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1 Uniform convergence of empirical error to generalization error,
revisited

In previous lectures, we have already established PAC learning guarantees for empirical risk minimization
(ERM), when the hypothesis class H is finite. The strategy is the show that for all classifiers in H, its
empirical error concentrates around its generalization error with high probability, in other words, with
probability 1− δ over the choice of S, i.e. n iid samples from D,

sup
h∈H
| err(h, S)− err(h,D)| = O


√

ln |H|+ ln 1
δ

n

 . (1)

This type of concentration is often called “uniform convergence” in learning theory literature, as long as the
right hand side converges to 0 as m goes to infinity. Under uniform convergence, we can easily argue that
with probability 1− δ, the ERM, ĥ, satisfies that

err(ĥ, D)− min
h′∈H

err(h′, D) = O


√

ln |H|+ ln 1
δ

n

 . (2)

which is sufficient to ensure H’s PAC learnability.
Now, turning back to the case when H is infinite. Under what conditions on H can we establish an analog

of Equation (1) (hence establishing an analog of Equation (2))? In this note, we show that H having a finite
VC dimension is sufficient to ensure uniform convergence.

Theorem 1. There exists a numerical constant c1 > 0 such that the following holds. Suppose hypothesis
class H has VC dimension d. Then, given a set of n iid examples (X1, Y1), . . . , (Xn, Yn) from distribution
D, with probabilty 1− δ,

sup
h∈H
| err(h, S)− err(h,D)| ≤ c1

√
d ln n

d + ln 2
δ

n
. (3)

Consequently, ERM on H has an agnostic PAC sample complexity of

m(ε, δ) = O

(
1

ε2

(
d ln

1

ε
+ ln

1

δ

))
.

To show Theorem 1, let us set up some useful notation, summarized in the following table.
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Original notation Shorthand notation Explanation
X ×Y Z instance space{

(Xi, Yi)
}n
i=1

{Zi}ni=1 training examples
1(h(x) 6= y) `h 0-1 loss associated with h{
1(h(x) 6= y) : h ∈ H

}
F = {`h : h ∈ H} loss class associated with H

err(h,D) EZ∼Df(Z) (abbrev. EDf(Z)) generalization error of h
err(h, S) 1

n

∑n
i=1 f(Zi) = EZ∼Sf(Z) (abbrev. ESf(Z)) training error of h

Table 1: Shorthand notation for PAC learning for binary classification.

Note that F is a mapping from X ×Y to {0, 1}. Similar to the growth function of the original hypothesis
class H, we can also define the growth function of F to be

S(F , n) = max
z1,...,zn

|
{

(f(z1), . . . , f(xn)) : f ∈ F
}
|.

We first have the following simple lemma that links the growth function of F and that of H.

Lemma 1. S(F , n) = S(H, n).

Proof. We first observe that for any set of labeled examples S =
{

(x1, y1), . . . , (xn, yn)
}

,

|
{

(f(x1, y1), . . . , f(xn, yn)) : f ∈ F
}
|

= |
{

(1(h(x1) 6= y1), . . . ,1(h(xn) 6= yn)) : f ∈ F
}
|

= |
{

(h(x1), . . . , h(xn)) : h ∈ H
}
|

where the first equality is by the definition of F , and the second equality is by observing that every labeling
of h on (x1, . . . , xn) induces an unique pattern of misclassification on these n examples.

This implies that

S(F , n) = max
(x1,y1),...,(xn,yn)

|
{

(f(x1, y1), . . . , f(xn, yn)) : f ∈ F
}
| = max

x1,...,xn
|
{

(h(x1), . . . , h(xn)) : h ∈ H
}
| = S(H, n).

The following theorem is central to the proof of Theorem 1, which establishes uniform convergence of
empirical loss to generalization loss for loss classes of small growth function. Its proof requires several
important insights; we will defer it to the next section.

