
CSC 665: Support Vector Machines

Chicheng Zhang

December 10, 2019

1 Support vector machines - the maximum margin hyperplane
problem

We consider linear classification, where examples (xi, yi)
m
i=1 are such that xi ∈ Rd are features, and yi ∈ {±1}

are binary labels.
Suppose that the training set S = (xi, yi)

m
i=1 is linearly separable, i.e. there exists a linear classifier

(w, b) ∈ Rd+1, such that for all i, {
〈w, xi〉+ b > 0 yi = +1,

〈w, xi〉+ b < 0 yi = −1.
(1)

One way to train a linear classifier would be to use the consistency algorithm, i.e. solving a linear program,
that finds a (w, b) such that Equation (1) holds. However, note that not all consistent linear classifiers are
created equal: some of them are closer to training examples than others. Formally, the distance of a point
x in Rd to a hyperplane Hw,b = {x0 : w · x0 + b = 0} is defined as the shortest distance of x to any of the
points in Hw,b:

d(x,Hw,b) = min
{
‖x− x0‖ : w · x+ b = 0

}
. (2)

Can we calculate this distance analytically? First, let us assume without loss of generality that ‖w‖ = 1, as

any hyperplane Hw′,b′ can be written as Hw,b for ‖w‖ = 1 by letting w = w′

‖w′‖ and b = b′

‖w′‖ . Now, consider

a point x0 ∈ Hw,b such that x0 = x+ αw for some α. What is the value of α? Note that

〈w, x+ αw〉+ b = 0,

which implies that α = −(〈w, x〉+ b).

Claim 1. For all x1 in Hw,b,
‖x1 − x‖ ≥ ‖x0 − x‖. (3)

Consequenty, d(x,Hw,b) = | 〈w, x〉+ b|.

Proof. Note that x0 and x1 are both in Hw,b, 〈w, x0〉+ b = 〈w, x1〉+ b = 0. Therefore, 〈x1 − x0, w〉 = 0. In
other words,

〈x1 − x0, x0 − x〉 = 0.

Now, by Pythagorean theorem,

‖x− x1‖2 = ‖x− x0‖2 + ‖x0 − x1‖2 ≥ ‖x− x0‖2,

whch proves Equation (3). This implies that

d(x,Hw,b) = ‖x− x0‖ = | 〈w, x〉+ b|.

1

Here is a proposal:

Find the linear classifier (w, b) that not only separates the examples but also maximizes the
minimum distances to all examples.

Why is the proposal sensible? One observation is that this classifier is the most “robust”. For example, if
test examples happen to be just a little distance away from training examples (with the same labels), then
this classifier would still classify such examples correctly.

Formally, we can describe the proposal as an optimization problem:

maximize
w,b,A

A (4)

s. t. A > 0, ‖w‖ = 1,

yi(〈w, xi〉+ b) > 0, ∀i ∈ {1, . . . , n} ,
| 〈w, xi〉+ b| ≥ A, ∀i ∈ {1, . . . , n} .

The above program is not a convex program, and is difficult to optimize directly. Let’s make a few
transformations to make it a convex program - i.e. finding a convex optimization problem whose solution is
related to that of the above optimization problem.

Let’s consider the following optimization problem:

maximize
w,b,A

A (5)

s. t. A > 0, ‖w‖ = 1,

yi(〈w, xi〉+ b) ≥ A, ∀i ∈ {1, . . . , n} ,

Our claim is that the above two optimization problems have the same solutions. Why? Because under
A > 0, constraints yi(〈w, xi〉+ b) > 0 and | 〈w, xi〉+ b| ≥ A, together, are equivalent to yi(〈w, xi〉+ b) ≥ A,
as yi ∈ {±1}. For every i, the quantity yi(〈w, xi〉 + b) is the margin of halfspace Hw,b on example (xi, yi).
Therefore the above is also called the “maximum margin hyperplane” problem.

