ training examples drawn iid from D, the consistency algorithm

returns a classifier ht̂ such that with probability 1− δ,

err(ht̂, D) ≤ ε.

Proof. We will only consider the setting where D is a continuous probability distribution that has density
on [0, 1]. (For a rigorous proof for general D, see Appendix A for details.)

Consider two points tL and tR, which are defined such that

P(x ∈ [t?, tR]) = ε,

P(x ∈ [tL, t
?]) = ε.

We consider the setting where such tL and tR exists. See Appendix A for the proof for the general setting
where tL and tR may not exist.

We are going to show that given a sample size m ≥ 1
ε ln 2

δ , there exists an event Ē, such that at least
one sample is in [t?, tR], and at least one sample is in [tL, t

?]. Note that if this happens, then the returned
threshold t̂ will be inside [tL, tR].

If t̂ is in [tL, t
?], then

err(ht̂, D) = P(x ∈ [t̂, t?] ≤ P(x ∈ [tL, t
?]) = ε.
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Similarly, if t̂ is in [t?, tR], then

err(ht̂, D) = P(x ∈ [t?, t̂] ≤ P(x ∈ [t?, tR]) = ε.

Now define event EL (resp. ER) be such that no sample is in [tL, t
?] (resp. [t?, tR]), and define E =

EL ∪ ER. It suffices to show P(E) ≤ δ. Indeed,

P(EL) = (1− P(x ∈ [tL, t
?]))m ≤ e−εm = δ/2

and similarly P(ER) ≤ δ/2. This implies that P(E) ≤ P(EL) + P(ER) ≤ δ.

2 VC dimension

We provide a more refined characterization of the complexity of a hypothesis class. Generally, if a hypothesis
class is more expressive, then we may need more samples to learn from them. But how can we measure the
expressiveness of a hypothesis class?

Definition 1. Given a hypothesis class H and a set of unlabeled examples S = {x1, . . . , xn}, define the
projection of H to S as:

ΠH(S) =
{

(h(x1), . . . , h(xn)) : h ∈ H
}
.

Intuitively, if H is more expressive, then |ΠH(S)| is larger. The largest possible value of |ΠH(S)| is 2n,
where H achieves all possible +1/− 1 labelings on S. In this case, we call that S is shattered by H.

Definition 2. The VC dimension of H (abbrev. VC(H)), is the largest nonnegative integer d such that there
exists S of size d that is shattered by H. If no such d exists, we VC(H) is defined to be infinity.

We have the following more checkable definition of VC dimension:

Lemma 1. Suppose we are given a hypothesis class H and an integer d. Then VC(H) = d is equivalent to
the following two holding simultaneously:

1. There exists a set of examples of size d that is shattered by H.

2. Any set of examples of size d+ 1 are not shattered by H.

Examples of VC dimension:

1. Thresholds in R. H =
{
ht(x) , 21(x > t)− 1 : t ∈ [0, 1]

}
. It can be seen that {0.5} is shattered by

H. However, consider any set S = {x1, x2}. Suppose x1 ≤ x2. Then it is impossible to find ht in H
such that ht(x1) = +1 and ht(x2) = −1. Therefore, VC(H) = 1.

2. Intervals in R. H =
{
ha,b(x) , 21(a ≤ x ≤ b)− 1 : t ∈ [0, 1]

}
. It can be seen that {0.2, 0.5} is shattered

by H. However, consider any set S = {x1, x2, x3}. Suppose x1 ≤ x2 ≤ x3. Then it is impossible to find
ha,b in H such that ha,b(x1) = +1, ha,b(x2) = −1, ha,b(x3) = +1. The reason is that: ha,b(x1) = +1
implies that a ≤ x1; ha,b(x3) = +1 implies that x3 ≤ b. However, this would imply that x2 ∈ [a, b],
therefore ha,b(x2) = +1, and ha,b(x2) = −1 is impossible. Therefore, VC(H) = 2.

3. Homogeneous linear classifiers in Rd. H =
{
hw(x) , 21(w · x > 0)− 1 : w ∈ Rd

}
. It can be seen that

the canonical basis vectors {e1, . . . , ed} (or more generally, any set of linearly independent examples) is
shattered by H. To see this, note that given a set of linearly independent examples x1, . . . , xm, consider
the matrix M ∈ Rm×d whose rows are the xi’s. Note that M has rank m, therefore its columns also
spans the whole Rm. Hence, for any vector l in Rm, there is a vector w in Rd, such that

Mw =

〈w, x1〉. . .
〈w, xd〉

 = l.
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This immediately implies that for any labeling in {−1,+1}m, there is a linear classifier in Rm that
achieves that labeling. Hence, VC(H) ≥ d.