Theorem 2. Suppose Z1, . . . , Zn is a set of iid examples, and F ⊆ (Z → {0, 1}) is the loss function class.
Then, with probability 1− δ,

sup
f∈F
|ESf(Z)− EDf(Z)| ≤

√√√√32
(

ln 2
δ + ln

(
2S(F , n)

))
n

.

Proof of Theorem 1. Applying the notation of Table 1, and using Lemma 1, we immediately get that with
probability 1− δ,

sup
h∈H
| err(h, S)− err(h,D)| ≤

√√√√32
(

ln 2
δ + ln

(
2S(H, n)

))
n

.

By Sauer’s Lemma, S(H, n) ≤ ( end )d, this implies that we can select large enough constant c1 > 0, such that
with probability 1− δ,

sup
h∈H
| err(h, S)− err(h,D)| ≤ c1

√
d ln n

d + ln 2
δ

n
. (4)
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The sample complexity bound follows from the following observation: when Equation (4) holds, the ERM

has excess error 2c1

√
d ln n

d+ln 2
δ

n . Define m(ε, δ) = min

{
m : 2c1

√
d ln n

d+ln 2
δ

n ≤ ε
}

. It can be checked that

m(ε, δ) = O
(

1
ε2

(
d ln 1

ε + ln 1
δ

))
.

This implies that when n ≥ m(ε, δ), with probability 1− δ, ERM has excess error at most ε.

2 Proof of Theorem 2

Before the actual proof, let us collect a few elementary but useful facts about supremum in the following
lemma.

Lemma 2. The following inequalities hold:

1.
sup
f∈F

(
A(f) +B(f)

)
≤ sup
f∈F

A(f) + sup
f∈F

B(f).

Equvalently,
sup
f∈F

C(f) ≤ sup
f∈F

D(f) + sup
f∈F

(
C(f)−D(f)

)
.

2.

sup
f∈F

E
[
A(f)

]
≤ E

[
sup
f∈F

A(f)

]
.

If the sup’s were max’s, you should be able to prove these using basic algebra.1 For completeness, we
include a proof of this lemma in Appendix A.

Step 1: concentration. Let us first view supf∈F
∣∣ESf(Z)− EDf(Z)

∣∣ as a function of Z1, . . . , Zn, specif-
ically, g(Z1, . . . , Zn) where

g(z1, . . . , zn) = sup
f∈F

∣∣∣∣∣∣ 1n
n∑
i=1

f(zi)− EDf(Z)

∣∣∣∣∣∣ .
We claim g is 1

n -sensitive. Indeed, for every coordinate i, consider an alternative input z(i) = (z1, . . . , zi−1, zi, zi+1, zn),

Denote by M(f, z) ,
∣∣ 1
n

∑n
i=1 f(zi)− EDf(Z)

∣∣.
M(f, z)−M(f, z(i)) ≤

∣∣∣∣ 1n (f(zi)− f(z′i))

∣∣∣∣ ≤ 1

n
.

Hence,

sup
f∈F

M(f, z) ≤ sup
f∈F

M(f, z(i)) + sup
f∈F

(
M(f, z)−M(f, z(i))

)
≤ sup
f∈F

M(f, z(i)) +
1

n
,

where the first inequality is from item 1 of Lemma 2.
Applying McDiarmid’s Inequality, with probability 1− δ,

sup
f∈F

∣∣ESf(Z)− EDf(Z)
∣∣ ≤ E sup

f∈F

∣∣∣∣∣∣ 1n
n∑
i=1

f(Zi)− EDf(Z)

∣∣∣∣∣∣+

√
ln 2

δ

2n
.

1In fact, throughout this course, it is OK to think about the sup and inf’s as max and min’s under all circumstances.
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Therefore, the proof reduces to upper bounding the first term (expected maximum deviation), i.e.