Now let w′ = w
A , b′ = b

A . Note that the above optimization problem is equivalent to

maximize
w′,b′,A

A

s. t. A > 0, ‖w′‖ =
1

A
,

yi(
〈
w′, xi

〉
+ b′) ≥ 1, ∀i ∈ {1, . . . , n} ,

Furthermore, this is equivalent to

minimize
w′,b′

‖w′‖

s. t. yi(
〈
w′, xi

〉
+ b′) ≥ 1, ∀i ∈ {1, . . . , n} ,

As the function x 7→ 1
2x

2 is monotonically increasing for x > 0, we get that the above is equivalent to

minimize
w′,b′

1

2
‖w′‖2 (6)

s. t. yi(
〈
w′, xi

〉
+ b′) ≥ 1, ∀i ∈ {1, . . . , n} ,

Optimization problem (4) is called the support vector machine (SVM). Note that its constraints are all
linear inequalities, which defines a convex constraint set. In addition, its optimization objective is a quadratic
function over optimization variables, which is a convex function. This implies that it is a convex optimization
problem.

2

Recovering the optimal solution of (4). Suppose we have a solution of (6), written as (w′?, b′?). Note
that the optimal A in (5) (thus, in (4)) is 1/‖w′?‖, which is the value of the minimum margin. This implies

that in (5) (thus, in (4)), w? = A?w′? = w′?

‖w′?‖ , b
? = A?b′? = b′?

‖w′?‖ . The optimal hyperplane is simply

Hw?,b? = Hw′?,b′? .

1.1 Optimality condition

To avoid notation clutter, let us drop the apostrophes in optimization problem (6):

minimize
w,b

1

2
‖w‖2 (7)

s. t. yi(〈w, xi〉+ b) ≥ 1, ∀i ∈ {1, . . . , n} ,

What property does the optimal solution (w?, b?) have? We will take a detour and first discuss Lagrangian
duality, a fundamental concept in constrained optimization. Let us first write (7) as an unconstrained
optimization problem over a slightly more complicated objective:

min
w,b

max
α≥0

L(w, b, ξ;α), (8)

where L(w, b;α) = 1
2‖w‖

2 +
∑n
i=1 αi(1− yi(〈w, xi〉+ b)).

Define P (w, b) := maxα≥0 L(w, b;α). Observe that:

P (w, b) =

{
+∞, ∃i, 1− yi(〈w, xi〉+ b) > 0
1
2‖w‖

2, ∀i, 1− yi(〈w, xi〉+ b) ≤ 0

Therefore, optimization problem (8) is equivalent to (7). Now consider switching the orders of min and max
in (8):

max
α≥0

min
w,b

L(w, b;α).

This is called the dual problem of (8) ((8) is called the primal problem). Let’s call the optimal primal value
p? and the optimal dual value d?. What’s the relationship between the primal and dual problems, and their
respective optimal solutions?

We state the following result from numerical optimization. Consider a constrained convex optimization
problem that has both equality and inequality constraints:

minimize
x

f(x)

s. t. gi(x) ≤ 0, ∀i ∈ {1, . . . , n} ,
hi(x) = 0, ∀i ∈ {1, . . . ,m} .

Similar as before, we can define Lagrange function L(x, α, β) = f(x) +
∑n
i=1 αigi(x) +

∑m
i=1 βihi(x). Define

P (x) , max
α≥0,β

L(x, α, β),

D(α, β) = min
x
L(x, α, β),

p? = min
x
P (x) = min

x
max
α≥0,β

L(x, α, β),

d? = max
α≥0,β

D(α, β) = max
α≥0,β

min
x
L(x, α, β),

we have the following result.

3

Theorem 1. Under mild assumptions1, we have that there exists x?, α?, and β?, such that

1. x? is optimal solution of the primal problem and α?, β? is the optimal solution of the dual problem.