However, consider any set S = {x1, . . . , xd+1}. We now show that S is not shatterable.

First, x1, . . . , xd+1 are d + 1 vectors in Rd, therefore they must be linearly dependent. Thus, there
exists α1, . . . , αd+1 not all zero, such that

d+1∑
i=1

αixi = 0. (1)

Furthermore, there exists α1, . . . , αd+1, such that there exists i? in {1, . . . , d+ 1}, α?i > 0,

d+1∑
i=1

αixi = 0.

The reason is as follows: if there already exists a positive αi in Equation 1, then we are done; otherwise,
we can flip the sign of the αi’s and ensuring at least one positive αi.

Now consider the following labeling (l1, . . . , ld+1), where li =

{
+1, αi > 0

−1, αi ≤ 0
. Can a linear classifier

achieve such labeling? Suppose there is a w that achieves so. Then, for all i in {1, . . . , d+ 1},{
w · xi > 0, αi > 0

w · xi ≤ 0, αi ≤ 0

Thus, for all i, αi 〈w, xi〉 ≥ 0. Specifically, for index i?, αi? 〈w, xi?〉 > 0. Summing over all i’s, this
implies that

d+1∑
i=1

αi 〈w, xi〉 > 0.

This contradicts Equation 1, which would imply that

d+1∑
i=1

αi 〈w, xi〉 = 0.

4. Non-homogeneous linear classifiers in Rd. H =
{
hw(x) , 21(w · x+ w0 > 0)− 1 : (w,w0) ∈ Rd+1

}
.

Using the same reasoning as above, it can be shown that the VC dimension of H is d + 1. We leave
the proof to you as an exercise.

Finally, we define the notion of growth function, which measures the largest possible number of for H to
datasets of fixed size n.

Definition 3. Define the growth function S(H, n) as the maximum number of labelings one can generate on
a dataset of size n, formally,

S(H, n) = max
S:|S|=n

|ΠH(S)|.

We also have the simple observation for finite classes.

Lemma 2. If H is finite, then S(H, n) ≤ |H | and VC(H) ≤ log2 |H |.

Proof. The first statement is trivial as |ΠH(S)| ≤ |H |. For the second statement, suppose H shatters S.
Then, 2|S| ≤ |ΠH(S)| ≤ |H |, implying that |S| ≤ log2 |H |. Therefore, VC(H), the maximum sizes of a
dataset shatterable by H is at most log2 |H |.
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3 Sauer’s Lemma: bounding the growth function

Suppose we have a hypothesis class H of VC dimension d, and a set of m examples {x1, . . . , xm}. We
already know that when m ≤ d, S(H, n) can be as large as 2m. Can we give a good characterization of
S(H, n) when m > d (other than the trivial upper bound of 2m − 1)? We have the following important
combinatorial lemma, discovered independently by several authors (including Sauer, Shelah, Perles, Vapnik
and Chervonenkis) in the 70s.

Theorem 2 (Sauer’s Lemma). Suppose H is a nonempty hypothesis class, and S = {x1, . . . , xn} is a set of
m unlabeled examples. Then,

|ΠH(S)| ≤ | {T ⊆ S : H shatters T} |.

Consequently, if VC(H) = d, then

S(H,m) ≤
d∑
i=0

(
m

i

)
.

(The right hand side is often abbreviated as
(
m
≤d
)
.) Here we use the convention that H always shatters an

empty set.

Remark. We see that the growth function, as a function of m, has the following behavior on its upper
bound: when m ≤ d, the upper bound grows exponentially with m; however, when m > d, the upper bound
grows as a polynomial of m, which is substantially slower. We will see in the next section why this type of
growth is useful for establishing uniform convergence guarantees.

Proof. We will show the first claim by induction on the size of sample m.

• Base case. If m = 1, then there are two subcases to consider: if H classifies x1 in both +1 and −1
labels, then the left hand size is 2, and the right hand side is also 2. Otherwise, H classifies x1 in only
one label, then both sides are equal to 1.