E sup
f∈F

∣∣∣∣∣∣ 1n
n∑
i=1

f(Zi)− EDf(Z)

∣∣∣∣∣∣ . (5)

The expectation is over a supremum of an infinite collection of random variables (each one is associated with
a function f in F), which is a bit difficult to deal with. Our high-level strategy for the remaining steps, is to
reduce the problem to bounding the expectation over a supremum of a finite collection of random variables.

Step 2: double sampling trick (transduction). For the moment, let us fix a set of training examples
S = z1, . . . , zn. Suppose that we obtained a fresh set of iid samples S′ =

{
Z ′1, . . . , Z

′
n

}
independent of S (we

can think of S′ as a set of validation example - the goal is to ensure for all classifiers, its training loss is close
to its validation loss). Observe that EDf(Z) = E 1

n

∑n
i=1 f(Z ′i).

Now, the term within the expectation of Equation (5) can be upper bounded as:

sup
f∈F

∣∣∣∣∣∣ 1n
n∑
i=1

f(zi)− EDf(Z)

∣∣∣∣∣∣
= sup

f∈F

∣∣∣∣∣∣E
 1

n

n∑
i=1

f(zi)−
1

n

n∑
i=1

f(Z ′i)

∣∣∣∣∣∣
≤ sup

f∈F
E

∣∣∣∣∣∣ 1n
n∑
i=1

f0(zi)−
1

n

n∑
i=1

f0(Z ′i)

∣∣∣∣∣∣
≤ E sup

f∈F

∣∣∣∣∣∣ 1n
n∑
i=1

f(zi)−
1

n

n∑
i=1

f(Z ′i)

∣∣∣∣∣∣
where in the last three lines, the expectation is over the random draw of S′. The first inequality uses Jensen’s
Inequality and the convexity of |x|, and the second inequality uses item 2 of Lemma 2.

Now, we consider the randomness in training sample S. The above implies that,

ES∼Dn sup
f∈F

∣∣∣∣∣∣ 1n
n∑
i=1

f(Zi)− EDf(Z)

∣∣∣∣∣∣
≤ ES∼Dn,S′∼Dn sup

f∈F

∣∣∣∣∣∣ 1n
n∑
i=1

f(Zi)−
1

n

n∑
i=1

f(Z ′i)

∣∣∣∣∣∣
=

1

n
ES∼Dn,S′∼Dn sup

f∈F

∣∣∣∣∣∣
n∑
i=1

(f(Zi)− f(Z ′i))

∣∣∣∣∣∣ , (6)

Here, note that for different realizations of S and S′, the f that achieves the supremum can still be drastically
different - therefore, we are still dealing with an infinite collection of random variables.

Step 3: symmetrization. Now here comes the crucial observation: define function

h(z1, z
′
1, . . . , zn, z

′
n) =

1

n
E sup
f∈F
|
n∑
i=1

σi(f(zi)− f(z′i))|.
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As the 2n random variables (Z1, Z
′
1, Z2, Z

′
2, . . . , Zn, Z

′
n) has exactly the same distribution law as, say,

(Z ′1, Z1, Z2, Z
′
2, . . . , Zn, Z

′
n) (switching the order of the first two samples), this implies that

Eh(Z1, Z
′
1, Z2, Z

′
2, . . . , Zn, Z

′
n) = Eh(Z ′1, Z1, Z2, Z

′
2, . . . , Zn, Z

′
n).

Hence,

1

n
E sup
f∈F

∣∣∣∣∣∣
n∑
i=1

(f(Zi)− f(Z ′i))

∣∣∣∣∣∣ =
1

n
E sup
f∈F

∣∣∣∣∣∣(f(Z ′1)− f(Z1)) +

n∑
i=2

(f(Zi)− f(Z ′i))

∣∣∣∣∣∣ .
More generally, for any fixed (σ1, . . . , σn) in {−1,+1}n,

1

n
E sup
f∈F

∣∣∣∣∣∣
n∑
i=1

(f(Zi)− f(Z ′i))