2. Strong duality holds:
p? = L(x?, α?, β?) = d?.

3. Karush-Kuhn-Tucker (KKT) condition holds:

∇xL(x?, α?, β?) = 0, Stationarity

∀i, gi(x
?) ≤ 0, hi(x

?) ≤ 0, Primal feasible

∀i, αi ≥ 0, Dual feasible

∀i, αigi(x
?) = 0. Complementary slackness

Applying the theorem to SVM optimization, we can also recover the primal optimal solution (w?, b?)
from dual solution α? by invoking the KKT condition. To see why, recall that in SVM, L(w, b;α) =
λ
2 ‖w‖

2 +
∑n
i=1 αi(1− yi(〈w, xi〉+ b)), hence by stationarity condition,

∇wL(w, b;α) = λw −
n∑
i=1

αiyixi = 0,

which implies that

w? =

n∑
i=1

α?i yixi.

that is, the optimal solution is a linear combination of the feature vectors of training exmaples.
Furthermore, denote by I =

{
i : yi(〈w?, xi〉+ b? = 1

}
the set of examples that has margin exactly equal

to 1. Complementary slackness says that for all i,

α?i (1− yi(〈w?, xi〉+ b?)) = 0.

This implies that for an i /∈ I, as yi(〈w?, xi〉 + b? > 1, αi = 0. We call I the set of support vectors, which
are the vectors that “contribute” to the optimal solution w?.

It can also be verified that there exists at least one i, yi(〈w?, xi〉 + b?) = 1. Pick one such i; b? can be
recovered by the formula b? = yi − 〈w?, xi〉.

1.2 Coping with linear non-spearability

Can we still train SVM if the data is not linearly separable? Note that optimization problem (6) will not
find a solution, as now the constraint set become infeasible. Generally there are two ways to sidestep this
problem: first, introduce nonlinear feature maps; second, relax the SVM formulation to allow for training
examples to be classified incorrectly.

For the first approach, we can consider having a feature map φ : Rd → Rm, so that every example (xi, yi)
is transformed to (φ(xi), yi). Suppose (φ(xi), yi) is linearly separable, then we compute a SVM over these
examples to get w? ∈ Rm+1 and b ∈ R. Our output linear classifier is sign(

〈
w?, φ(xi)

〉
+ b?). For example,

suppose we have a distribution D over R2 × {±1} such that for all examples (x, y)’s on the support of D,
x2

1 + x2
2 ≤ 1 ⇔ y = +1. In this case, we can introduce feature map φ(x) = (x2

1, x
2
2) to make the dataset

linearly separable.

1specifically, f , gi’s are convex, hi’s are linear, and there exists w, b, ξ such that all inequality constraints in are stictly
satisfied, namely the Slater condition.

4

For the second approach, we introduce slack variables ξi ≥ 0 for every example i, to allow some example to
be misclassified. In addition, we introduce a regularization parameter λ > 0 that trades off misclassification
and margin on correct examples:

minimize
w,b,ξ

λ

2
‖w‖2 +

n∑
i=1

ξi (9)

s. t. yi(〈w, xi〉+ b) ≥ 1− ξi, ∀i ∈ {1, . . . , n} ,
ξi ≥ 0, ∀i ∈ {1, . . . , n} ,

Intuitively, when λ is larger, it focuses more on enforcing large margin on correct examples; when λ is smaller,
it forces more on reducing misclassification. Notice that the last two lines can be summarized by: ∀i ∈
{1, . . . , n}, ξi ≥ max(0, 1−yi(〈w, xi〉+b)). Therefore, the optimal choice of ξi equals max(0, 1−yi(〈w, xi〉+b)).
Let φ(z) = max(0, 1− z) and R(w) = λ

2 ‖w‖
2. We thus can rewrite optimization problem (9) as:

minimize
w,b

λR(w) +

n∑
i=1

φ(yi(〈w, xi〉+ b)). (10)

As a convention, we call φ(y(〈w, x〉+ b)) the hinge loss of linear classifier (w, b) on example (x, y), written as
`hinge((w, b), (x, y)). When the margin y(〈w, x〉+b) is larger, the hinge loss is smaller. The above form is also
called a regularized loss minimzation formulation, which captures a wide range of optimization problems in
machine learning (by changing loss function φ and regularizer R), such as logistic regression, ridge regression,
lasso, etc.

Both approaches has its own advantages and drawbacks. For the feature transformation approach, it is
unclear if a φ will guarantee that the transformed dataset satisfies linear separability. For the soft margin
approach, if the dataset is highly linearly nonpseparable (e.g. the unit circle example discussed above), then
as it is still learning a linear classifier, it will not perform well. It may be a good idea to combine nonlinear
feature map with soft margin in practice.