• Inductive case. Before proceeding, we need the following important definition. Define a modification
of the original hypothesis class H: for every labeling (l1, . . . , lm) in ΠH(S), we select one representative
classifier h in H that achieves the labeling; we call the collection of the classifers selected HS . Note
that |HS | = ΠH(S). In addition, define S′ = {x1, . . . , xm−1}.
Now, given HS , let us decompose it to two hypothesis classes, H1 and H2, in the following manner.
Consider a labeling (l1, . . . , lm−1) achieved by H2 on examples S′.

– If both (l1, . . . , lm−1,+1) and (l1, . . . , lm−1,−1) are achievable by HS , then we allocate the pair
of classifiers such that one of them goes to H1, and the other goes to H2.

– Otherwise, only one of (l1, . . . , lm−1,+1) and (l1, . . . , lm−1,−1) is achievable by HS , then we send
the classifier that achieves that labeling to H1.

See Tables 1, 2 and 3 for an example.

Classifier x1 x2 x3 x4
h1 − − − −
h2 − − − +
h3 − + − +
h4 + − − −
h5 + − − +

Table 1: An example with m = 4 and |HS | = 5. The matrix shows HS ’s labelings on {x1, x2, x3, x4}.
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Classifier x1 x2 x3 x4
h1 − − − −
h3 − + − +
h5 + − − +

Table 2: H2’s labelings on {x1, x2, x3, x4}.

Classifier x1 x2 x3 x4
h2 − − − +
h4 + − − −

Table 3: H1’s labelings on {x1, x2, x3, x4}.
By construction, we have the following three simple but important observations:

Claim 1. 1. |H1| = |ΠH1(S′)|, |H2| = |ΠH2(S′)|.
2. If T ⊂ S′ and H1 shatters T , then it is also achieved by HS.

3. If T ⊂ S′ and H2 shatters T , then HS shatters T ∪ {xm}.

Now, let us upper bound the size of HS :

|HS | = |H1|+ |H2|
= |ΠH1

(S′)|+ |ΠH2
(S′)|

≤ |
{
T ⊆ S′ : T shattered by H1

}
|+ |

{
T ⊂ S′ : T shattered by H2

}
|

≤ |
{
T ⊆ S′ : T shattered by H

}
|+ |

{
T ⊆ S′ : T ∪ xm shattered by H

}
|

= |
{
T ⊆ S : xm /∈ T, T shattered by H

}
|+ | {T ⊆ S : xm ∈ T, T shattered by H} |

= | {T ⊆ S : T shattered by H} |

For the second statement, observe that all subsets T shatterable by H is of size at most d. The right
hand size of exactly the number of subsets of size at most d.

Proof of Claim 3. We show the three items respectively.

1. The first statement is trivial, as by construction, for every labeling (l1, . . . , lm−1), there is at most one
classifier in H1 (resp. H2).

2. The second statement is also trivial, as H1 is a subset of HS .

3. Suppose some classifier h in H2 achieves certain labeling (b1, . . . , b|T |) on T . Suppose h’s full la-
beling on S′ is (l1, . . . , lm−1) (which is consistent with (b1, . . . , b|T |)). Then by construction, both
(l1, . . . , lm−1,+1) and (l1, . . . , lm−1,−1) are achieved by HS . This implies that HS achieves labelings
(b1, . . . , b|T |,+1) and (b1, . . . , b|T |,+1) on T ∪ {xm}. Therefore, if H2 achieves all 2|T | labelings on T ,

then HS achieves all 2|T |+1 labelings on T ∪ {xm}.

Example. Consider the example in Tables 1 and 3. Observe that H2 shatters T = {x1} with
classifiers h2 and h4. It can be seen that HS also shatters T ∪{x4} = {x1, x4} with classifiers h1, h2, h4
and h5.)

Remark. The growth function bound
(
m
≤d
)

can further be upper bounded by md+1 or ( emd )d.

A A rigorous proof of Theorem 1

Proof. As D is realizable wrt H, there exists a classifier ht? that has zero error on D.
Let us consider two critical thresholds tL and tR, defined as follows:

tL = sup
{
t ∈ [0, 1] : P(t ≤ x ≤ t?) ≥ ε

}
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If P(0 ≤ x ≤ t?) < ε, then tL is defined as 0.

tR = inf
{
t ∈ [0, 1] : P(t? < x ≤ t) ≥ ε

}
If P(t? < x ≤ 1) < ε, then tR is defined as 1.

