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1 Probability review

1. Probability. Denote by P(A) the probability of event A; (e.g. throwing a die, A = { number 6 is up },
P(A) = 1/6.)

Probability satisfies additivity: if A ∩ B = ∅, i.e. they are mutually exclusive, then P(A ∪ B) =
P(A) + P(B). It also satisfies subadditivity: for general A,B, P(A ∪B) ≤ P(A) + P(B).

Events A and B are called independent if P(A ∩B) = P(A) · P(B).

Union bound: P(A1 ∪A2 ∪ . . . ∪An) ≤ P(A1) + . . .+ P(An).

2. Expectation. For a random variable X, denote by its expectation E[X]. Specifically, if X takes value
in a discrete set S, with probability mass function p, then

E[X] ,
∑
x∈S

x · p(x);

If X is continuous and has probability density function p, then

E[X] ,
∫
R
x · p(x)dx.

3. Indicator function. Denote by indicator function

1(A) ,

{
1 A is true,

0 A is false.

As 1(A) only takes values 0 and 1, we immediately get from the definition of expectation that

E1(A) = 1× P(A) + 0× P(Ā) = P(A).

4. Linearity of expectation. Suppose X, Y are two (possibly dependent) random variables. Then,
E[X + Y ] = E[X] + E[Y ]. Moreover, E[aX] = aE[X] for any scalar a.

Is E[XY ] = E[X]E[Y ]? This is not true in general (consider (X,Y ) as having the joint distribution of
taking (−1,−1) and (+1,+1) with probability 0.5.) However, if X and Y are independent, then

E[XY ] = E[X]E[Y ]

is true. Furthermore, if X and Y are independent, then for any functions f and g,

Ef(X)g(Y ) = E[f(X)]E[g(Y )].
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5. Variance. Recall that the variance of a random variable X (with mean µ) is defined as:

Var(X) , E(X − µ)2.

By linearity of expectation,

E(X − µ)2 = EX2 − E2X · µ+ µ2 = EX2 − µ2.

How does Var(X+Y ) relate to Var(X) and Var(Y )? Again, there is no equation relationship in general.
However a notable fact is that if X and Y are independent, then Var(X + Y ) = Var(X) + Var(Y ).
This is because,

Var(X+Y ) = E(X+Y−EX−EY )2 = E(X−EX)2+E(Y−EY )2+2E(X−EX)(Y−EY ) = Var(X)+Var(Y ).

Note that for scalar a, Var(aX) = a2 Var(X).

6. Jensen’s Inequality. Recall that a convex function f is one that for all x1, x2 in R, and t ∈ [0, 1],

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2).

Useful facts:

(a) A twice differentiable function is convex if and only if its second derivative is always nonnegative.
(This provides a practical way to check convexity.)

(b) If f is differentiable, then for any x,y, f(y) ≥ f(x) + f ′(x)(y − x). That is, f is always above
its first-order approximation. (For twice differentiable f , this is a direct consequence of Taylor’s

Theorem: f(y) = f(x) + f ′(x)(y − x) + f ′′(ξ)
2 (y − x)2 for some ξ between x and y.)

Theorem 1. Suppose f is a convex function, and X is a random variable. Then

f(EX) ≤ Ef(X).

Proof. We only show the inequality when f is differentiable. Denote by µ , EX. Observe that
for all x, f(x) ≥ f(µ) + f ′(µ)(x − µ). Taking expectation on both sides, we get that Ef(X) ≥
f(µ) + Ef ′(µ)(X − µ) = f(µ) = f(EX).

7. Markov’s inequality: a positive random variable with bounded mean should not take large values
too often.

Theorem 2 (Markov’s Inequality). Suppose X is a nonnegative random variable. Then for any a > 0,
P(X ≥ a) ≤ EX

a .

Proof. Observe that for any positive x, x ≥ a1(x ≥ a). Therefore,

EX ≥ Ea1(X ≥ a) = aP(X ≥ a).

The proof is concluded by dividing both sides by a.

8. Chebyshev’s Inequality: a random variable with a bounded variance should not deviate from its
mean too often.

Theorem 3 (Chebyshev’s Inequality). Suppose X is a random variable with mean µ and variance
v > 0. Then for any b > 0, P(|X − µ| ≥ b) ≤ v

b2 .
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Proof. Applying Markov’s Inequality to the random variable Y = (X − µ)2 and a = b2, we get

P((X − µ)2 ≥ b2) ≤ EY
b2
.

The proof is concluded by noting that event
{
|X − µ| ≥ b

}
is the same as event

{
(X − µ)2 ≥ b2

}
, and

the fact that EY = v.
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