2 The dual of SVM

Sometimes looking at the dual problem will yield unexpected insights about the original (primal) problem.
Indeed, SVM is a canonical example for this statement - we have already seen that the KKT condition
implies that we can write the optimal solution w? in terms of dual optimal solution α?. We have discussed
the dual problem in an abstract way so far. But what exactly is the dual problem for SVM?

Let us first calculate the dual objective function D(α) = minw,b L(w, b;α), where

L(w, b;α) =
1

2
‖w‖2 +

n∑
i=1

αi(1− yi(〈w, xi〉+ b)).

We can write D(α) as follows:

D(α) =

n∑
i=1

αi + min
w

1

2
‖w‖2 −

〈
w,

n∑
i=1

αiyixi

〉+ min
b

 n∑
i=1

αiyib

 .

Define g(z) =

{
−∞ z = 0

0 z 6= 0
, then

D(α) =

n∑
i=1

αi −
1

2
‖

n∑
i=1

αiyixi‖2 + g(

n∑
i=1

αiyi).

5

Therefore, maxα≥0D(α) is equivalent to

maximize
α

n∑
i=1

αi −
1

2
‖

n∑
i=1

αiyixi‖2 (11)

s. t.

n∑
i=1

αiyi = 0,

αi ≥ 0, ∀i ∈ {1, . . . , n} ,

writing the objective more explicitly, it is

maximize
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

yiyj
〈
xi, xj

〉
αiαj (12)

s. t.

n∑
i=1

αiyi = 0,

αi ≥ 0, ∀i ∈ {1, . . . , n} ,

Compared to (6), this is also a quadratic program, however, its objective becomes a complicated quadratic
function, and its constraints says that α lies in the positive orthant of Rn, which is simpler than the linear
inequality constraints in (6).

3 The kernel trick

The dual of SVM (12) uncovers an interesting fact: if we would like to compute the optimal solution of (6),
it suffices to solve the dual optimization problem, whose objective function only depends on the pairwise
inner product between training examples (as opposed to the original feature vectors of training examples).

This opens up a new opportunity: suppose we have a feature map that is extremely high dimensional
(say has dimensionality M) but has succinct representation on pairwise inner product

〈
φ(x), φ(x′)

〉
(say can

be evaluated with time m), then we may avoid paying a time complexity of M in learning the SVM classifier
on the transformed examples. Here is the full proposal:

1. Define k(x, x′) =
〈
φ(x), φ(x′)

〉
be the kernel function associated with feature mapping φ.

2. Solve the dual optimization problem (12), get (αi)
m
i=1.

3. By KKT condition, we can recover

w? =

n∑
i=1

αiyiφ(xi),

but we only store w? implicitly, i.e. storing the value of all αi’s.

4. To recover b?, find an j such that αj > 0, and let

b? = yj −
〈
w?, xj

〉
= yj −

n∑
i=1

α?i yik(xi, xj),

where we directly evaluate k(xi, xj) as opposed to calculating φ(xi), φ(xj) and take their inner product.

5. To make prediction on future example x, we compute〈
w?, φ(x)

〉
+ b? =

n∑
i=1

α?i k(xi, x) + b?.

Same as before, we directly evaluate the kernel function.

6

As discussed before, each feature map corresponds to a kernel function. Some feature map gives succinct
kernel functions, whereas others may not. For example, for input domain R2, define φ(x) = (x2

1,
√

2x1x2, x
2
2).

It can be checked that its associated kernel function has a succinct form:〈
φ(x), φ(x′)

〉
= (x1x

′
1 + x2x

′
2)2 = (

〈
x, x′

〉
)2.

However, if we define φ(x) = (x2
1, x1x2, x

2
2), then its corresponding k(x, x′) does not have a succinct form.

Basic properties of kernel functions:

1. if K is the kernel function of φ, then for positive c, cK is the kernel function of
√
cφ.

2. if K1 (resp. K2) is the kernel function of φ1 (resp. φ2), then K1 + K2 is the kernel function of
φ(x) = (φ1(x), φ2(x)).

