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1 The PAC learning model

PAC stands for “Probably Approximately Correct” [1], which is a celebrated theoretical model for studying
statisical machine learning (e.g. binary classification).

Let us consider the specific setup of binary classification. Example: image classification - build a classifier
that can classify images as cats or dogs.

Basic terminologies:

1. Instance domain X - the space where the images lie in. For example, each image is grayscale, of
resolution 640× 480, and is represented by its pixel intensity. Then we can take X = R640×480.

2. Label space Y = {−1,+1} - the space where labels lie in. For example, we can use +1 to denote class
’cat’, and −1 to denote class ’dog’.

3. Data distribution D: the distribution where examples (x, y)’s are drawn from.

4. Training set: a set S drawn iid from D.

5. Classifier h (hypothesis): a mapping from X to Y - given a image as input, the classifier outputs a
label in {−1,+1}, indicating whether the image is a cat or a dog.

6. Hypothesis class H: a (structured) collection of classifiers. For example, H = the set of all neural
networks with ResNet-18 architecture 1, each different combination of weightings corresponds to a
different classifier in H.

7. Error: given a classifier h, define its generalization error as err(h,D) = P(x,y)∼D(h(x) 6= y). This is
the performance measure of a classifier. Define h’s training error with respect to the training set S of
size n as err(h, S) = 1

n

∑
(x,y)∈S 1(h(x) 6= y), also abbreviated as P(x,y)∼S(h(x) 6= y).

8. Realizable: we are given the promise that there exists a classifier h? in H, such that err(h?, D) = 0.
Agnostic: there may or may not exists a classifier in H that has zero generalization error.

Definition 1. We call an algorithm A PAC learns hypothesis class H with sample complexity function
m : (0, 1)× (0, 1)→ N, if for any distribution D realizable with respect to H, ε > 0, δ > 0, when A receives

m ≥ m(ε, δ) iid training examples from D as input, it outputs a classifier ĥ, such that with probability 1− δ,

err(ĥ, D) ≤ ε.

Remarks:

1. ε is called the target error rate, and δ is called the confidence parameter 2. “Probably” means that the
algorithm succeed with high probability (1−δ), and “Approximately Correct” means that the classifier
returned has small error rate (ε).

1With an additional linear threshold layer for the output.
2This may remind you the notion of (1 − α)-confidence interval in statistics, where the goal is to construct an interval such

that it contains the underlying parameter with probability 1 − α. Here α is essentially δ, the failure probability.
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2. The original definition in [1] requires that the learning algorithm runs in polynomial time. Here we
relax the original definition and do not require computational efficiency.

3. The sample complexity is hypothesis-class dependent but distribution independent. In practice, one
might want a sample complexity definition that “exploits the easiness of the data”, i.e. if distribution
D is easy to learn, then the learning algorithm may draw less samples from D to learn a good classifier.
We will return to this point when we study model selection.

4. If A always return a h in H, then it is called a proper learning algorithm. Otherwise, it is called an
improper learning algorithm. Interestingly, improper learning can sometimes provide more power in
achieving learnability and saving sample complexity.

1.1 Sample complexity of finite hypothesis classes

Let us consider the setting where the hypothesis class H is of finite size. In fact, it can be argued that all
hypothesis classes considered in computer-based applications are finite! To see this, consider for example
the set of all ResNet-18 networks, with each weight taking values in 64-bit floating-point numbers. Any such
network can be represented using (64 × #weights) bits.

Here we show a fundational result: any finite hypothesis class H will have a PAC sample complexity of
order m(ε, δ) = 1

ε (ln |H |+ ln 1
δ ). To see this, let us consider the following simple learning algorithm.

Algorithm 1 The consistency algorithm

Require: Training samples S of size m iid from D, hypothesis class H
1: Find ĥ in H such that ĥ agrees with all examples in S, that is, for all (x, y) in S, ĥ(x) = y.

2: return ĥ.

Theorem 1. Suppose H is finite. If the consistency algorithm (Algorithm 1) is given m iid examples from

D realizable with respect to H, then with probability 1− δ, its output ĥ is such that

err(ĥ, D) ≤ εR(m, δ, ln |H |) ,
ln |H |+ ln 1

δ

m
. (1)

In other words, it PAC learns hypothesis class H with sample complexity m(ε, δ) = 1
ε (ln |H |+ ln 1

δ ).

We make the following obervations on the error upper bound (Equation (1)). First, the dependence on
sample size is of order 1

m , which is “polynomially decreasing” in m. Second, the dependency on the size of
the hypothesis class is only logarithmic. This is somewhat desirable, as |H | is usually exponential in the
number of parameters in H, and taking a logarithm will bring the dependency on the number of parameters
from exponential to linear3. Third, the dependency on δ is only ln 1

δ - this means that the failure probability
δ can be taken as a small number (such as m−5) without hurting much on error bound.

Proof of Theorem 1. First, under realizable assumption, h? has zero error with respect to D. Therefore,
(with probability 1) h? will also agree with all examples in S. This implies that Step 1 will successfully find

a classifier ĥ in H that agrees with all exmaples in S.
Second, let µ := εR(m, δ, |H |). Let us consider all classifiers in H that has error > µ - define such subset

as Hµ. We argue that with probability 1− δ, all members of Hµ has nonzero error in S.
Fix h in Hµ. Denote by the event Eh that h has zero error in S. Then

P(Eh) =

m∏
i=1

P(h(xi) = yi) = P(h(x) = y)m = (1− err(h,D))m < (1− µ)m ≤ e−µm.