∣∣∣∣∣∣ =
1

n
E sup
f∈F

∣∣∣∣∣∣
n∑
i=2

σi(f(Zi)− f(Z ′i))

∣∣∣∣∣∣ . (7)

Suppose σi’s are random variables drawn iid from R, i.e. U({−1,+1}) 2 (which is called the Rademacher
distribution), by taking expectations over σi’s on both sides of Equation (7), we have that

1

n
ES,S′∼Dn sup

f∈F

∣∣∣∣∣∣
n∑
i=1

(f(Zi)− f(Z ′i))

∣∣∣∣∣∣
=

1

n
ES,S′∼Dn,σ∼Rn sup

f∈F

∣∣∣∣∣∣
n∑
i=1

σi(f(Zi)− f(Z ′i))

∣∣∣∣∣∣
≤ 1

n
ES∼Dn,σ∼Rn sup

f∈F

∣∣∣∣∣∣
n∑
i=1

σif(Zi)

∣∣∣∣∣∣+
1

n
ES′∼Dn,σ∼Rn sup

f∈F

∣∣∣∣∣∣
n∑
i=1

σif(Z ′i)

∣∣∣∣∣∣
=

2

n
ES∼Dn,σ∼Rn sup

f∈F

∣∣∣∣∣∣
n∑
i=1

σif(Zi)

∣∣∣∣∣∣ (8)

where the first inequality uses the fact that |A + B| ≤ |A| + |B|, and item 1 of Lemma 2, and the second
equality uses the fact that S and S′ come from the same distribution.

Definition 1. The empirical Rademacher complexity of F with respect to sample S of size n, RadS(F), is
defined as

RadS(F) ,
1

n
E sup
f∈F

∣∣∣∣∣∣
n∑
i=1

σif(Zi)

∣∣∣∣∣∣ ,
where the expectation is over σ ∼ Rn. The Rademacher complexity of F with respect to distribution D with
sample size n, denoted as Radn(F), is defined as

Radn(F) = ERadS(F),

where the expectation is over S ∼ Dn.

Using the above notation, the right hand side of Equation (8) can be written as 2 Radn(F).

2Here U(A) stands for the uniform distribution over set A.
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Step 4: controlling empirical Rademacher complexities. To upper bound Radn(F), it suffices to
give an uniform upper bound of RadS(F) for every fixed sample S of size n. Note that when S is fixed,
there are at most S(F , n) realizations of (f(Z1), . . . , f(Zn)), where are elements of ΠF (S). Therefore,

RadS(F) =
1

n
E max

(a1,...,an)∈ΠF (S)

∣∣∣∣∣∣
n∑
i=1

σiai

∣∣∣∣∣∣
Observe that we have successfully “tamed” an infinite collection of random variables to only a finite collection!
It turns out that there is a classical lemma that can bound the expectation of the maximum of a finite
collection of random variables, stated as follows:

Lemma 3 (Massart’s Lemma). Suppose A is a finite subset of Rn, and for all a in A, ‖a‖2 ≤ R. Then,

E

max
a∈A

n∑
i=1

σiai

 ≤ 2R
√

ln |A|.

We now apply Massart’s Lemma to our setting. Consider

A =
{

(a1, . . . , an) : a ∈ ΠF (S)
}
∪
{

(−a1, . . . ,−an) : a ∈ ΠF (S)
}
,

we know that |A| ≤ 2S(F , n). In addition, for all a ∈ A, ‖a‖2 =
√∑n

i=1 a
2
i ≤
√
n.