3. if K1 (resp. K2) is the kernel function of φ1 (resp. φ2), then K1 · K2 is the kernel function of
φ(x) = φ1(x)⊗ φ2(x), where the ⊗ notation denotes the Kronecker product. Suppose a = (a1, . . . , an)
and b = (b1, . . . , bm). Then,

a⊗ b =

a1b
. . .
anb

 =



a1b1
. . .
a1bm
. . .
anb1
. . .
anbm


.

The claim follow from a basic fact about Kronecker product:

〈a⊗ b, c⊗ d〉 = 〈a, c〉 · 〈b, d〉 .

4. ifK1 is the kernel function of φ1, and f is an arbitrary scalar function, thenK2(x, x′) = K1(x, x′)f(x)f(x′)
is the kernel function of φ2(x) = f(x)φ1(x).

Examples of kernel functions:

1. Linear kernel K1(x, x′) = (1 +
∑d
i=1 xix

′
i) = 1 +

〈
x, x′

〉
. Define feature map φ1(x) , (1, x1, . . . , xd). It

can be checked that k1(x, x′) =
〈
φ1(x), φ(x′)

〉
.

2. Polynomial kernel K2(x, x′) = (1 +
〈
x, x′

〉
)s for s ≥ 1. Then define φ2(x) , φ1(x)⊗s = φ1(x) ⊗ . . . ⊗

φ1(x). It can be checked by property of Kronecker product that
〈
φ2(x), φ2(x′)

〉
= (
〈
φ1(x), φ1(x′)

〉
)s =

k2(x, x′).

3. Radial basis function (RBF) kernel K3(x, x′) = exp
(
−‖x−x

′‖2
2σ2

)
for σ > 0. First, note that K3(x, x′) =

exp
(
−‖x‖

2

2σ2

)
· exp

(
−‖x

′‖2
2σ2

)
·K4(x, x′), where

K4(x, x′) = exp

(〈
x, x′

〉
σ2

)
=

∞∑
i=0

(
〈
x, x′

〉
)i

σ2ii!
.

Let us define φ4(x) =
(

1
σi
√
i!
x⊗i
)∞
i=0

; it can be easily seen that it is the feature map of K4. Therefore,

φ3(x) =

(
exp
(
−‖x‖

2

2σ2

)
· 1
σi
√
i!
x⊗i
)∞
i=0

is the feature map of K3. Note that this is an example of a

kernel with infinite dimensional feature map, and the primal SVM problem 6 cannot even be explicitly
written down.

7

4. String kernel. Suppose the strings are over a finite alphabet Σ (e.g. Σ = {A, T,C,G} for DNA se-

quences). For two strings s and s′, define K5(s, s′) =
∣∣∣{t ∈ Σ? : t is a common substring of s and s′

}∣∣∣.
Define feature map φ5(s) = (1(t is a substring of s))t∈Σ? . It can be checked thatK5(s, s′) =

〈
φ5(x), φ5(x′)

〉
.

This is also an example of a kernel with infinite dimensional feature map, and moreover the input do-
main is the set of strings as opposed to the familiar Euclidean space.

4 Margin bounds for linear classification - why does SVM work
well?

Recall that in PAC learning, we have seen that, given a distribution D over Rd × {±1} realizable by the

set of linear classifiers, any consistent classifier will have an error rate of O(
d ln m

d

m) with high probability.
Note that the generalization bound depends crucially on the dimensionality of the data. However, it has
been observed that SVM works quite well in practice, even if it uses a function kernel whose feature map is
extremely-high (or even, infinite) dimensional. What is going on in SVM that makes it effective?

In this section, we give evidence sheding lights on the effecitiveness of SVM in practice. For simplicity,
we only consider SVM for homogeneous linear classifiers, that is

minimize
w′

1

2
‖w′‖2 (13)

s. t. yi
〈
w′, xi

〉
≥ 1, ∀i ∈ {1, . . . , n} ,

We show the following theorem.

Theorem 2. Fix B,R > 0. Suppose S is a set of examples (xi, yi)
n
i=1 drawn iid from distribution D on{

x ∈ Rd : ‖x‖2 ≤ R
}
× {±1}. Then with probability 1 − δ, for all classifiers w ∈

{
w : ‖w‖2 ≤ B

}
, and all

margin parameters γ ∈ (0, BR], we have

PD(y 〈w, x〉 ≤ 0) ≤ PS(y 〈w, x〉 < γ) +
BR

γ

√√√√8 + 4 ln
(

2
δ

)
+ 2 ln

(
1 + log2(BRγ)

)
m

.