3In modern applications such as learning overparameterized neural networks, this bound is not desirable - the number of
parameters can be much greater than the training sample size, which makes this bound vacuous (≥ 1).
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Define E := ∪h∈HµEh. By union bound over all h in Hµ, we have

P(E) ≤
∑
h∈Hµ

P(Eh) ≤ |Hµ|e−µm ≤ |H |e−µm.

Plugging in the value of µ =
ln |H |+ln 1

δ

m , we get that P(E) is at most |H |e−(ln |H |+ln 1
δ ) = δ.

Event E states that there exists h in Hµ that agrees with S. Its complement Ē states that for all h in
Hµ, h does not agree with S. Formally,

for all h in H : err(h,D) > µ⇒ err(h, S) > 0.

Taking the contrapositive of the statement, we have:

for all h in H : err(h, S) = 0⇒ err(h,D) ≤ µ. (2)

Event Ē happens with probability at least 1− δ.
Suppose event Ē happens. In this case, as the output ĥ agrees with S, from Equation (2), ĥ must have

error at most µ. This concludes the first part of the theorem.
The sample complexity bound directly follows by observing that as long as m ≥ 1

ε (ln |H | + ln 1
δ ), the

(1− δ)-probability error bound εR(m, δ, ln |H |) is at most ε.

2 The Agnostic PAC learning model

One clear limitation of the PAC learning model is that it assumes that the data is perfectly separable by
some classifier in a given hypothesis class. Therefore, it cannot handle realistic settings where the data is
noisy, or settings when no classifier in the given hypothesis class is able to fully capture the patterns in the
data. The agnostic PAC model generalizes the PAC model by allowing the optimal classifer in H to have
nonzero error.

Definition 2. We call an algorithm A agnostic PAC learns hypothesis class H with sample complexity
function m : (0, 1) × (0, 1) → N, if for any distribution D, ε > 0, δ > 0, when A receives m ≥ m(ε, δ) iid

training examples from D as input, and outputs a classifier ĥ, such that with probability 1− δ,

err(ĥ, D) ≤ min
h′∈H

err(h′, D) + ε.

The goal of Agnostic PAC model is less ambitious: it declares the success of the learner so long as it
outputs a classifier whose excess error is at most ε; here the excess error of h is defined as err(h,D) −
minh′∈H err(h′, D), that is, the difference between the error of the output classifer and the optimal error in
H.

On the other hand, it generalizes the PAC learning model: if a hypothesis class H is agnostic PAC
learnable with sample complexity function m, then it is also PAC learnable with the same sample complexity
m. Indeed, if the data distribution D is realizable wrt H, then the optimal error is zero. Therefore, any
agnostic PAC learning algorithm will return an classifier with at most ε error with probability 1− δ.

2.1 Agnostic sample complexity of finite hypothesis classes

For the agnostic case, we consider the following generalization of the consistency algorithm, namely, empirical
risk minimization. The name comes from the fact that instead of looking for a classifier that perfect fits the
data, the algorithm simply finds a classifier in H that minimizes the training error (empirical risk).

Theorem 2. Suppose H is finite. If the empirical risk minimization algorithm (Algorithm 2) is given m iid

examples from D, then with probability 1− δ, its output ĥ is such that

err(ĥ, D) ≤ min
h∈H

err(h,D) + εA(m, δ, ln |H |) ,

√
2(ln |H |+ ln 2

δ )

m
. (3)
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Algorithm 2 Empirical risk minimzation

Require: Training samples S of size m iid from D, hypothesis class H
1: Find ĥ such that ĥ has the lowest training error among H: ĥ ∈ argminh∈H err(h, S).

2: return ĥ.

In other words, it agnostic PAC learns hypothesis class H with sample complexity m(ε, δ) = 2
ε2 (ln |H |+ln 2

δ ).

Proof. Let µ = 1
2εA(m, δ, ln |H |) =

√
ln |H |+ln 2

δ

2m .
For all classifiers h in H, define Eh as the event that

| err(h, S)− err(h,D)| > µ.

In addition, define E = ∪h∈HEh.
By Hoeffding’s Inequality,

P(Eh) ≤ 2e−2mµ
2

.

Therefore, by union bound and expanding the definition of µ, we get that

P(E) ≤
∑
h∈H

P(Eh) ≤ |H | · 2e−2mµ
2

≤ δ.

Hence, the complement event, Ē, happens with probability at least 1 − δ. For the rest of the proof,
suppose event Ē happens.

In Ē, we have that for all h in H,

| err(h, S)− err(h,D)| ≤ µ. (4)

Denote by h? one of the classifier in H that has the smallest generalization error. From Equation 4 applied
to the output classifier ĥ and the optimal classifier h?, we have | err(ĥ, S)− err(ĥ, D)| ≤ µ and | err(h?, S)−
err(h?, D)| ≤ µ. In addition, as ĥ minimizes the training error, err(ĥ, S) ≤ err(h?, S).

Therefore,

err(ĥ, D) ≤ err(ĥ, S) + µ Equation (4) on ĥ

≤ err(h?, S) + µ Optimality of ĥ

≤ err(h?, D) + 2µ Equation (4) on h?

≤ min
h∈H

err(h,D) + εA(m, δ, ln |H |). Optimality of h? and definition of µ

The sample complexity bound directly follows by observing that as long as m ≥ 2
ε2 (ln |H | + ln 2

δ ), the
(1− δ)-probability error bound εA(m, δ, ln |H |) is at most ε.
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