Suppose for the moment that both tL and tR are in (0, 1). Our plan is to show the following:

1. With probability 1− δ, the returned threshold t̂ lies in [tL, tR).

2. Wherever t̂ lies in [tL, tR), ht̂ has error at most ε.

We show the two items respectively:

1. By Lemma 3, we have that

P(t? < x ≤ tR) ≥ ε, P(tL ≤ x ≤ t?) ≥ ε.

Now, consider event EL (resp. ER) as the one that for all i, none of xi are in [tL, t
?] (resp. (t?, tR]).

In addition, define E = EL ∪ ER.

Observe that
P(EL) = P(for all i, xi /∈ [tL, t

?]) ≤ (1− ε)m ≤ e−mε ≤ δ/2.

Similarly, P(ER) ≤ δ/2. By union bound, P(E) ≤ P(EL) + P(ER) ≤ δ. Therefore, in the event Ē
(which happens with probability 1− δ), there is an xi (resp. xj) in [tL, t

?] (resp. (t?, tR]). Note that xi
has label −1 and xj has label +1. Thus, the consistency algorithm will return a threshold t̂ between
[tL, tR) (Note that t̂ cannot be tR, as this would misclassify xj).

2. Suppose Ē happens. We show that the generalization error of the returned threshold classifier ht̂ is at
most ε.

(a) Suppose t̂ < t?. As argued above, t̂ ≥ tL. Therefore,

err(ht̂, D) = P(t̂ < x ≤ t?) ≤ P(tL < x ≤ t?) ≤ ε,

where the inequality is from item 1 of Lemma 3.

(b) Suppose t̂ ≥ t?. As argued above, t̂ < tR. Therefore,

err(ht̂, D) = P(t? < x ≤ t̂) ≤ P(t? < x < tR) ≤ ε,

where the inequality is from item 2 of Lemma 3.

Now for the general case, where tL can be 0 or tR can be 1. Note that both cannot happen at the same
time. Suppose tL = 0, then by the exact same reasoning, we can show that with probability 1 − δ, t̂ is in
[t?, tR) or [0, t?]. In the former case, as have been argued before,

err(ht̂, D) ≤ P(t? ≤ x ≤ t̂) ≤ P(t? ≤ x < tR) ≤ ε.

In the latter case,
err(ht̂, D) = P(t̂ < x ≤ t?) ≤ P(0 ≤ x ≤ t?) ≤ ε.

In summary, with probability 1 − δ, err(ht̂, D) ≤ ε. The case of tR = 1 is symmetric and is left as
exercise.

The following lemma crucially uses the continuity property of probability measure, that is, If A1 ⊂ . . . ⊂
An ⊂ . . ., and A = ∪∞n=1An (abbrev. An ↑ A), then limn→∞ P(An) = P(A).
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Lemma 3. 1. Suppose P(0 ≤ x ≤ t?) ≥ ε. Consider

tL , sup
{
t ∈ [0, 1] : P(t ≤ x ≤ t?) ≥ ε

}
.

Then,
P(tL ≤ x ≤ t?) ≥ ε,

P(tL < x ≤ t?) ≤ ε.

2. Suppose P(t? < x ≤ 1) ≥ ε. Consider

tR , inf
{
t ∈ [0, 1] : P(t? < x ≤ t) ≥ ε

}
.

Then,
P(t? < x ≤ tR) ≥ ε,

P(t? < x < tR) ≤ ε.

Proof. We only show the first item. The second item is left as an exercise.
First, by the definition of tL, for all t < tL, P(t ≤ x ≤ t?) ≥ ε. As events

{
tL − 1

n ≤ x ≤ t
?
}
↓

{tL ≤ x ≤ t?} as n→∞, this implies that

P(tL ≤ x ≤ t?) = lim
n→∞

P(tL −
1

n
≤ x ≤ t?) ≥ ε.

Second, by the definition of tL, for all t > tL, P(t ≤ x ≤ t?) < ε. As events
{
tL + 1

n ≤ x ≤ t
?
}
↓

{tL < x ≤ t?} as n→∞, this implies that

P(tL < x ≤ t?) = lim
n→∞

P(tL +
1

n
≤ x ≤ t?) ≤ ε.
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