The theorem is called a “margin bound”, in the sense that the generalization error bound of the classifier
depends on two quantities: first, the empirical “margin error” of the classifier, where an example is counted
as error when it has a margin smaller than γ; second, a concentration term that decreases with margin γ.
Importantly, the theorem is dimension-free - it holds as long as examples and linear predictors have bounded
norm.

Another feature in the above statement is that it is invariant under positive scaling of B and γ: consider
a positive number α. Given a w such that ‖w‖2 ≤ B and a margin γ ∈ (0, BR], consider their scaling
w′ = αw (with norm at most B′ = αB) and γ′ ∈ (0, αBR]. Then we have the following identities on events{

y 〈w, x〉 ≤ 0
}

=
{
y
〈
w′, x

〉
≤ x

}
,
{
y 〈w, x〉 ≤ γ

}
=
{
y
〈
w′, x

〉
≤ γ′

}
.

In addition, the generalization bounds depends only on B/γ, which is equal to B′/γ′. This implies that it is
impossible to “game” the theorem by initially obtaining a statement with some alternative value of B and
use the above scaling reasoning to get a sharper margin bound.

By this theorem, we immediately have the following important consequence regarding SVM.

Corollary 1. Same setting as above. Suppose w? is such that

PD(y 〈w?, x〉 ≥ γ) = 1.

8

Then, with probability 1− δ, SVM returns a classifier ŵ, such that

PD(y 〈ŵ, x〉 ≤ 0) ≤ ‖w
?‖R
γ

√√√√8 + 4 ln
(

2
δ

)
+ 2 ln

(
1 + log2(‖w

?‖R
γ)

)
m

.

When ‖w
?‖R
γ � d, this theorem provides much stronger guarantees than O(dm) generalization error bound

as guaranteed by VC theory. In addition, using advance techniques, one can show that the generalization

bound is in fact O(‖w
?‖2R2

γ2m); therefore, so long as ‖w
?‖2R2

γ2 is smaller than d, this provides more favorable
guarantees.

Proof. Note that w?/γ is a feasible solution of 13. By the optimality of ŵ, we know that ‖ŵ‖ ≤ ‖w?/γ‖.
Now consider vector w′ = γŵ. It can be seen that PD(y 〈w, x〉 ≤ 0) = PD(y

〈
w′, x

〉
≤ 0), ‖w′‖ ≤ ‖w?‖ and

for all i, yi
〈
w′, xi

〉
≥ γ.

Now, applying Theorem 2 with w = w′, along with B = ‖w?‖ and γ, we have that

PD(y
〈
w′, x

〉
≤ 0) ≤ PS(y

〈
w′, x

〉
< γ) +

‖w?‖R
γ

√√√√8 + 4 ln
(

2
δ

)
+ 2 ln

(
1 + log2(‖w

?‖R
γ)

)
m

.

As PS(y
〈
w′, x

〉
< γ) = 0, we immediately have the theorem statement.

The proof of Theorem 2 is slightly involved. It will be based on the following two key steps: first,
relating 0-1 error and margin error to a new loss function named ramp loss; second, conduct a Rademacher
complexity-based analysis of the ramp loss class, through the way we will also develop general tools bounding
the Rademacher complexity of function classes.

Step 1: relating 0-1 error to ramp loss. Define the ramp loss as follows: `γ(w, (x, y)) = φγ(y 〈w, x〉),
where

φγ(z) =


1, z ≤ 0,

1− z
γ , 0 < z < γ,

0, z ≥ γ.

Observe that 1(z ≤ 0) ≤ φγ(z) ≤ 1(z ≤ γ). In addition, φγ is 1
γ -Lipschitz. Therefore,

P(x,y)∼∆(y 〈w, x〉 ≤ 0) ≤ E
(x,y)∼∆

φγ(y 〈w, x〉) ≤ P(x,y)∼∆(y 〈w, x〉 ≤ γ).