Therefore,

E max
(a1,...,an)∈ΠF (S)

∣∣∣∣∣∣
n∑
i=1

σiai

∣∣∣∣∣∣ ≤ Emax
a∈A

∣∣∣∣∣∣
n∑
i=1

σiai

∣∣∣∣∣∣ ≤ 2
√
n ln

(
2S(F , n)

)

This implies that RadS(F) ≤ 2

√
ln(2S(F,n))

n , and consequently, Radn(F) = ERadS(F) ≤ 2

√
ln(2S(F,n))

n .
In summary, we have shown that with probability 1− δ,

sup
f∈F

∣∣∣∣∣∣ 1n
n∑
i=1

f(Zi)− EDf(Z)

∣∣∣∣∣∣
≤ E sup

f∈F

∣∣∣∣∣∣ 1n
n∑
i=1

f(Zi)− EDf(Z)

∣∣∣∣∣∣+

√
ln 2

δ

2n

≤ 2 Radn(F) +

√
ln 2

δ

2n

≤ 4

√
ln
(
2S(F , n)

)
n

+

√
ln 2

δ

2n

≤

√
32(ln

(
2S(F , n) + ln 2

δ

)
n

,

where the last inequality uses the elementary fact that
√
A+
√
B ≤

√
2(A+B).

Proof of Lemma 3. We use the machinery of moment generating functions developed in the lectures on
concentration inequalities. First, observe that for any t > 0,
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max
a∈A

n∑
i=1

σiai =
maxa∈A

∑n
i=1 tσiai

t

=
ln
(

exp
{

maxa∈A
∑n
i=1 tσiai

})
t

≤
ln
(∑

a∈A exp
{∑n

i=1 tσiai
})

t

Now, taking expectation on both sides, and note that ln(x) is a concave function, applying Jensen’s
inequality, we get that for any t > 0,

E

max
a∈A

n∑
i=1

σiai

 ≤ ln
(∑

a∈A E exp
{∑n

i=1 tσiai
})

t
(9)

For each a in A, let’s look at the term E exp
{∑n

i=1 tσiai
}

. Observe that the exponent is a sequence of
independent random variables, therefore, we can decompose them to

∏n
i=1 E exp{tσiai}. But we know how

to bound each factor: by the key lemma in proving Hoeffding’s Inequality, we know that for a zero-mean

random variable X with range c, its moment generating function EetX is at most exp
{
c2t2

8

}
. This implies

that for all a in A, as random variable σiai has mean zero and range 2ai,

E exp


n∑
i=1

tσiai

 =

n∏
i=1

E exp{tσiai} ≤ exp

 t22 ·
n∑
i=1

a2
i

 ≤ exp

{
t2R2

2

}
.

Coming back to Equation (9), we have that the right hand side is at most

ln |A|+ t2R2/2

t
=

ln |A|
t

+
tR2

2
.

As Equation (9) holds for any t > 0, we choose t =
√

2 ln |A|
R to minimze the right hand side, which is

2R
√

ln |A|.

A Proof of Lemma 2

We show the two items respectively.

1. For every ε > 0, there exists an f0 in F such that

A(f0) +B(f0) ≥ sup
f∈F

(
A(f) +B(f)

)
− ε.

As f0 is in F , it can be easily seen that,

A(f0) +B(f0) ≤ sup
f∈F

A(f) + sup
f∈F

B(f).

Combining the above two inequalities, this implies that for any ε > 0,

sup
f∈F

(
A(f) +B(f)

)
≤ sup
f∈F

A(f) + sup
f∈F

B(f) + ε.

Taking ε→ 0 on both sides of the above inequality, we get the first inequality. The second inequality
follows by setting A(f) = C(f) and B(f) = C(f)−D(f).
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2. For every ε > 0, there exists an f0 in F such that

E
[
A(f0)

]
≥ sup
f∈F

E
[
A(f)

]
− ε.

As f0 is in F , it can be easily seen that,

E
[
A(f0)

]
≤ E

[
sup
f∈F

A(f)

]
.

Combining the above two inequalities, this implies that for any ε > 0,

sup
f∈F

E
[
A(f)

]
≤ E

[
sup
f∈F

A(f)

]
+ ε.

Taking ε→ 0 on both sides of the above inequality, we get the item.
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