For both ∆ = U(S) or D.
Therefore, it suffices to show the following theorem:

Theorem 3. Suppose function φ is L-Lipschitz. Then with probability 1− δ′, for all w such that ‖w‖ ≤ B,

E
(x,y)∼D

φ(y 〈w, x〉) ≤ E
(x,y)∼S

φ(y 〈w, x〉) + LBR

√
8 + 4 ln

(
2
δ′

)
m

.

Why does this imply the original theorem statement? fix γ ∈ (0, BR], consider φ = φγ which is 1
γ -

Lipschitz. Then, with probability 1− δ′, for all w such that ‖w‖ ≤ B,

E
(x,y)∼D

φγ(y 〈w, x〉) ≤ E
(x,y)∼S

φγ(y 〈w, x〉) +
BR

γ

√
8 + 4 ln

(
2
δ′

)
m

.

9

Consider the above statement with γi = BR
2i and δi = δ

2i2 for i = 1, 2, Then by a union bound, with
probability 1− δ, for all w such that ‖w‖ ≤ B, and all i ∈ N+,

E
(x,y)∼D

φγi(y 〈w, x〉) ≤ E
(x,y)∼S

φγi(y 〈w, x〉) +
BR

γi

√√√√8 + 4 ln
(

2
δi

)
m

.

This implies that for all i in N+,

P(x,y)∼D(y 〈w, x〉 ≤ 0) ≤ P(x,y)∼S(y 〈w, x〉 ≤ γi) +
BR

γi

√√√√8 + 4 ln
(

2
δi

)
m

.

Now consider a general γ ∈ (0, BR]. Note that we can always find a i in N+, such that γi < γ ≤ 2γi. For
this choice of i, we have that 1

γi
≤ 2

γ , implying i ≤ 1 + log2(BRγ); in addition,

P(y 〈w, x〉 ≤ γi) ≤ P(y 〈w, x〉 < γ).

Therefore, for all γ ∈ (0, BR],

P(x,y)∼D(y 〈w, x〉 ≤ 0) ≤ P(x,y)∼S(y 〈w, x〉 < γ) +
BR

γ

√√√√8 + 4 ln
(

2
δ

)
+ 2 ln

(
1 + log2(BRγ)

)
m

.

Step 2: The uniform convergence of Lipschitz losses via Rademacher complexity based analysis.
Now our goal comes down to proving Theorem 3. Define loss function class F =

{
`φ,w : ‖w‖ ≤ B

}
, where

`φ,w(x, y) = φ(y 〈w, x〉) is the φ-loss induced by classifier w. It can be straightforwardly seen that Theorem 3
is a statement on the uniform convergence of ES f(Z) to ED f(Z).

By exactly the same reasoning as in the uniform convergence proof (see “Rademacher complexity” note),
we can easily show that with probability 1− δ′,

E
(x,y)∼D

φ(y 〈w, x〉)− E
(x,y)∼S

φ(y 〈w, x〉) ≤ 2 Radm(F) + LBR

√
2 ln
(

2
δ′

)
m

, (14)

where Radm(F) = ERadS(F), and

RadS(F) =
1

m
E

σ1,...,σm∼R
sup
f∈F

m∑
i=1

σif(zi)

are the population and empirical Rademacher complexities respectively.

Remark. A careful reader may notice that the empirical Rademacher complexity RadS(F) is defined a
bit differently from before; however, the original proof goes through with almost no changes: when we apply
McDiarmid’s inequality, we need to check the sensitivity of function

sup
w:‖w‖≤B

E
(x,y)∼D

φ(y 〈w, x〉)− E
(x,y)∼S

φ(y 〈w, x〉),

it can be shown that the above function is 2LBR
m -sensitive. The symmetrization step is also almost identical

to before, except that we don’t have absolute value operation on the deviation between empirical loss and
generalization loss.

Now let us look at Radm(F) more closely; first recall that Radm(F) = ES∼Dm RadS(F), where

RadS(F) =
1

m
E

σ1,...,σm∼R
sup

w:‖w‖2≤B

m∑
i=1

σiφ(yi 〈w, xi〉).

10

Also, note that F can be written as the following composite class: F = {φ ◦ g : g ∈ G}, where G ={
mw : ‖w‖ ≤ B

}
, where mw(x, y) = y 〈w, x〉 is the margin function. We have the following lemma that

relates the Rademacher complexity of F and that of G.

Lemma 1 (Contraction Lemma). Suppose S = {z1, . . . , zm} is a dataset of size m. In addition, suppse G
is a function class, and φ is an L-Lipschitz function. Then, define F = {φ ◦ g : g ∈ G}, we have:

RadS(F) ≤ LRadS(G).

What do we know about RadS(G)?

RadS(G) =
1

m
E sup
w:‖w‖2≤B

m∑
i=1

σiyi 〈w, xi〉

=
1

m
E sup
w:‖w‖2≤B

m∑
i=1

σi 〈w, xi〉

=
B

m
E ‖

m∑
i=1

σixi‖

≤ B

m

√√√√E ‖
m∑
i=1

σixi‖2

≤ B

m

√√√√E
m∑
i=1

‖xi‖2 ≤
BR√
m
.

Therefore, RadS(F) ≤ LRadS(G) ≤ LBR ·
√

1
m . Plugging into Equation (14), and using the elementary

inequality that
√
C +

√
D ≤

√
2(C +D), we have that with probability 1− δ′,

E
(x,y)∼D

φ(y 〈w, x〉) ≤ E
(x,y)∼S

φ(y 〈w, x〉) + LBR ·

√
8 + 4 ln

(
2
δ′

)
m

. (15)

Proof of the contraction lemma. Recall that

mRadS(F) = E sup
f∈F

m∑
i=1

φ(f(zi)).

Our high-level strategy is that, consider removing one φ at one location at a time, that is, to show

E sup
f∈F

 m∑
i=1

σiφ(f(zi))


≤ E sup

f∈F

Lσ1f(z1) +

m∑
i=2

σiφ(f(zi))


≤ E sup

f∈F

Lσ1f(z1) + Lσ2f(z2) +

m∑
i=3

σiφ(f(zi))


≤ . . . ≤ E sup

f∈F

(
Lσ1f(z1) + Lσ2f(z2) + . . .+ Lσmf(zm)

)
.

11

We only show the first inequality; the rest steps are fairly similar. We first expand the left hand side by
explicitly averaging over random choices of σ1:

E sup
f∈F

 m∑
i=1

σiφ(f(zi))

 = E
1

2

sup
f∈F

φ(f(z1)) +

m∑
i=2

σiφ(f(zi))

+ sup
f ′∈F

−φ(f ′(z1)) +

m∑
i=2

σiφ(f ′(zi))




Note that the right hand side can also be written as:

E
1

2

 sup
f,f ′∈F

φ(f(z1))− φ(f ′(z1)) +

m∑
i=2

σiφ(f(zi)) +

m∑
i=2

σiφ(f ′(zi))


 (16)

which can be bounded as follows:

(4) ≤ E
1

2

 sup
f,f ′∈F

L∣∣f(z1)− f ′(z1)
∣∣+

m∑
i=2

σiφ(f(zi)) +

m∑
i=2

σiφ(f ′(zi))




≤ E
1

2

 sup
f,f ′∈F

Lf(z1)− Lf ′(z1) +

m∑
i=2

σiφ(f(zi)) +

m∑
i=2

σiφ(f ′(zi))




= E
1

2

sup
f∈F

Lf(z1) +

m∑
i=2

σiφ(f(zi))

+ sup
f ′∈F

−Lf ′(z1) +

m∑
i=2

σiφ(f ′(zi))




= E sup
f∈F

Lσ1f(z1) +

m∑
i=2

σiφ(f(zi))

 .

where the first inequality uses the Lipschitzness of φ, the first equality is based on the observation that there
is always a pair of f and f ′ such that f(z1)− f ′(z1) ≥ 0 that achieves the supremum2 - if f(z1)− f ′(z1) < 0,
then switch the settings of f and f ′ will give the same objective value inside the parenthesis. The second
inequality is by unpacking the double supremum to the sum of two suprema (roughly speaking, “undoing”
the operation in), and the third inequality is by introducing the Rademacher random variable σ1 back.

2within arbitrary precision.

12

